
OA-RITA-05-2020-0038 1



Abstract— Software projects are amongst the most common

professional activities of computer engineers. Gaining

competences on the design and development of software projects

is, however, a complex issue that cannot be tackled within a single

subject. In this paper, we detail the design and implementation of

a teaching methodology that aims at providing a comprehensive

simulation of the whole life cycle of software projects throughout

the coordination of the practical exercises of subjects of different

courses. The proposal consists in developing the same software

project in consecutive courses under the perspective of the three

main roles involved in the project development: designer,

developer and director. In the second course, the students exercise

the developer role in teams of 4 people under the supervision of a

student of the fourth course, who acts as the director. The director

has previously proposed a formal design of the project in the third

course (designer role). This methodology has been successfully

deployed for 4 years in the Computer Engineering Degree at the

Universitat Rovira i Virgili. The results show an improvement of

the skills and competences related to the three involved subjects,

which include better programming quality, better team

coordination and fulfilment of deadlines, as well as a much

practical view of the director’s role.

Index Terms— Integrated project, project management,

software design and development.

I. INTRODUCTION

OFTWARE architect and developer is amongst the most

demanded profiles for computer engineers [1]. Software

projects are, in fact, the natural professional activity of

computer engineers because it requires of competences that are

exclusive to their profile [2]. Therefore, it is of great importance

that computer engineering degrees prepare future engineers in

the competences related to their professional jobs.

 A relevant feature of software projects is their complexity

[3]. Software, as an industrial product, is singular (that implies

slow production) and complex (which makes it difficult to test

it under all possible conditions). Productivity tends to be low

and careful planning, cost estimation and development

management are required.

 Training on software design and development is,

consequently, also complex. The multiple perspectives that

should be considered (problem analysis, design, management,

programming and test, see Section 3) and the competences that

Maria Ferré, Carlos García-Barroso, Montse García-Famous, David

Sánchez and Aida Valls are with the Department of Computer Engineering and

Mathematics of the Universitat Rovira i Virgili, Tarragona, Spain (email

should be covered (detailed in Section 4) cannot be

encompassed in just one subject. Also, the dependencies among

those competences and the different degrees of maturity that are

needed to practice them all, make it difficult cover all of them

through several subjects of just one academic course.

 If we implement training in a traditional way, that is, by

means of independent practical exercises among subjects

spread across the degree, we risk offering a partial and

simplistic view of software projects. To tackle this problem,

within the Computer Engineering Degree at the Universitat

Rovira i Virgili, we have designed and implemented an

integrated training methodology that is based on coordinating

and giving continuity to the practical exercises of three

compulsory subjects of different courses that have contents

nuclear to software development: Programming (2nd course),

Analysis and Design of Applications (3rd course) and Projects

and Computer Systems (4th course). In a nutshell, our method

consists of developing the same software project in a

coordinated way through the degree under the perspective of

the three main roles involved in a software project: director,

software architect and programmer. This results in a

comprehensive simulation of a software project in which each

student exercises all roles (throughout several courses) and

interacts with students with the same or different role

(programmer – programmer and director – programmer). This

gives students a practical and complete view of software

projects and their interactions, and enables simulating the

scenarios and difficulties of the profession.

 This proposal has been presented in JENUI 2019 [4], where

it won the SISTEDES 2019 award given by the Sociedad de

Ingeniería de Software y Tecnologías de Desarrollo de

Software. In the current paper, we extend the work presented in

JENUI by providing additional details on how the project has

been put into practice across the different subjects and

providing a more comprehensive analysis of the results

obtained in several courses.

 The remainder of the paper is organized as follows. Section

2 describes and discusses related works. Section 3 details the

project life cycle that we apply in the degree and describes the

involved roles. Section 4 explains the subjects that participate

in this experience and depicts their contents, competences and

evaluation. Section 5 describes the implementation of the

maria.ferre@urv.cat, carlos.garciabarroso@urv.cat, montse.garcia@urv.cat,

david.sanchez@urv.cat, aida.valls@urv.cat).

