Article

Secure w-Domination in Graphs

Abel Cabrera Martínez (D) Alejandro Estrada-Moreno * (D) and Juan A. Rodríguez-Velázquez (D)
Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain; abel.cabrera@urv.cat (A.C.M.); juanalberto.rodriguez@urv.cat (J.A.R.-V.)
* Correspondence: alejandro.estrada@urv.cat

Received: 31 October 2020; Accepted: 23 November 2020; Published: 25 November 2020

Abstract

This paper introduces a general approach to the idea of protection of graphs, which encompasses the known variants of secure domination and introduces new ones. Specifically, we introduce the study of secure w-domination in graphs, where $w=\left(w_{0}, w_{1}, \ldots, w_{l}\right)$ is a vector of nonnegative integers such that $w_{0} \geq 1$. The secure w-domination number is defined as follows. Let G be a graph and $N(v)$ the open neighborhood of $v \in V(G)$. We say that a function $f: V(G) \longrightarrow\{0,1, \ldots, l\}$ is a w-dominating function if $f(N(v))=\sum_{u \in N(v)} f(u) \geq w_{i}$ for every vertex v with $f(v)=i$. The weight of f is defined to be $\omega(f)=\sum_{v \in V(G)} f(v)$. Given a w-dominating function f and any pair of adjacent vertices $v, u \in V(G)$ with $f(v)=0$ and $f(u)>0$, the function $f_{u \rightarrow v}$ is defined by $f_{u \rightarrow v}(v)=1, f_{u \rightarrow v}(u)=f(u)-1$ and $f_{u \rightarrow v}(x)=f(x)$ for every $x \in V(G) \backslash\{u, v\}$. We say that a w-dominating function f is a secure w-dominating function if for every v with $f(v)=0$, there exists $u \in N(v)$ such that $f(u)>0$ and $f_{u \rightarrow v}$ is a w-dominating function as well. The secure w-domination number of G, denoted by $\gamma_{w}^{s}(G)$, is the minimum weight among all secure w-dominating functions. This paper provides fundamental results on $\gamma_{w}^{s}(G)$ and raises the challenge of conducting a detailed study of the topic.

Keywords: secure domination; secure Italian domination; weak roman domination; w-domination

1. Introduction

Let $\mathbb{Z}^{+}=\{1,2,3, \ldots\}$ and $\mathbb{N}=\mathbb{Z}^{+} \cup\{0\}$ be the sets of positive and nonnegative integers, respectively. Let G be a graph, $l \in \mathbb{Z}^{+}$and $f: V(G) \longrightarrow\{0, \ldots, l\}$ a function. Let $V_{i}=\{v \in V(G)$: $f(v)=i\}$ for every $i \in\{0, \ldots, l\}$. We identify f with the subsets V_{0}, \ldots, V_{l} associated with it, and thus we use the unified notation $f\left(V_{0}, \ldots, V_{l}\right)$ for the function and these associated subsets. The weight of f is defined to be

$$
\omega(f)=f(V(G))=\sum_{i=1}^{l} i\left|V_{i}\right|
$$

Let $w=\left(w_{0}, \ldots, w_{l}\right) \in \mathbb{Z}^{+} \times \mathbb{N}^{l}$ such that $w_{0} \geq 1$. As defined in [1], a function $f\left(V_{0}, \ldots, V_{l}\right)$ is a w-dominating function if $f(N(v)) \geq w_{i}$ for every $v \in V_{i}$. The w-domination number of G, denoted by $\gamma_{w}(G)$, is the minimum weight among all w-dominating functions. For simplicity, a w-dominating function f of weight $\omega(f)=\gamma_{w}(G)$ is called a $\gamma_{w}(G)$-function. For fundamental results on the w-domination number of a graph, we refer the interested readers to the paper by Cabrera et al. [1], where the theory of w-domination in graphs is introduced.

The definition of w-domination number encompasses the definition of several well-known domination parameters and introduces new ones. For instance, we highlight the following particular cases of known domination parameters that we define here in terms of w-domination: the domination number $\gamma(G)=\gamma_{(1,0)}(G)=\gamma_{(1,0, \ldots, 0)}(G)$, the total domination number $\gamma_{t}(G)=\gamma_{(1,1)}(G)=$ $\gamma_{(1, \ldots, 1)}(G)$, the k-domination number $\gamma_{k}(G)=\gamma_{(k, 0)}(G)$, the k-tuple domination number $\gamma_{\times k}(G)=$ $\gamma_{(k, k-1)}(G)$, the k-tuple total domination number $\gamma_{\times k, t}(G)=\gamma_{(k, k)}(G)$, the Italian domination number
$\gamma_{I}(G)=\gamma_{(2,0,0)}(G)$, the total Italian domination number $\gamma_{t I}(G)=\gamma_{(2,1,1)}(G)$, and the $\{k\}$-domination number $\gamma_{\{k\}}(G)=\gamma_{(k, k-1, \ldots, 0)}(G)$. In these definitions, the appropriate restrictions on the minimum degree of G are assumed, when needed.

For any function $f\left(V_{0}, \ldots, V_{l}\right)$ and any pair of adjacent vertices $v \in V_{0}$ and $u \in V(G) \backslash V_{0}$, the function $f_{u \rightarrow v}$ is defined by $f_{u \rightarrow v}(v)=1, f_{u \rightarrow v}(u)=f(u)-1$ and $f_{u \rightarrow v}(x)=f(x)$ whenever $x \in V(G) \backslash\{u, v\}$.

We say that a w-dominating function $f\left(V_{0}, \ldots, V_{l}\right)$ is a secure w-dominating function if for every $v \in V_{0}$ there exists $u \in N(v) \backslash V_{0}$ such that $f_{u \rightarrow v}$ is a w-dominating function as well. The secure w-domination number of G, denoted by $\gamma_{w}^{S}(G)$, is the minimum weight among all secure w-dominating functions. For simplicity, a secure w-dominating function f of weight $\omega(f)=\gamma_{w}^{s}(G)$ is called a $\gamma_{w}^{s}(G)$-function. This approach to the theory of secure domination covers the different versions of secure domination known so far. For instance, we emphasize the following cases of known parameters that we define here in terms of secure w-domination.

- The secure domination number of G is defined to be $\gamma_{s}(G)=\gamma_{(1,0)}^{s}(G)$. In this case, for any secure (1,0)-dominating function $f\left(V_{0}, V_{1}\right)$, the set V_{1} is known as a secure dominating set. This concept was introduced by Cockayne et al. [2] and studied further in several papers (e.g., [3-9]).
- The secure total domination number of a graph G of minimum degree at least one is defined to be $\gamma_{s t}(G)=\gamma_{(1,1)}^{s}(G)$. In this case, for any secure (1,1)-dominating function $f\left(V_{0}, V_{1}\right)$, the set V_{1} is known as a secure total dominating set of G. This concept was introduced by Benecke et al. [10] and studied further in several papers (e.g., [7,11-14]).
- The weak Roman domination number of a graph G is defined to be $\gamma_{r}(G)=\gamma_{(1,0,0)}^{s}(G)$. This concept was introduced by Henning and Hedetniemi [15] and studied further in several papers (e.g., [5,6,16,17]).
- The total weak Roman domination number of a graph G of minimum degree at least one is defined to be $\gamma_{t r}(G)=\gamma_{(1,1,1)}^{s}(G)$. This concept was introduced by Cabrera et al. in [12] and studied further in [18].
- The secure Italian domination number of G is defined to be $\gamma_{I}^{s}(G)=\gamma_{(2,0,0)}^{s}(G)$. This parameter was introduced by Dettlaff et al. [19].