DOI (Digital Object Identifier)

Comprehensive simulation of a Software Project

throughout several subjects

Maria Ferré, Carlos García-Barroso, Montse García-Famoso, David Sánchez, Aida Valls

S

mailto:maria.ferre@urv.cat
mailto:carlos.garciabarroso@urv.cat
mailto:montse.garcia@urv.cat
mailto:david.sanchez@urv.cat
mailto:aida.valls@urv.cat

OA-RITA-05-2020-0038 2

integrated project across the involved subjects, details the

contents of the practical exercises and discusses the tasks

performed by the students under different roles. Section 6

details the evaluation criteria and the tools employed to quantify

the obtained results, both quantitatively and qualitatively.

Section 7 discusses the results and impact, comparing them

with a more traditional methodology based on independent

practical exercises. Finally, Section 8 presents the conclusions

of the work.

II. RELATED WORK

Several examples of similar approaches can be found in

recent literature, mainly, within the context of Project-based

learning [5,6]. In [7] the authors propose a 15-week project in

which the students, organized as teams, distribute the roles

involved in the design and implementation of a distributed

application with a database. In our case, the distribution of roles

is done throughout several courses according to the degree of

maturity of the student. In this way, each student ends up

exerting all the roles involved in a software project.

 Other works have also proposed projects that encompass

several subjects. In [8] the authors propose coordinating three

concurrent subjects belonging to the software engineering

specialization in order to carry out a common project. A similar

experience is presented in [9], but covering concurrent subjects

of different specializations. Finally, in [10] the authors

integrated the entire contents and practical works of two

subjects during a semester in order to carry out a common

project. Our proposal also implies the coordination of several

subjects, but these take place in different courses. In this way,

it is possible to practice roles that require different degrees of

maturity in the most suitable moment, while also considering

the dependencies among the competences that are needed to

exert them. Working in the same project throughout several

courses also makes it possible to increase the complexity of the

project and leave a greater imprint in the student.

Finally, unlike other integrated projects developed

throughout the degree but executed independently for each

subject [11], our approach is based on teamwork among

students of the same and distinct subjects. In this way, we can

simulate the interactions between roles that may occur in real-

word projects: director-programmer and programmer-

programmer.

III. SOFTWARE LIFE CYCLE

The methodology we propose is based on the traditional

phases of the cascade life cycle, which are depicted in Fig. 1.

The project begins by collecting the requirements. The

student should compile and write a document with the

functional and non-functional requirements of the application

from the scripts provided by the teacher. Functional

requirements will be analyzed and transformed into a formal

specification. This specification, together with the non-

functional requirements, will be employed to design the

application with a concrete technology.

Fig. 1. Main phases of the software life cycle. In blue: phases of the director;

in green: phases of the architect; in orange: phases of the programmer.

The outcome of these steps is a detailed UML specification

depicting the classes and modules of the application, as well as

the design of the graphical interface and of the data persistence.

This will constitute the input of the programming phase, which

will implement the proposed design. Finally, the software

obtained from the programming phase will be tested (for

correctness) and validated (for compliance with the

requirements). During the requirements, analysis and design

phases we follow the indications of the Unified Process [12]; in

particular, these phases are executed in an iterative and

incremental way.

Regarding the roles involved, as shown in Fig. 1, the three

first phases encompassing the design of the application are

executed by the software architect. In these phases, the students

employ software engineering techniques and tools (UML), but

they do not produce any code. The last two phases refer to the

programming and test of the application, and they are executed

by a team of programmers from the specification obtained in

the design phase. These phases just require programming skills.

In parallel to all the phases of the project, the director manages

the process. In the first stage, management consists of

identifying and assigning tasks and performing a temporal

planning. Afterwards, he should supervise and monitor the

whole project. This requires planning and team management

skills.

IV. SUBJECTS INVOLVED IN THE INTEGRATED PROJECT

Our project integrates the practical exercises of three

different subjects: PR (Programming), ADA (Analysis and

Design of Applications) and PSI (Projects and Computer

Systems). All are compulsory subjects of the Degree of

Computer Engineering at the Universitat Rovira i Virgili, under

the specialization of software development. The three subjects

have 6 ECTS credits and are organized as shown in Table 1.

Specifically, in Table 1 we depict the main information on

these subjects: academic course, semester, number of lecturers

involved, average number of students per year and weight in the

evaluation of the practical exercises involved in the project. We

can see that the project involves more than 180 students and a

OA-RITA-05-2020-0038 3

team of 4 lecturers.

Although the subjects are studied in the order shown in Table

1, the project begins in ADA. In this subject, the student

analyses and designs the problem that constitutes the project.

This work is performed in the second semester of the third

course. In the next semester (1st of 4th course), the same students

(within the PSI subject) use the design they made in the former

course to act as directors of the project by supervising a team

of students of the 2nd course (within the PR subject) that will

take care of programming the application. These latter students

will start a new project in the 3rd course when they enrol into a

new course of ADA, becoming new architects and directors.

The deployment of the project along three courses allows us

to work on different competences at different moments and at

various levels. In Tables 2, 3, and 4 we show the competences

involved in the three subjects. Some of these competences

would be hardly treatable with individual and independent

practical tasks. For example, the competency CM3 is practiced

when the team of students from PR works under the supervision

of the director from PSI. Negotiation, communication and work

habits are important in PR and ADA, but leadership is put into

practice in PSI. On the contrary, the competences A2, CM1 and

CM2 are treated in ADA at a theoretical level and in PSI at a

practical level. We also consider that the competences B1 and

CT5 (from PSI) are better acquired through the proposed

integrated project.

V. THE PROJECT IN DETAIL

Due to the complexity of software, its development is usually

carried out by teams. Moreover, as we have introduced in

Section 3, any project with a minimum level of complexity will

go through several phases in which different professionals exert

different roles and interact and coordinate between them. To

make the student simulate an experience similar to what she/he

may encounter in a professional environment, and to acquire the

skills and competences associated to all the involved roles in an

integrated way, we have distributed the tasks and roles in the

following way (see also Fig. 2):

 In ADA, each student exerts the role of architect and

analyses and designs the application proposed within the

project.

 In PSI, the same students exert the role of director and use

the design they made in ADA to supervise the

programming done by teams of students from PR.

 In PR, teams of students exert the role of programmers and

testers under the supervision of students from PSI.

TABLE I

INFORMATION OF THE SUBJECTS INVOLVED IN THE PROJECT

Subject Course

Semester

#lecturers #students Evaluation

weight

PR 2nd, C1 3 100 20%

ADA 3rd, C2 1 55 50%

PSI 4th, C1 1 30 15%
TABLE II

PR COMPETENCES

Code Competence

CM3

Be able to understand the importance of negotiation,

effective work habits, leadership and communication

skills in all aspects of software development.

B8
Be able to work in groups and in a multilingual and

multidisciplinary environment.

CT5
Communicate information clearly and precisely to a

variety of audiences.

TABLE III

ADA COMPETENCES

Code Competence

A2

Have knowledge of taking measurements, calculations,

evaluations, valuations, surveys, studies, reports, work

plans and other similar studies in IT.

CM1

Be able to design, develop, select and evaluate IT

applications and systems, ensuring their reliability,

security and quality, in accordance with ethical

principles and the current legislation and regulations.

CM2

Be able to plan, conceive, implement and manage IT

projects, services and systems in all areas, leading their

start-up and ongoing improvement, and evaluating their

economic and social impact.

TABLE IV

PSI COMPETENCES

Code Competence

A2

Have knowledge of taking measurements, calculations,

evaluations, valuations, surveys, studies, reports, work

plans and other similar studies in IT.

CM1

Be able to design, develop, select and evaluate IT

applications and systems, ensuring their reliability,

security and quality, in accordance with ethical

principles and the current legislation and regulations.

CM2

Be able to plan, conceive, implement and manage IT

projects, services and systems in all areas, leading their

start-up and ongoing improvement, and evaluating their

economic and social impact.

CM3

Be able to understand the importance of negotiation,

effective work habits, leadership and communication

skills in all aspects of software development.

B1 Be able to manage projects within the field of IT.

B8
Be able to work in groups and in a multilingual and

multidisciplinary environment.

CT5
Communicate information clearly and precisely to a

variety of audiences.

OA-RITA-05-2020-0038 4

Fig. 2. General diagram of the integrated project.

Our aim is to give the students a practical and integral view

of the whole development process and its interactions. More in

detail, the project consists of developing a software application

with a graphical interface and data persistence. Some examples

of projects from past courses are:

 An application to manage the catalogue of a travel agency

that allows customers to make and manage bookings.