For the graphs shown in Figure 1, we have the following:

- $\left.\quad \gamma_{(1,1)}^{s}\left(G_{1}\right)=\gamma_{(2,0)}^{s}\left(G_{1}\right)=\gamma_{(2,1)}^{s}\left(G_{1}\right)=\gamma_{(2,0)}\left(G_{1}\right)=\gamma_{(2,1)} G_{1}\right)=\gamma_{(1,1,0)}^{s}\left(G_{1}\right)=\gamma_{(1,1,1)}^{s}\left(G_{1}\right)=$ $\gamma_{(2,0,0)}^{s}\left(G_{1}\right)=\gamma_{(2,1,0)}^{s}\left(G_{1}\right)=\gamma_{(2,0,0)}\left(G_{1}\right)=\gamma_{(2,1,0)}\left(G_{1}\right)=\gamma_{(2,2,0)}\left(G_{1}\right)=\gamma_{(2,2,1)}\left(G_{1}\right)=$ $\gamma_{(2,2,2)}\left(G_{1}\right)=4$ and $\gamma_{(2,2)}^{s}\left(G_{1}\right)=\gamma_{(2,2)}\left(G_{1}\right)=\gamma_{(2,2,0)}^{s}\left(G_{1}\right)=\gamma_{(2,2,1)}^{s}\left(G_{1}\right)=\gamma_{(2,2,2)}^{s}\left(G_{1}\right)=$ $\gamma_{(3,0,0)}^{s}\left(G_{1}\right)=\gamma_{(3,1,0)}^{s}\left(G_{1}\right)=\gamma_{(3,1,1)}^{s}\left(G_{1}\right)=\gamma_{(3,2,0)}^{s}\left(G_{1}\right)=\gamma_{(3,2,1)}^{s}\left(G_{1}\right)=\gamma_{(3,2,2)}^{s}\left(G_{1}\right)=$ $\gamma_{(3,0,0)}\left(G_{1}\right)=\gamma_{(3,1,0)}\left(G_{1}\right)=\gamma_{(3,1,1)}\left(G_{1}\right)=\gamma_{(3,2,0)}\left(G_{1}\right)=\gamma_{(3,2,1)}\left(G_{1}\right)=\gamma_{(3,2,2)}\left(G_{1}\right)=6$.
- $\quad \gamma_{(1,1)}^{s}\left(G_{2}\right)=\gamma_{(1,1,0)}^{s}\left(G_{2}\right)=\gamma_{(1,1,1)}^{s}\left(G_{2}\right)=\gamma_{(2,2,0)}\left(G_{2}\right)=\gamma_{(2,2,1)}\left(G_{2}\right)=\gamma_{(2,2,2)}\left(G_{2}\right)=3$.
- $\quad \gamma_{(1,1)}^{s}\left(G_{3}\right)=\gamma_{(1,1,0)}^{s}\left(G_{3}\right)=\gamma_{(1,1,1)}^{s}\left(G_{3}\right)=\gamma_{(2,1,0)}\left(G_{3}\right)=\gamma_{(3,0,0)}\left(G_{3}\right)=3<4=\gamma_{(2,0,0)}^{s}\left(G_{3}\right)=$ $\gamma_{(2,1,0)}^{s}\left(G_{3}\right)=\gamma_{(3,1,0)}^{s}\left(G_{3}\right)=\gamma_{(2,2,0)}\left(G_{3}\right)=\gamma_{(2,2,1)}\left(G_{3}\right)=\gamma_{(2,2,2)}\left(G_{3}\right)=\gamma_{(3,2,0)}\left(G_{3}\right)<$ $5=\gamma_{(2,2,0)}^{s}\left(G_{3}\right)=\gamma_{(3,2,0)}^{s}\left(G_{3}\right)=\gamma_{(2,2,1)}^{s}\left(G_{3}\right)=\gamma_{(2,2,2)}^{s}\left(G_{3}\right)=\gamma_{(3,1,1)}^{s}\left(G_{3}\right)=\gamma_{(3,2,1)}^{s}\left(G_{3}\right)=$ $\gamma_{(3,2,1)}\left(G_{3}\right)=\gamma_{(3,2,2)}\left(G_{3}\right)<6=\gamma_{(3,2,2)}^{s}\left(G_{3}\right)$.

This paper is devoted to providing general results on secure w-domination. We assume that the reader is familiar with the basic concepts, notation, and terminology of domination in graph. If this is not the case, we suggest the textbooks [20,21]. For the remainder of the paper, definitions are introduced whenever a concept is needed.

Figure 1. The labels of black-colored vertices describe the positive weights of a $\gamma_{(2,1,0)}^{s}\left(G_{1}\right)$-function, a $\gamma_{(1,1,1)}^{s}\left(G_{2}\right)$-function, and a $\gamma_{(2,2,2)}^{s}\left(G_{3}\right)$-function, respectively.

2. General Results on Secure w-Domination

Given a w-dominating function $f\left(V_{0}, \ldots, V_{l}\right)$, we introduce the following notation.

- Given $v \in V_{0}$, we define $M_{f}(v)=\left\{u \in V(G) \backslash V_{0}: f_{u \rightarrow v}\right.$ as a w-dominating function $\}$.
- $\mathcal{M}_{f}(G)=\bigcup_{v \in V_{0}} M_{f}(v)$.
- Given $u \in \mathcal{M}_{f}(G)$, we define $D_{f}(u)=\left\{v \in V_{0}: u \in M_{f}(v)\right\}$.
- Given $u \in \mathcal{M}_{f}(G)$, we define $T_{f}(u)=\left\{v \in V_{0}: u \in M_{f}(v)\right.$ and $\left.f(N(v))=w_{0}\right\}$.

Obviously, if f is a secure w-dominating function, then $M_{f}(v) \neq \varnothing$ for every $v \in V_{0}$.
Lemma 1. Let f be a secure w-dominating function on a graph G, and let $u \in \mathcal{M}_{f}(G)$. If $T_{f}(u) \neq \varnothing$, then each vertex belonging to $T_{f}(u)$ is adjacent to every vertex in $D_{f}(u)$ and, in particular, $G\left[T_{f}(u)\right]$ is a clique.

Proof. Since $T_{f}(u) \subseteq D_{f}(u)$, we only need to suppose the existence of two non-adjacent vertices $v \in T_{f}(u)$ and $v^{\prime} \in D_{f}(u)$ with $v \neq v^{\prime}$. In such a case, $f_{u \rightarrow v^{\prime}}(N(v))<w_{0}$, which is a contradiction. Therefore, the result follows.

Remark 1 ([1]). Let G be a graph of minimum degree δ and let $w=\left(w_{0}, w_{1}, \ldots, w_{l}\right) \in \mathbb{Z}^{+} \times \mathbb{N}^{l}$. If $w_{0} \geq$ $w_{1} \geq \cdots \geq w_{l}$, then there exists a w-dominating function on G if and only if $w_{l} \leq l \delta$.

Throughout this section, we repeatedly apply, without explicit mention, the following necessary and sufficient condition for the existence of a secure w-dominating function on G.

Remark 2. Let G be a graph of minimum degree δ and let $w=\left(w_{0}, w_{1}, \ldots, w_{l}\right) \in \mathbb{Z}^{+} \times \mathbb{N}^{l}$. If $w_{0} \geq w_{1} \geq$ $\cdots \geq w_{l}$, then there exists a secure w-dominating function on G if and only if $w_{l} \leq l \delta$.

Proof. If f is a secure w-dominating function on G, then f is a w-dominating function, and by Remark 1 we conclude that $w_{l} \leq l \delta$.

Conversely, if $w_{l} \leq l \delta$, then the function f, defined by $f(v)=l$ for every $v \in V(G)$, is a secure w-dominating function. Therefore, the result follows.

It was shown by Cabrera et al. [1] that the w-domination numbers satisfy a certain monotonicity. Given two integer vectors $w=\left(w_{0}, \ldots, w_{l}\right)$ and $w^{\prime}=\left(w_{0}^{\prime}, \ldots, w_{l}^{\prime}\right)$, we say that $w^{\prime} \prec w$ if $w_{i}^{\prime} \leq w_{i}$ for every $i \in\{0, \ldots, l\}$. With this notation in mind, we can state the next remark which is a direct consequence of the definition of w-dominating function.

Remark 3. [1] Let G be a graph of minimum degree δ and let $w=\left(w_{0}, \ldots, w_{l}\right), w^{\prime}=\left(w_{0}^{\prime}, \ldots, w_{l}^{\prime}\right) \in$ $\mathbb{Z}^{+} \times \mathbb{N}^{l}$ such that $w_{i} \geq w_{i+1}$ and $w_{i}^{\prime} \geq w_{i+1}^{\prime}$ for every $i \in\{0, \ldots, l-1\}$. If $w^{\prime} \prec w$ and $w_{l} \leq l \delta$, then every w-dominating function is a w^{\prime}-dominating function and, as a consequence,

$$
\gamma_{w^{\prime}}(G) \leq \gamma_{w}(G)
$$

The monotonicity also holds for the case of secure w-domination.
Remark 4. Let G be a graph of minimum degree δ and let $w=\left(w_{0}, \ldots, w_{l}\right), w^{\prime}=\left(w_{0}^{\prime}, \ldots, w_{l}^{\prime}\right) \in \mathbb{Z}^{+} \times \mathbb{N}^{l}$ such that $w_{i} \geq w_{i+1}$ and $w_{i}^{\prime} \geq w_{i+1}^{\prime}$ for every $i \in\{0, \ldots, l-1\}$. If $w^{\prime} \prec w$ and $w_{l} \leq l \delta$, then every secure w-dominating function is a secure w^{\prime}-dominating function and, as a consequence,

$$
\gamma_{w^{\prime}}^{s}(G) \leq \gamma_{w}^{s}(G)
$$

Proof. For any $\gamma_{w}^{s}(G)$-function f and any $v \in V(G)$ with $f(v)=0$, there exists $u \in M_{f}(v)$. Since f and $f_{u \rightarrow v}$ are w-dominating functions, by Remark 3, we conclude that, if $w^{\prime} \prec w$ and $w_{l} \leq l \delta$, then both f and $f_{u \rightarrow v}$ are w^{\prime}-dominating functions. Therefore, f is a secure w^{\prime}-dominating function and, as a consequence, $\gamma_{w^{\prime}}^{s}(G) \leq \omega(f)=\gamma_{w}^{s}(G)$.