 An application to order food online, which allows

configuring and preparing menus.

 An application to manage different types of membership

to a library, and allows members to perform searches and

requests for loaning books.

 An application to manage the catalogue of an on-line

computer shop, which allows customers to perform

searches and personalize the configuration of desktop

computers.

All these applications have common aims that correspond to

the contents and learning results associated to the subjects PR

and ADA. In a nutshell, the specifications of the projects

consider the following aspects:

 Object Oriented Programming.

 Class inheritance and use of abstract classes.

 Class composition and implementation of collections of

objects.

 Reading and writing sequential files, both textual and

binary.

 Definition and management of exceptions.

 Design and implementation of a graphical user interface

using Java libraries.

In the following, we describe in detail how the practical tasks

of each of the three subjects involved in the project have been

designed.

A. ADA’s practical exercise

The project begins with the ADA’s practical exercise. The

students are provided with a textual specification describing, at

a high level, the functionalities that should be provided by the

application to be developed, the actors who may use them and

several non-functional requirements related to usability,

security and technology.

Throughout several incremental deliveries in the second

semester of the third course, the students will develop the

phases corresponding to the collection of requirements, analysis

and design of the application (Fig. 1, green color).

In a first stage, the students must formalize the requirements

of the application. As result, they obtain an UML use case

diagram, the textual specification of each use case and a set of

business rules. Then, they perform the analysis of these

requirements by defining the entity class diagram (classes and

attributes) and, for each use case, a sequence diagram that

depicts the behavior of the objects involved in each use case and

identifies the methods of the classes. With this, the students will

obtain a solution to the functional requirements that is still

agnostic to the technology.

The result of this first stage is delivered to the teacher, who

highlights mistakes and asks the students to correct them so that

they are not propagated to the design phase.

The design stage consists in defining the solution obtained

during the analysis according to the implementation

technology. The software always consists of a desktop

application coded in Java with a Swing graphical interface and

a relational SQL database. Therefore, the design implies

defining the specific Java classes (attributes and methods), the

appearance of the graphical interface (metaphor, dialogs and

windows) and the database schema. The result is delivered

again to the teacher who will again highlight possible mistakes.

The practical exercise is done in groups of two students in

order to facilitate discussion and reach an agreement between

different points of view. However, each member of the team is

responsible of the design of a subset of use cases. Therefore,

evaluation marks are independent.

B. PSI’s practical exercise

The same students continue the project in the fourth course

within the PSI subject (Fig. 1 blue color). In this subject, the

students put into practice transversal competences related to the

supervision of work teams. These involve personal aptitudes

that are of great importance in their future jobs and that include

planning, and resources, personnel, risks and conflicts

management.

The students will be in charge of managing the project and

supervising a team of 4 programmers of PR, who will

implement the design proposed by the director in ADA (or a

piece of it, according to the complexity of the project). The

project developed in PSI follows that proposed in ADA, but

with a more general perspective that allows the students to

tackle project planning (time, resources and personnel)

according the competences of the subject. In this paper, we

describe the part of the practical exercise that implies the

supervision of students from the second course. The ratio of

students of PR and PSI (see Table 1) allows that, in most cases,

OA-RITA-05-2020-0038 5

the supervision can be done by a single director, as it happens

in a professional environment.

In the first phase, the directors explain the design of the

application to the students of PR. For this, they should adapt to

the (limited) background of the students of PR, who are only

familiar with the basic elements of the class diagram. The

development of the application is also adapted to their skills and

background, in particular, the SQL database that is designed in

ADA is replaced by textual or binary files. Then, the directors

plan and assign the tasks to be done according to the identified

use cases and the classes to be implemented. In this way, each

student of PR will have clear and unique duties within the

project. The initial planning also includes: a protocol for

creating internal working documentation, planning of

periodical meetings, the use of management and

communication tools and defining the quality guarantees that

should be fulfilled in the project.

The directors have access to an academic calendar detailing

the contents of PR, so that they can plan development

consistently with the programming skills that the students of PR

acquire through the semester.