From the following equality chain, we obtain examples of equalities in Remark 4. Graph G_{1} is illustrated in Figure 1.

$$
\gamma_{(3,0,0)}^{s}\left(G_{1}\right)=\gamma_{(3,1,0)}^{s}\left(G_{1}\right)=\gamma_{(3,2,0)}^{s}\left(G_{1}\right)=\gamma_{(3,2,1)}^{s}\left(G_{1}\right)=\gamma_{(3,2,2)}^{s}\left(G_{1}\right) .
$$

Theorem 1. Let G be a graph of minimum degree δ, and let $w=\left(w_{0}, \ldots, w_{l}\right) \in \mathbb{Z}^{+} \times \mathbb{N}^{l}$ such that $w_{i} \geq w_{i+1}$ for every $i \in\{0, \ldots, l-1\}$. If $l \delta \geq w_{l}$, then the following statements hold.
(i) $\gamma_{w}(G) \leq \gamma_{w}^{s}(G)$.
(ii) If $k \in \mathbb{Z}^{+}$, then $\gamma_{\left(k+1, k=w_{1}, \ldots, w_{l}\right)}(G) \leq \gamma_{\left(k, k=w_{1}, \ldots, w_{l}\right)}^{s}(G)$.

Proof. Since every secure w-dominating function on G is a w-dominating function on G, (i) follows.
Let $f\left(V_{0}, \ldots, V_{l}\right)$ be a $\gamma_{\left(k, k=w_{1}, \ldots, w_{l}\right)}^{s}(G)$-function. Since f is a $\left(k, k=w_{1}, \ldots, w_{l}\right)$-dominating function, $f(N(v)) \geq w_{i}$ for every $v \in V_{i}$ with $i \in\{1, \ldots, l\}$ and $w_{1}=k$. If $V_{0}=\varnothing$, then f is a $\left(k+1, k=w_{1}, \ldots, w_{l}\right)$-dominating function, which implies that $\gamma_{\left(k+1, k=w_{1}, \ldots, w_{l}\right)}(G) \leq \omega(f)=$ $\gamma_{\left(k, k=w_{1}, \ldots, w_{l}\right)}^{s}(G)$. Assume $V_{0} \neq \varnothing$. Let $v \in V_{0}$ and $u \in M_{f}(v)$. If $f(N(v))=k$, then $f_{u \rightarrow v}(N(v))=$ $f(N(v))-1=k-1$, which is a contradiction. Thus, $f(N(v)) \geq k+1$, which implies that f is a $(k+$ $\left.1, k=w_{1}, \ldots, w_{l}\right)$-dominating function. Therefore, $\gamma_{\left(k+1, k=w_{1}, \ldots, w_{l}\right)}(G) \leq \omega(f)=\gamma_{\left(k, k=w_{1}, \ldots, w_{l}\right)}^{s}(G)$, and (ii) follows.

The inequalities above are tight. For instance, for any integers $n, n^{\prime} \geq 4$, we have that $\gamma_{(2,2,2)}\left(K_{n}+\right.$ $\left.N_{n^{\prime}}\right)=\gamma_{(2,2,2)}^{s}\left(K_{n}+N_{n^{\prime}}\right)=3$ and $\gamma_{(3,2,2)}\left(K_{2, n}\right)=\gamma_{(2,2,2)}^{s}\left(K_{2, n}\right)=5$.

Corollary 1. Let G be a graph of minimum degree δ and order n. Let $w=\left(w_{0}, \ldots, w_{l}\right) \in \mathbb{Z}^{+} \times \mathbb{N}^{l}$ such that $w_{i} \geq w_{i+1}$ for every $i \in\{0, \ldots, l-1\}$ and $l \delta \geq w_{l}$. The following statements hold.
(i) If $n>w_{0}$, then $\gamma_{w}^{s}(G) \geq w_{0}$.
(ii) If $n>w_{0}=w_{1}$, then $\gamma_{w}^{s}(G) \geq w_{0}+1$.

Proof. Assume $n>w_{0}$. By Theorem 1, we have that $\gamma_{w}^{s}(G) \geq \gamma_{w}(G)$. Now, if $\gamma_{w}(G) \leq w_{0}-1<n-1$, then for any $\gamma_{w}(G)$-function f there exists at least one vertex $x \in V(G)$ such that $f(x)=0$ and $f(N(x)) \leq \omega(f)<w_{0}$, which is a contradiction. Thus, $\gamma_{w}^{s}(G) \geq \gamma_{w}(G) \geq w_{0}$.

Analogously, if $w_{0}=w_{1}$, then Theorem 1 leads to $\gamma_{w}^{s}(G) \geq \gamma_{\left(w_{0}+1, w_{1}, \ldots, w_{l}\right)}(G)$. In this case, if $\gamma_{\left(w_{0}+1, w_{1}, \ldots, w_{l}\right)}(G) \leq w_{0}<n$, then for any $\gamma_{\left(w_{0}+1, w_{1}, \ldots, w_{l}\right)}(G)$-function f there exists at least one vertex $x \in V(G)$ such that $f(x)=0$ and $f(N(x)) \leq \omega(f)<w_{0}+1$, which is a contradiction. Therefore, $\gamma_{w}^{s}(G) \geq \gamma_{\left(w_{0}+1, w_{1}, \ldots, w_{l}\right)}(G) \geq w_{0}+1$.

As the following result shows, the bounds above are tight.
Proposition 1. For any integer n and any $w=\left(w_{0}, \ldots, w_{l}\right) \in \mathbb{Z}^{+} \times \mathbb{N}^{l}$ such that $w_{l} \leq \cdots \leq w_{0}<n$,

$$
\gamma_{w}^{s}\left(K_{n}\right)= \begin{cases}w_{0}+1 & \text { if } w_{0}=w_{1} \\ w_{0} & \text { otherwise }\end{cases}
$$

Proof. Assume $n>w_{0}$. Let $S \subseteq V\left(K_{n}\right)$ such that $|S|=w_{0}+1$ if $w_{0}=w_{1}$ and $|S|=w_{0}$ otherwise. In both cases, the function $f\left(V_{0}, \ldots, V_{l}\right)$, defined by $V_{1}=S, V_{0}=V(G) \backslash V_{1}$ and $V_{j}=\varnothing$ whenever $j \notin\{0,1\}$, is a secure w-dominating function. Hence, $\gamma_{w}^{s}\left(K_{n}\right) \leq \omega(f)=|S|$. Therefore, by Corollary 1 the result follows.

Theorem 2. Let G be a graph of minimum degree δ, and let $w=\left(w_{0}, \ldots, w_{l}\right), w^{\prime}=\left(w_{0}^{\prime}, \ldots, w_{l}^{\prime}\right) \in \mathbb{Z}^{+} \times \mathbb{N}^{l}$ such that $l \delta \geq w_{l}, w_{i} \geq w_{i+1}$ and $w_{i}^{\prime} \geq w_{i+1}^{\prime}$ for every $i \in\{0, \ldots, l-1\}$. If $w_{i} \geq w_{i-1}^{\prime}-1$ for every $i \in\{1, \ldots, l\}$, and $\max \left\{w_{j}-1,0\right\} \geq w_{j}^{\prime}$ for every $j \in\{0, \ldots, l\}$, then

$$
\gamma_{w^{\prime}}^{s}(G) \leq \gamma_{w}(G)
$$

Proof. Assume that $w_{i} \geq w_{i-1}^{\prime}-1$ for every $i \in\{1, \ldots, l\}$ and $\max \left\{w_{j}-1,0\right\} \geq w_{j}^{\prime}$ for every $j \in\{0, \ldots, l\}$. Let $f\left(V_{0}, \ldots, V_{l}\right)$ be a $\gamma_{w}(G)$-function. We claim that f is a secure w^{\prime}-dominating function. Since $f(N(x)) \geq w_{i} \geq w_{i}^{\prime}$ for every $x \in V_{i}$ with $i \in\{0, \ldots, l\}$, we deduce that f is a w^{\prime}-dominating function. Now, let $v \in V_{0}$ and $u \in N(v) \cap V_{i}$ with $i \in\{1, \ldots, l\}$. We differentiate the following cases for $x \in V(G)$.

Case 1. $x=v$. In this case, $f_{u \rightarrow v}(v)=1$ and $f_{u \rightarrow v}(N(v))=f(N(v))-1 \geq w_{0}-1 \geq \max \left\{w_{1}-1,0\right\} \geq$ w_{1}^{\prime}.

Case 2. $x=u$. In this case, $f_{u \rightarrow v}(u)=f(u)-1=i-1$ and $f_{u \rightarrow v}(N(u))=f(N(u))+1 \geq w_{i}+1 \geq$ w_{i-1}^{\prime}.
Case 3. $x \in V(G) \backslash\{u, v\}$. Assume $x \in V_{j}$. Notice that $f_{u \rightarrow v}(x)=f(x)=j$. Now, if $x \notin N(u)$ or $x \in N(u) \cap N(v)$, then $f_{u \rightarrow v}(N(x))=f(N(x)) \geq w_{j} \geq w_{j}^{\prime}$, while if $x \in N(u) \backslash N[v]$, then $f_{u \rightarrow v}(N(x))=f(N(x))-1 \geq \max \left\{w_{j}-1,0\right\} \geq w_{j}^{\prime}$.

According to the three cases above, $f_{u \rightarrow v}$ is a w^{\prime}-dominating function. Therefore, f is a secure w^{\prime}-dominating function, and so $\gamma_{w^{\prime}}^{S}(G) \leq \omega(f)=\gamma_{w}(G)$.

The inequality above is tight. For instance, $\gamma_{(1,1,1)}^{s}\left(K_{n, n^{\prime}}\right)=\gamma_{(2,2,2)}\left(K_{n, n^{\prime}}\right)=4$ for $n, n^{\prime} \geq 4$.
From Theorems 1 and 2, we derive the next known inequality chain, where G has minimum degree $\delta \geq 1$, except in the last inequality in which $\delta \geq 2$.

$$
\gamma_{s}(G) \leq \gamma_{2}(G) \leq \gamma_{\times 2}(G) \leq \gamma_{s t}(G) \leq \gamma_{\times 2, t}(G)
$$

The following result is a particular case of Theorem 2.
Corollary 2. Let G be a graph of minimum degree δ, and let $w=\left(w_{0}, \ldots, w_{l}\right) \in \mathbb{Z}^{+} \times \mathbb{N}^{l}$ and $\mathbf{1}=(1, \ldots, 1)$. If $0 \leq w_{j-1}-w_{j} \leq 2$ for every $j \in\{1, \ldots, i\}$, where $1 \leq i \leq l$ and $l \delta \geq w_{l}+1$, then

$$
\gamma_{\left(w_{0}, \ldots, w_{i}, 0, \ldots, 0\right)}^{s}(G) \leq \gamma_{\left(w_{0}+1, \ldots, w_{i}+1,0, \ldots, 0\right)}(G) \leq \gamma_{w+\boldsymbol{1}}(G)
$$

For Graph G_{2} illustrated in Figure 1, we have that $\gamma_{(1,1)}^{s}\left(G_{2}\right)=\gamma_{(1,1,0)}^{s}\left(G_{2}\right)=\gamma_{(2,2,0)}\left(G_{2}\right)=$ $\gamma_{(1,1,1)}^{s}\left(G_{2}\right)=\gamma_{(2,2,2)}\left(G_{2}\right)=3$. Notice that $\gamma_{w}^{s}\left(G_{2}\right)=\gamma_{w+1}\left(G_{2}\right)$ for $w=\mathbf{1}=(1,1,1)$.

Next, we show a class of graphs where $\gamma_{w}(G)=\gamma_{w+1}(G)$. To this end, we need to introduce some additional notation and terminology. Given the two Graphs G_{1} and G_{2}, the corona product graph $G_{1} \odot G_{2}$ is the graph obtained from G_{1} and G_{2}, by taking one copy of G_{1} and $\left|V\left(G_{1}\right)\right|$ copies of G_{2} and joining by an edge every vertex from the i th copy of G_{2} with the i th vertex of G_{1}. For every $x \in V\left(G_{1}\right)$, the copy of G_{2} in $G_{1} \odot G_{2}$ associated to x is denoted by $G_{2, x}$.

Theorem 3 ([1]). Let $G_{1} \odot G_{2}$ be a corona graph where G_{1} does not have isolated vertices, and let $w=$ $\left(w_{0}, \ldots, w_{l}\right) \in \mathbb{Z}^{+} \times \mathbb{N}^{l}$. If $l \geq w_{0} \geq \cdots \geq w_{l}$ and $\left|V\left(G_{2}\right)\right| \geq w_{0}$, then

$$
\gamma_{w}\left(G_{1} \odot G_{2}\right)=w_{0}\left|V\left(G_{1}\right)\right|
$$

From the result above, we deduce that under certain additional restrictions on G_{2} and w we can obtain $\gamma_{w}^{S}\left(G_{1} \odot G_{2}\right)=\gamma_{w+\mathbf{1}}\left(G_{1} \odot G_{2}\right)$.

Theorem 4. Let $G_{1} \odot G_{2}$ be a corona graph, where G_{1} does not have isolated vertices and G_{2} is a triangle-free graph. Let $w=\left(w_{0}, \ldots, w_{l}\right) \in \mathbb{Z}^{+} \times \mathbb{N}^{l}$ such that $l-1 \geq w_{0} \geq \cdots \geq w_{l}$. If $\left|V\left(G_{2}\right)\right| \geq w_{0}+2$, then

$$
\gamma_{w}^{s}\left(G_{1} \odot G_{2}\right)=\left(w_{0}+1\right)\left|V\left(G_{1}\right)\right|=\gamma_{w+1}\left(G_{1} \odot G_{2}\right)
$$

Proof. Since G_{1} does not have isolated vertices, the upper bound $\gamma_{w}^{s}\left(G_{1} \odot G_{2}\right) \leq\left(w_{0}+1\right)\left|V\left(G_{1}\right)\right|$ is straightforward, as the function f, defined by $f(x)=w_{0}+1$ for every $x \in V\left(G_{1}\right)$ and $f(x)=0$ for the remaining vertices of $G_{1} \odot G_{2}$, is a secure w-dominating function.

On the other hand, let $f\left(V_{0}, \ldots, V_{l}\right)$ be a $\gamma_{w}^{s}\left(G_{1} \odot G_{2}\right)$-function and suppose that there exists $x \in V\left(G_{1}\right)$ such that $f\left(V\left(G_{2, x}\right)\right)+f(x) \leq w_{0}$. Since $\left|V\left(G_{2, x}\right)\right| \geq w_{0}+2$, there exist at least two different vertices $u, v \in V\left(G_{2, x}\right) \cap V_{0}$. Hence, $f(N(u))=f(N(v))=w_{0}$, which implies that u and v are adjacent and, since G_{2} is a triangle-free graph, $f(x)=w_{0}$ and $f(y)=0$ for every $y \in V\left(G_{2, x}\right)$. Thus, by Lemma 1, we conclude that $G_{2, x}$ is a clique, which is a contradiction as $\left|V\left(G_{2}\right)\right| \geq 3$ and G_{2} is a triangle-free graph. This implies that $f\left(V\left(G_{2, x}\right)\right)+f(x) \geq w_{0}+1$ for every $x \in V\left(G_{1}\right)$, and so $\gamma_{w}^{s}\left(G_{1} \odot G_{2}\right)=\omega(f) \geq\left(w_{0}+1\right)\left|V\left(G_{1}\right)\right|$.

Therefore, $\gamma_{w}^{s}\left(G_{1} \odot G_{2}\right)=\left(w_{0}+1\right)\left|V\left(G_{1}\right)\right|$, and by Theorem 3 we conclude that $\gamma_{w+\mathbf{1}}\left(G_{1} \odot G_{2}\right)=$ $\left(w_{0}+1\right)\left|V\left(G_{1}\right)\right|$, which completes the proof.