In a first phase, the directors are asked to write two

documents for the team. The first one is a short questionnaire

that allows the directors to know aspects that are relevant to the

team, and that may influence the development of the project.

The second one is a welcome document that describes the

protocols and, in some cases, gives short manuals or references

associated to the management and communication tools that the

director plans to use during the development of the project.

The second phase encompasses the development of the

project and relies on two fundamental tools. On the one hand, a

forum, which is also accessible to lecturers of PSI and PR, in

which the decisions made by the team are reported. On the other

hand, the minutes of the meetings, which should collect all

decisions and documentation that may be generated during the

periodical meetings. These tools contribute towards integrating

the team members in the project, monitoring possible deviations

and planning countermeasures.

Once the students of PR deliver the implementation of the

project (being successful or not), the students of PSI must

perform a self-evaluation of the project and discuss any

deviations that may have occurred with respect to the initial

plan; they should also highlight and discuss the issues that may

have happened. This is one of the most important aspects of the

supervision work, because it allows the students to identity and

discuss the issues that may happen in a real scenario and that

have influence in the result of the project. Moreover, it allows

them to assess their own supervision and justify its influence on

the project.

C. PR’s practical exercise

The students of PR must follow the design and plan proposed

by their director. At the same time, they put into practice the

competences related to programming. In particular, they are

asked to follow the object-oriented paradigm (composition,

inheritance, polymorphism) and to develop efficient code. The

programming language is Java.

Each student is responsible for one part of the application,

but they should be aware of the whole project. The evaluation

of the practical exercise considers both their individual work

together with their contribution towards the success of the

project. In addition to programming, they should perform

testing under the supervision of the director in order to validate

the application (Fig.1, orange colour). Testing is proposed as a

process that should be done through the whole project. As long

as new classes are developed, those should be validated by

means of unit tests. In a second phase, testing should be done

on the integrated application in order to validate the interactions

between different classes. Finally, they should validate the

functional requirements detailed in the specification of the

project.

This practical exercise has a duration of 7 weeks and it is

developed in the second half of the semester, which is the time

in which the students of PR have acquired the technical skills

required to embrace programming. The students are organized

into groups of 4 people of their choice. Once the teams are

constituted, 1 or 2 directors from PSI and a reference lecturer

from PR are assigned. The latter is in charge of supervising the

interaction between the members of the team and the director

and, also, to solve technical doubts related to the basics of

programming of students from PR. They are also given several

tools in order to facilitate collaborative development through

the Moodle platform, in particular:

1. Each team (4 programmers + director/s) has a private

forum that is also accessible to the reference lecturer. In

this forum, the director will upload the minutes of each

meeting so that every member of the team can ask for

clarifications.

2. Each team has a GIT repository in a local server at the

university. This allows them embracing programming in a

collaborative and synchronized way. It also enables the

lecturer to closely supervise the development, including

the parts of the code that each student has programmed.

3. All students are given a template detailing the contents of

the documentation they should deliver accompanying the

developed application. Even though this documentation is

done in collaboration with the director, it mainly

influences the evaluation of the students from PR.

VI. STUDENT EVALUATION

In this section, we detail the evaluation criteria used in each

subject.

Although the work in PR is done in teams, the evaluation of

each student is individual. The evaluation has into account

mainly the quality of the code implemented by each student, the

testing set designed to validate the code, the pieces of the

documentation written by each student, the teamwork and,

finally, the answers obtained in an individual interview.

Consequently, each student may obtain a different grade. This

also enables evaluating students even when some of them

abandon before finishing his/her assignment. Moreover, the

students in PR evaluate the work done by its director when the

project has finished.

 In ADA, the work is done in pairs, but each student is

responsible of some tasks. So, although the design of the

information model is common, each student is in charge of a

subset of the use cases. Therefore, the grades are individually

given. The work has two deliverables: the first includes the

OA-RITA-05-2020-0038 6

requirements and the analysis; the second is related to the

design. After each delivery, the student receives comments and

the possibility of correcting the mistakes to increase marks. As

general criterion, the student cannot pass the practical exercise

(and, therefore, the course) if his/her specification and design

contain mistakes that may raise later problems when they

present the design proposal to the students of PR.