Theorem 5. Let G be a graph of minimum degree δ and $l \geq 2$ an integer. For any $\left(w_{0}, \ldots, w_{l-1}\right) \in \mathbb{Z}^{+} \times \mathbb{N}^{l-1}$ with $w_{0} \geq \cdots \geq w_{l-1}$ and $l \delta \geq w_{l-1}$,

$$
\gamma_{\left(w_{0}, \ldots, w_{l-1}, w_{l}=w_{l-1}\right)}^{s}(G) \leq \gamma_{\left(w_{0}, \ldots, w_{l-1}\right)}(G)+\gamma(G)
$$

Proof. Let $f\left(V_{0}, \ldots, V_{l-1}\right)$ be a $\gamma_{\left(w_{0}, \ldots, w_{l-1}\right)}(G)$-function and S a $\gamma(G)$-set. We define a function $g\left(W_{0}, \ldots, W_{l}\right)$ as follows. Let $W_{l}=V_{l-1} \cap S, W_{0}=V_{0} \backslash S$, and $W_{i}=\left(V_{i-1} \cap S\right) \cup\left(V_{i} \backslash S\right)$ for every $i \in\{1, \ldots, l-1\}$.

We claim that g is a secure $\left(w_{0}, \ldots, w_{l-1}, w_{l}=w_{l-1}\right)$-dominating function. First, we observe that, if $x \in W_{i} \cap S$ with $i \in\{1, \ldots, l\}$, then $x \in V_{i-1}$ and $g(N(x)) \geq f(N(x)) \geq w_{i-1} \geq w_{i}$. Moreover, if $x \in W_{i} \backslash S$ with $i \in\{0, \ldots, l-1\}$, then $x \in V_{i}$ and $g(N(x)) \geq f(N(x)) \geq w_{i}$. Hence, g is a $\left(w_{0}, \ldots, w_{l-1}, w_{l}=w_{l-1}\right)$-dominating function.

Now, let $v \in W_{0}=V_{0} \backslash S$. Notice that there exists a vertex $u \in N(v) \cap V_{i-1} \cap S$ with $i \in\{1, \ldots, l\}$. Hence, $u \in N(v) \cap W_{i}$. We differentiate the following cases for $x \in V(G)$.

Case 1. $x=v$. In this case, $g_{u \rightarrow v}(v)=1$ and, as $N(v) \cap S \neq \varnothing$, we obtain that $g_{u \rightarrow v}(N(v))=$ $g(N(v))-1 \geq f(N(v)) \geq w_{0} \geq w_{1}$.

Case 2. $x=u$. In this case, $g_{u \rightarrow v}(u)=g(u)-1=i-1$ and $g_{u \rightarrow v}(N(u))=g(N(u))+1 \geq$ $f(N(u))+1 \geq w_{i-1}+1>w_{i-1}$.
Case 3. $x \in V(G) \backslash\{u, v\}$. Assume $x \in W_{j}$. Notice that $g_{u \rightarrow v}(x)=g(x)=j$. If $x \notin N(u)$ or $x \in N(u) \cap N(v)$, then $g_{u \rightarrow v}(N(x))=g(N(x)) \geq f(N(x)) \geq w_{j}$.

Moreover, if $x \in(N(u) \backslash N[v]) \cap S$, then $x \in V_{j-1}$ and so $g_{u \rightarrow v}(N(x))=g(N(x))-1 \geq$ $f(N(x)) \geq w_{j-1} \geq w_{j}$. Finally, if $x \in(N(u) \backslash N[v]) \backslash S$, then $x \in V_{j}$ and therefore $g_{u \rightarrow v}(N(x))=$ $g(N(x))-1 \geq f(N(x)) \geq w_{j}$.

According to the three cases above, $g_{u \rightarrow v}$ is a $\left(w_{0}, \ldots, w_{l-1}, w_{l}=w_{l-1}\right)$-dominating function. Therefore, f is a secure $\left(w_{0}, \ldots, w_{l-1}, w_{l}=w_{l-1}\right)$-dominating function, and so $\gamma_{\left(w_{0}, \ldots, w_{l-1}, w_{l}=w_{l-1}\right)}^{S}(G) \leq \omega(g) \leq \omega(f)+|S|=\gamma_{\left(w_{0}, \ldots, w_{l-1}\right)}(G)+\gamma(G)$.

From Theorem 5, we derive the next known inequalities, which are tight.

Corollary 3. For a graph G, the following statements hold.

- Ref. [15] $\gamma_{r}(G) \leq 2 \gamma(G)$.
- Ref. [12] $\gamma_{t r}(G) \leq \gamma_{t}(G)+\gamma(G)$, where G has minimum degree at least one.
- Ref. [19] $\gamma_{I}^{s}(G) \leq \gamma_{2}(G)+\gamma(G)$.

To establish the following result, we need to define the following parameter.

$$
v_{\left(w_{0}, \ldots, w_{l}\right)}^{s}(G)=\max \left\{\left|V_{0}\right|: f\left(V_{0}, \ldots, V_{l}\right) \text { is a } \gamma_{\left(w_{0}, \ldots, w_{l}\right)}^{s}(G) \text {-function. }\right\}
$$

In particular, for $l=1$ and a graph G of order n, we have that $v_{\left(w_{0}, w_{1}\right)}^{s}(G)=n-\gamma_{\left(w_{0}, w_{1}\right)}^{s}(G)$.
Theorem 6. Let G be a graph of minimum degree δ and order n. The following statements hold for any $\left(w_{0}, \ldots, w_{l}\right) \in \mathbb{Z}^{+} \times \mathbb{N}^{l}$ with $w_{0} \geq \cdots \geq w_{l}$.
(i) If there exists $i \in\{1, \ldots, l-1\}$ such that $i \delta \geq w_{i}$, then $\gamma_{\left(w_{0}, \ldots, w_{l}\right)}^{s}(G) \leq \gamma_{\left(w_{0}, \ldots, w_{i}\right)}^{s}(G)$.
(ii) If $l \geq i+1>w_{0}$, then $\gamma_{\left(w_{0}, \ldots, w_{i}, 0, \ldots, 0\right)}^{s}(G) \leq(i+1) \gamma(G)$.
(iii) Let $k, i \in \mathbb{Z}^{+}$such that $l \geq k i$, and let $\left(w_{0}^{\prime}, w_{1}^{\prime}, \ldots, w_{i}^{\prime}\right) \in \mathbb{Z}^{+} \times \mathbb{N}^{l}$. If i $\delta \geq w_{i}^{\prime}$ and $w_{k j}=k w_{j}^{\prime}$ for every $j \in\{0,1, \ldots, i\}$, then $\gamma_{\left(w_{0}, \ldots, w_{l}\right)}^{s}(G) \leq k \gamma_{\left(w_{0}^{\prime}, \ldots, w_{i}^{\prime}\right)}^{s}(G)$.
(iv) Let $k \in \mathbb{Z}^{+}$and $\beta_{1}, \ldots, \beta_{k} \in \mathbb{Z}^{+}$. If $l \delta \geq k+w_{l}>k$ and $w_{0}+k \geq \beta_{1} \geq \cdots \geq \beta_{k} \geq w_{1}+k$, then $\gamma_{\left(w_{0}+k, \beta_{1}, \ldots, \beta_{k}, w_{1}+k, \ldots, w_{l}+k\right)}^{s}(G) \leq \gamma_{\left(w_{0}, \ldots, w_{l}\right)}^{s}(G)+k\left(n-v_{\left(w_{0}, \ldots, w_{l}\right)}^{s}(G)\right)$.
(v) If $l \delta \geq w_{l} \geq l \geq 2$, then $\gamma_{\left(w_{0}, \ldots, w_{l}\right)}^{s}(G) \leq l \gamma_{\left(w_{0}-l+1, w_{l}-l+1\right)}^{s}(G)$.

Proof. If there exists $i \in\{1, \ldots, l-1\}$ such that $i \delta \geq w_{i}$, then for any $\gamma_{\left(w_{0}, \ldots, w_{i}\right)}^{s}(G)$-function $f\left(V_{0}, \ldots, V_{i}\right)$ we define a secure $\left(w_{0}, \ldots, w_{l}\right)$-dominating function $g\left(W_{0}, \ldots, W_{l}\right)$ by $W_{j}=V_{j}$ for every $j \in\{0, \ldots, i\}$ and $W_{j}=\varnothing$ for every $j \in\{i+1, \ldots, l\}$. Hence, $\gamma_{\left(w_{0}, \ldots, w_{l}\right)}^{s}(G) \leq \omega(g)=\omega(f)=$ $\gamma_{\left(w_{0}, \ldots, w_{i}\right)}^{s}(G)$. Therefore, (i) follows.

Now, assume $l \geq i+1>w_{0}$. Let S be a $\gamma(G)$-set. Let f be the function defined by $f(v)=i+1$ for every $v \in S$ and $f(v)=0$ for the remaining vertices. Since $i+1>w_{0}$, we can conclude that f is a secure $\left(w_{0}, \ldots, w_{i}, 0 \ldots, 0\right)$-dominating function. Therefore, $\gamma_{\left(w_{0}, \ldots, w_{i}, 0 \ldots, 0\right)}^{s}(G) \leq \omega(f)=(i+1)|S|=$ $(i+1) \gamma(G)$, which implies that (ii) follows.

To prove (iii), assume that $l \geq k i, i \delta \geq w_{i}^{\prime}$ and $w_{k j}=k w_{j}^{\prime}$ for every $j \in\{0, \ldots, i\}$. Let $f^{\prime}\left(V_{0}^{\prime}, \ldots, V_{i}^{\prime}\right)$ be a $\gamma_{\left(w_{0}^{\prime}, \ldots, w_{i}^{\prime}\right)}^{s}(G)$-function. We construct a function $f\left(V_{0}, \ldots, V_{l}\right)$ as $f(v)=k f^{\prime}(v)$ for every $v \in V(G)$. Hence, $V_{k j}=V_{j}^{\prime}$ for every $j \in\{0, \ldots, i\}$, while $V_{j}=\varnothing$ for the remaining cases. Thus, for every $v \in V_{k j}$ with $j \in\{0, \ldots, i\}$ we have that $f(N(v))=k f^{\prime}(N(v)) \geq k w w_{j}^{\prime}=w_{k j}$, which implies that f is a $\left(w_{0}, \ldots, w_{l}\right)$-dominating function. Now, for every $x \in V_{0}$, there exists $y \in M_{f^{\prime}}(x)$. Hence, for every $v \in V_{k j}$ with $j \in\{0, \ldots, i\}$, we have that $f_{y \rightarrow x}(N(v))=k f_{y \rightarrow x}^{\prime}(N(v)) \geq k w_{j}^{\prime}=w_{k j}$, which implies that $f_{y \rightarrow x}$ is a $\left(w_{0}, \ldots, w_{l}\right)$-dominating function. Therefore, f is a secure $\left(w_{0}, \ldots, w_{l}\right)$-dominating function, and so $\gamma_{\left(w_{0}, \ldots, w_{l}\right)}^{s}(G) \leq \omega(f)=k \omega\left(f^{\prime}\right)=k \gamma_{\left(w_{0}^{\prime}, \ldots, w_{i}^{\prime}\right)}^{s}(G)$. Therefore, (iii) follows.

Now, assume that $l \delta \geq k+w_{l}>k$ and $w_{0}+k \geq \beta_{1} \geq \cdots \geq \beta_{k} \geq w_{1}+k$. Let $g\left(W_{0}, \ldots, W_{l}\right)$ be a $\gamma_{\left(w_{0}, \ldots, w_{l}\right)}^{s}(G)$-function. We construct a function $f\left(V_{0}, \ldots, V_{l+k}\right)$ as $f(v)=g(v)+k$ for every $v \in V(G) \backslash W_{0}$ and $f(v)=0$ for every $v \in W_{0}$. Hence, $V_{j+k}=W_{j}$ for every $j \in\{1, \ldots, l\}$, $V_{0}=W_{0}$ and $V_{j}=\varnothing$ for the remaining cases. Thus, if $v \in V_{j+k}$ and $j \in\{1, \ldots, l\}$, then $f(N(v)) \geq g(N(v))+k \geq w_{j}+k$, and if $v \in V_{0}$, then $f(N(v)) \geq g(N(v))+k \geq w_{0}+k$. This implies that f is a $\left(w_{0}+k, \beta_{1}, \ldots, \beta_{k}, w_{1}+k, \ldots, w_{l}+k\right)$-dominating function. Now, for every $x \in V_{0}=W_{0}$, there exists $y \in M_{g}(x)$. Hence, if $v \in V_{j+k}$ and $j \in\{1, \ldots, l\}$, then $f_{y \rightarrow x}(N(v)) \geq$ $g_{y \rightarrow x}(N(v))+k \geq w_{j}+k$, and if $v \in V_{0}$, then $f_{y \rightarrow x}(N(v)) \geq g_{y \rightarrow x}(N(v))+k \geq w_{0}+k$. This implies that $f_{y \rightarrow x}$ is a $\left(w_{0}+k, \beta_{1}, \ldots, \beta_{k}, w_{1}+k, \ldots, w_{l}+k\right)$-dominating function, and so f is a secure $\left(w_{0}+k, \beta_{1}, \ldots, \beta_{k}, w_{1}+k, \ldots, w_{l}+k\right)$-dominating function. Therefore, $\gamma_{\left(w_{0}+k, \beta_{1}, \ldots, \beta_{k}, w_{1}+k, \ldots, w_{l}+k\right)}(G) \leq$ $\omega(f)=\omega(g)+k \sum_{j=1}^{l}\left|W_{j}\right|=\gamma_{\left(w_{0}, \ldots, w_{l}\right)}^{s}(G)+k\left(n-\left|W_{0}\right|\right) \leq \gamma_{\left(w_{0}, \ldots, w_{l}\right)}^{s}(G)+k\left(n-v_{\left(w_{0}, \ldots, w_{l}\right)}^{s}(G)\right)$, concluding that (iv) follows.

Furthermore, if $l \delta \geq w_{l} \geq l \geq 2$, then, by applying (iv) for $k=l-1$, we deduce that

$$
\gamma_{\left(w_{0}, \ldots, w_{l}\right)}^{s}(G) \leq \gamma_{\left(w_{0}-l+1, w_{l}-l+1\right)}^{s}(G)+(l-1)\left(n-v_{\left(w_{0}-l+1, w_{l}-l+1\right)}^{s}(G)\right)=l \gamma_{\left(w_{0}-l+1, w_{l}-l+1\right)}^{s}(G)
$$

Therefore, (v) follows.
In the next subsections, we consider several applications of Theorem 6 where we show that the bounds are tight. For instance, the following particular cases is of interest.

Corollary 4. Let G be a graph of minimum degree δ, and let $k, l, w_{2}, \ldots, w_{l} \in \mathbb{Z}^{+}$with $k \geq w_{2} \geq \cdots \geq w_{l}$.
($\left.\mathrm{i}^{\prime}\right)$ If $\delta \geq k$, then $\gamma_{\left(k+1, k, w_{2}, \ldots, w_{l}\right)}^{s}(G) \leq \gamma_{(k+1, k)}^{\mathcal{S}}(G)$.
(ii') If $\delta \geq k$, then $\gamma_{\left(k, k, w_{2}, \ldots, w_{l}\right)}^{s}(G) \leq \gamma_{(k, k)}^{s}(G)$.
(iii') If $l \delta \geq k \geq l \geq 2$, then $\gamma_{l+1}^{\gamma_{(k, k, \ldots, k)}^{s}}(G) \leq l \gamma_{(k-l+1, k-l+1)}^{s}(G)$.
(iv') Let $i \in \mathbb{Z}^{+}$. If $l \geq$ ki and $\delta \geq 1$, then $\gamma_{\left.\gamma_{l+1}^{s}, \ldots, k\right)}^{(, \ldots)}(G) \leq k \gamma_{\underbrace{s}_{i+1}}^{1, \ldots, 1)}(G)$.
Proof. If $\delta \geq k$, then by Theorem 6 (i) we conclude that (i') and (ii') follow. If $l \delta \geq k \geq l \geq 2$, then by Theorem 6 (v) we deduce (iii'). Finally, if $l \geq k$ and $\delta \geq 1$, then by Theorem 6 (iii) we deduce that (iv') follows.

To show that the inequalities above are tight, we consider the following examples. For (i^{\prime}), we have $\gamma_{(2,1,1)}^{s}\left(K_{1}+\left(K_{2} \cup K_{2}\right)\right)=\gamma_{(2,1)}^{s}\left(K_{1}+\left(K_{2} \cup K_{2}\right)\right)=3$. For (ii') we have $\gamma_{\left(k, k, w_{2}, \ldots, w_{l}\right)}^{s}(G)=\gamma_{(k, k)}^{s}(G)=$ $k+1$ for every graph G with $k+1$ universal vertices. Finally, for (iii') and (iv'), we take $l=k=2$ and $\gamma_{(2,2,2)}^{s}\left(K_{2}+N_{n}\right)=2 \gamma_{(1,1)}^{s}\left(K_{2}+N_{n}\right)=4$ for every $n \geq 2$.

We already know that $\gamma_{t}(G)=\gamma_{(1,1)}(G)=\gamma_{\left(1,1, w_{2}, \ldots, w_{l}\right)}(G)$, for every $w_{2}, \ldots, w_{l} \in\{0,1\}$. In contrast, the picture is quite different for the case of secure $(1,1)$-domination, as there are graphs
where the gap $\gamma_{(1,1)}^{s}(G)-\gamma_{(1, \ldots, 1)}^{s}(G)$ is arbitrarily large. For instance, $\lim _{n \rightarrow \infty} \gamma_{(1,1)}^{s}\left(K_{1, n-1}\right)=+\infty$, while, if $l \geq 2$, then $\lim _{n \rightarrow+\infty} \gamma_{(\underbrace{s}_{l+1}, \ldots, 1)}^{\left(K_{1, n-1}\right)=3 \text {. } . \text {. } 10,}$

Proposition 2. Let G be a graph of order n. Let $w=\left(w_{0}, \ldots, w_{l}\right) \in \mathbb{Z}^{+} \times \mathbb{N}^{l}$ such that $w_{0} \geq \cdots \geq w_{l}$. If G^{\prime} is a spanning subgraph of G with minimum degree $\delta^{\prime} \geq \frac{w_{l}}{l}$, then

$$
\gamma_{w}^{s}(G) \leq \gamma_{w}^{s}\left(G^{\prime}\right)
$$

Proof. Let $E^{-}=\left\{e_{1}, \ldots, e_{k}\right\}$ be the set of all edges of G not belonging to the edge set of G^{\prime}. Let $G_{0}^{\prime}=G$ and, for every $i \in\{1, \ldots, k\}$, let $X_{i}=\left\{e_{1}, \ldots, e_{i}\right\}$ and $G_{i}^{\prime}=G-X_{i}$, the edge-deletion subgraph of G induced by $E(G) \backslash X_{i}$.

For any $\gamma_{w}^{s}\left(G_{i}^{\prime}\right)$-function f and any $v \in V\left(G_{i}^{\prime}\right)=V(G)$ with $f(v)=0$, there exists $u \in M_{f}(v)$. Since f and $f_{u \rightarrow v}$ are w-dominating functions on G_{i}^{\prime}, both are w-dominating functions on G_{i-1}^{\prime}, and so we can conclude that f is a secure w-dominating function on G_{i-1}^{\prime}, which implies that $\gamma_{w}^{s}\left(G_{i-1}^{\prime}\right) \leq$ $\gamma_{w}^{s}\left(G_{i}^{\prime}\right)$. Hence, $\gamma_{w}^{s}(G)=\gamma_{w}^{s}\left(G_{0}^{\prime}\right) \leq \gamma_{w}^{s}\left(G_{1}^{\prime}\right) \leq \cdots \leq \gamma_{w}^{s}\left(G_{k}^{\prime}\right)=\gamma_{w}^{s}\left(G^{\prime}\right)$.

As a simple example of equality in Proposition 2 we can take any graph G of order n, having $n^{\prime}+$ $1 \geq 2$ universal vertices. In such a case, for $n^{\prime}=w_{1} \geq \cdots \geq w_{l}$ we have that

$$
\gamma_{\left(n^{\prime}, n^{\prime}=w_{1}, \ldots, w_{l}\right)}^{s}\left(K_{n}\right)=\gamma_{\left(n^{\prime}, n^{\prime}=w_{1}, \ldots, w_{l}\right)}^{s}(G)=\gamma_{\left(n^{\prime}, n^{\prime}\right)}^{s}\left(K_{n}\right)=\gamma_{\left(n^{\prime}, n^{\prime}\right)}^{s}(G)=n^{\prime}+1 .
$$

From Proposition 2, we obtain the following result.
Corollary 5. Let G be a graph of order n and $w=\left(w_{0}, \ldots, w_{l}\right) \in \mathbb{Z}^{+} \times \mathbb{N}^{l}$ such that $w_{0} \geq \cdots \geq w_{l}$.

- If G is a Hamiltonian graph and $w_{l} \leq 2 l$, then $\gamma_{w}^{s}(G) \leq \gamma_{w}^{s}\left(C_{n}\right)$.
- If G has a Hamiltonian path and $w_{l} \leq l$, then $\gamma_{w}^{s}(G) \leq \gamma_{w}^{s}\left(P_{n}\right)$.

To derive some lower bounds on $\gamma_{w}^{s}(G)$, we need to establish the following lemma.
Lemma 2 ([1]). Let G be a graph with no isolated vertex, maximum degree Δ and order n. For any w-dominating function $f\left(V_{0}, \ldots, V_{l}\right)$ on G such that $w_{0} \geq \cdots \geq w_{l}$,

$$
\Delta \omega(f) \geq w_{0} n+\sum_{i=1}^{l}\left(w_{i}-w_{0}\right)\left|V_{i}\right|
$$

Theorem 7. Let G be a graph with no isolated vertex, maximum degree Δ and order n. Let $w=\left(w_{0}, \ldots, w_{l}\right) \in$ $\mathbb{Z}^{+} \times \mathbb{N}^{l}$ such that $w_{0} \geq \cdots \geq w_{l}$ and $l \delta \geq w_{l}$. The following statements hold.

- If $w_{0}=w_{1}$ and $w_{0}-w_{i} \leq i$ for every $i \in\{2, \ldots, l\}$, then $\gamma_{w}^{s}(G) \geq\left\lceil\frac{\left(w_{0}+1\right) n}{\Delta+1}\right\rceil$.
- If $w_{0}=w_{1}$, then $\gamma_{w}^{s}(G) \geq\left\lceil\frac{\left(w_{0}+1\right) n}{\Delta+w_{0}}\right\rceil$.
- If $w_{0}=w_{1}+1$ and $w_{0}-w_{i} \leq i$ for every $i \in\{2, \ldots, l\}$, then $\gamma_{w}^{s}(G) \geq\left\lceil\frac{w_{0} n}{\Delta+1}\right\rceil$.
- $\quad \gamma_{w}^{s}(G) \geq\left\lceil\frac{w_{0} n}{\Delta+w_{0}}\right\rceil$.

Proof. Let $w_{0}=w_{1}$ and $w_{0}-w_{i} \leq i$ for every $i \in\{2, \ldots, l\}$. Let $f\left(V_{0}, \ldots, V_{l}\right)$ be a $\gamma_{\left(w_{0}+1, w_{1}, \ldots, w_{l}\right)}(G)$-function. By Lemma 2, we deduce the following.

$$
\begin{aligned}
\Delta \omega(f) & \geq\left(w_{0}+1\right) n+\sum_{i=1}^{l}\left(w_{i}-w_{0}\right)\left|V_{i}\right| \\
& \geq\left(w_{0}+1\right) n-\sum_{i=1}^{l} i\left|V_{i}\right| \\
& =\left(w_{0}+1\right) n-\omega(f)
\end{aligned}
$$

Therefore, Theorem 1 (ii) leads to $\gamma_{w}^{s}(G) \geq \omega(f) \geq\left\lceil\frac{\left(w_{0}+1\right) n}{\Delta+1}\right\rceil$.
The proof of the remaining items is completely analogous. In the last two cases, we consider that $f\left(V_{0}, \ldots, V_{l}\right)$ is a $\gamma_{w}(G)$-function, and we apply Theorem 1 (i) instead of (ii).

The bounds above are sharp. For instance, $\gamma_{(1,1,0)}^{s}(G) \geq\left\lceil\frac{2 n}{\Delta+1}\right\rceil$ is achieved by Graph G_{2} shown in Figure 1, the bound $\gamma_{(k, k, 0)}^{s}(G) \geq\left\lceil\frac{(k+1) n}{\Delta+k}\right\rceil$ is achieved by $G \cong K_{n}$ for every $n>k(k-1)>0$, the bound $\gamma_{(2,1,1)}^{s}(G) \geq\left\lceil\frac{2 n}{\Delta+1}\right\rceil$ is achieved by the corona graph $K_{2} \odot K_{n^{\prime}}$ with $n^{\prime} \geq 4$, while $\gamma_{(2,0,0)}^{s}(G) \geq\left\lceil\frac{2 n}{\Delta+2}\right\rceil$ is achieved by $G \cong C_{5}, G \cong K_{n}$ and $G \cong K_{n^{\prime}} \cup K_{n^{\prime}}$ with $n \geq 2$ and $n^{\prime} \geq 4$.

To conclude the paper, we consider the problem of characterizing the graphs G and the vectors w for which $\gamma_{w}^{s}(G)$ takes small values. It is readily seen that $\gamma_{\left(w_{0}, \ldots, w_{l}\right)}^{s}(G)=1$ if and only if $w_{0}=1$, $w_{1}=0$ and $G \cong K_{n}$. Next, we consider the case $\gamma_{w}^{s}(G)=2$.

Theorem 8. Let $w=\left(w_{0}, \ldots, w_{l}\right) \in \mathbb{Z}^{+} \times \mathbb{N}^{l}$ such that $w_{0} \geq \cdots \geq w_{l}$. For a graph G of order at least three, $\gamma_{\left(w_{0}, \ldots, w_{l}\right)}^{s}(G)=2$ if and only if one of the following conditions holds.
(i) $w_{2}=0, \gamma(G)=1$ and one of the following conditions holds.

- $\quad w_{0}=w_{1}=1$.
- $w_{0}=1, w_{1}=0$, and $G \not \approx K_{n}$.
- $w_{0}=2, w_{1} \in\{0,1\}$ and $G \stackrel{n}{\cong} K_{n}$.
(ii) $w_{0}=1, w_{1}=0$, and $\gamma_{(1,0)}^{s}(G)=2$.
(iii) $w_{0}=w_{1}=1$ and $\gamma_{(1,1)}^{s}(G)=2$.
(iv) $w_{0}=2, w_{1} \in\{0,1\}$, and $G \cong K_{n}$.

Proof. Assume first that $\gamma_{\left(w_{0}, \ldots, w_{l}\right)}^{s}(G)=2$ and let $f\left(V_{0}, \ldots, V_{l}\right)$ be a $\gamma_{\left(w_{0}, \ldots, w_{l}\right)}^{s}(G)$-function. Notice that $\left(w_{0}, w_{1}\right) \in\{(1,0),(1,1),(2,0),(2,1)\}$ and $\left|V_{2}\right| \in\{0,1\}$.

Firstly, we consider that $\left|V_{2}\right|=1$, i.e., $V_{2}=\{u\}$ for some universal vertex $u \in V(G)$. In this case, $w_{2}=0, \gamma(G)=1$, and $V_{i}=\varnothing$ for every $i \neq 0,2$. By Lemma 1, if $w_{0}=2$, then $G\left[T_{f}(u)\right]=$ $G[V(G) \backslash\{u\}]$ is a clique, which implies that $G \cong K_{n}$. Obviously, in such a case, $w_{1}<2$. Finally, the case, $w_{0}=1$ and $w_{1}=0$ leads to $G \not \approx K_{n}$, as $\gamma_{(1,0 \ldots, 0)}^{s}\left(K_{n}\right)=1$. Therefore, (i) follows.

From now on, assume that $V_{2}=\varnothing$. Hence, $V_{i}=\varnothing$ for every $i \neq 0,1$. If $w_{0}=1$ and $w_{1}=0$, then $G \not \not K_{n}$ and V_{1} is a secure dominating set. Therefore, (ii) follows. If $w_{0}=w_{1}=1$, then V_{1} is a secure total dominating set of cardinality two, and so $\gamma_{(1,1)}^{s}(G)=2$. Therefore, (iii) follows. Finally, assume $w_{0}=2$. In this case, V_{1} is a double dominating set of cardinality two, and by Lemma 1 we know that $G\left[T_{f}(x)\right]=G\left[V(G) \backslash V_{1}\right]$ is a clique for any $x \in V_{1}$. Hence, $G \cong K_{n}$ and, in such a case, $w_{1}<2$. Therefore, (iv) follows.

Conversely, if one of the four conditions holds, then it is easy to check that $\gamma_{\left(w_{0}, \ldots, w_{l}\right)}^{s}(G)=2$, which completes the proof.

Author Contributions: All authors contributed equally to this work. Investigation, A.C.M., A.E.-M., and J.A.R.-V.; and Writing-review and editing, A.C.M., A.E.-M., and J.A.R.-V. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cabrera Martínez, A.; Estrada-Moreno, A.; Rodríguez-Velázquez, J.A. From Italian domination in lexicographic product graphs to w-domination in graphs. arXiv 2020, arXiv:2011.05371.
2. Cockayne, E.J.; Grobler, P.J.P.; Gründlingh, W.R.; Munganga, J.; van Vuuren, J.H. Protection of a graph. Util. Math. 2005, 67, 19-32.
3. Boumediene Merouane, H.; Chellali, M. On secure domination in graphs. Inform. Process. Lett. 2015, 115, 786-790. [CrossRef]
4. Burger, A.P.; Henning, M.A.; van Vuuren, J.H. Vertex covers and secure domination in graphs. Quaest. Math. 2008, 31, 163-171. [CrossRef]
5. Chellali, M.; Haynes, T.W.; Hedetniemi, S.T. Bounds on weak Roman and 2-rainbow domination numbers. Discret. Appl. Math. 2014, 178, 27-32. [CrossRef]
6. Cockayne, E.J.; Favaron, O.; Mynhardt, C.M. Secure domination, weak Roman domination and forbidden subgraphs. Bull. Inst. Combin. Appl. 2003, 39, 87-100.
7. Klostermeyer, W.F.; Mynhardt, C.M. Secure domination and secure total domination in graphs. Discuss. Math. Graph Theory 2008, 28, 267-284. [CrossRef]
8. Valveny, M.; Rodríguez-Velázquez, J.A. Protection of graphs with emphasis on Cartesian product graphs. Filomat 2019, 33, 319-333. [CrossRef]
9. Klein, D.J.; Rodríguez-Velázquez, J.A. Protection of lexicographic product graphs. Discuss. Math. Graph Theory 2019, in press. [CrossRef]
10. Benecke, S.; Cockayne, E.J.; Mynhardt, C.M. Secure total domination in graphs. Util. Math. 2007, 74, 247-259.
11. Cabrera Martínez, A.; Montejano, L.P.; Rodríguez-Velázquez, J.A. On the secure total domination number of graphs. Symmetry 2019, 11, 1165. [CrossRef]
12. Cabrera Martínez, A.; Montejano, L.P.; Rodríguez-Velázquez, J.A. Total weak Roman domination in graphs. Symmetry 2019, 11, 831. [CrossRef]
13. Duginov, O. Secure total domination in graphs: Bounds and complexity. Discret. Appl. Math. 2017, 222, 97-108. [CrossRef]
14. Kulli, V.R.; Chaluvaraju, B.; Kumara, M. Graphs with equal secure total domination and inverse secure total domination numbers. J. Inf. Optim. Sci. 2018, 39, 467-473. [CrossRef]
15. Henning, M.A.; Hedetniemi, S.T. Defending the Roman Empire-A new strategy. Discret. Math. 2003, 266, 239-251. [CrossRef]
16. Cabrera Martínez, A.; Yero, I.G. Constructive characterizations concerning weak Roman domination in trees. Discret. Appl. Math. 2020, 284, 384-390. [CrossRef]
17. Valveny, M.; Pérez-Rosés, H.; Rodríguez-Velázquez, J.A. On the weak Roman domination number of lexicographic product graphs. Discret. Appl. Math. 2019, 263, 257-270. [CrossRef]
18. Cabrera Martínez, A.; Rodríguez-Velázquez, J.A. Total protection of lexicographic product graphs. Discuss. Math. Graph Theory 2020, in press. [CrossRef]
19. Dettlaff, M.; Lemańska, M.; Rodríguez-Velázquez, J.A. Secure Italian domination in graphs. J. Comb. Optim. 2020, in press. [CrossRef]
20. Haynes, T.W.; Hedetniemi, S.T.; Slater, P.J. Domination in Graphs: Advanced Topics; Chapman and Hall/CRC Pure and Applied Mathematics Series; Marcel Dekker, Inc.: New York, NY, USA, 1998.
21. Haynes, T.W.; Hedetniemi, S.T.; Slater, P.J. Fundamentals of Domination in Graphs; Chapman and Hall/CRC Pure and Applied Mathematics Series; Marcel Dekker, Inc.: New York, NY, USA, 1998.

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http:/ / creativecommons.org/licenses/by /4.0/).