The evaluation criteria focus on the correctness and details of

the analysis and design, and the appropriate use of UML

diagrams and of the software engineering methodology. Finally,

the grade also considers the answers given in the interview with

the lecturer. The ADA grade depends more on making a good

design the first time, than in the final design, which may have

been corrected with the indications received in the multiple

revisions.

 The evaluation of the work done in PSI is made based on

several documents delivered during the course. For each

evaluation of the management of time, scheduling and personal

organization, the students must deliver two documents that

include:

 [1] The initial planning of the work and subsequent

revisions performed during the development of the project.

 [2] The team organization and follow up.

 [3] Anticipation of possible incidences and mechanisms to

solve them.

 For the evaluation of “Proactivity and anticipation”, as well

as the capacity of “Conflict management”, we use an activity

analysis tool that is available during the execution of the

project. Moreover, the grade includes the evaluation made by

the students of PR.

 With the goal of knowing the opinion of students about this

proposed project, we have conducted two surveys, one for PR

students and another for PSI. The surveys have also the purpose

of detecting problems in order to implement corrective

measures in next editions.

 The Moodle virtual campus has been used to collect the

answers to those questionnaires, using the tool “Feedback”. It

was anonymous and it is voluntarily made. Being voluntary,

some students have not answered it, but being anonymous

allows collecting more sincere opinions.

A. Survey to students in PR subject

The survey to students in PR course has 12 questions about

the experience with the programming project. The questions

were designed to be fast to answer and only 2 questions have an

open answer. In those ones, the student must elaborate on the

learning experience, more than on the technical concepts

learned and, also, they can propose improvements to the

project. Nine questions are single-choice, with four possible

answers: very high, high, low, very low. These questions are

about the deadlines, the tools (GIT for version control, forum to

facilitate communication among the team), the attitude of the

team members (commitment, deadline accomplishment) or

about the satisfaction with the team members and the director,

among others. The last question is multiple-choice and the

students must select the aspects that they consider that have

been done better with the help of director than without him/her.

Options include: team coordination, accomplishment of the

deadlines or better implementation.

B. Survey to students in PSI subject

Similarly, we have conducted a survey to the PSI students

(who were former students in ADA). The questionnaire not

only gathers the opinion of the direction work but also the

experience of doing an integrated project that involves 3

subjects. The survey has 11 questions of single choice and two

with an open answer.

About the supervision of the project, the students must

evaluate their experience as directors, the degree of

commitment of the students of the second course, including the

planning, the results achieved or the communication in the

team. There are also questions about the facilities they had to

make a good direction of the project, such as validation of the

code the students were developing or the minutes of the

meetings. They must also think about the difficulties they faced.

An important question regards the degree of satisfaction with

respect to the experience of working in an integrated project

during 3 subjects through 3 years. In this case, the student must

evaluate the advantages of using the design solution made in

ADA as the starting point for the project developed in PSI. They

must also evaluate if this integral project allows for a clearer

perspective of the software development cycle.

VII. RESULTS AND IMPACT

In this section, we explain the grades obtained by the students

in the Programming subject (PR), comparing them with

previous years where the methodology we present was not

applied. Next, we analyze the answers to the survey both for the

PR students and the PSI students. Finally, we discuss the impact

of the proposal.

A. Grades in PR

We have considered the grades obtained in the third practical

exercise of PR (e.g. the one that is made under the supervision

of PSI students) in the two courses before implementing the

current methodology (i.e. when students worked without a

director), and we compare the grades with the ones obtained in

the courses where the integrated methodology was applied. To

have a general view, we have calculated the average of the

grades in these two scenarios and we consider percentages in

order to facilitate interpretation. We have grouped the data of

two courses before and after applying the methodology in order

to minimize the impact of particular situations that may happen

in a certain course.

Figure 3. shows the grades obtained in these two scenarios.

We can see that the percentage of students that failed (or did not

complete) the practical exercise decreases when the integrated

methodology is used. In addition, the percentage of students

that obtained a Sufficient qualification also decreased. On the

opposite side, the percentage of students with Good or

Excellent grades increased.

OA-RITA-05-2020-0038 7

Fig. 3. Grades obtained before and after applying the methodology

These results are clearly positive: the grades have improved

and the number of students that pass the course has increased.

From the analysis of the methodology as well as the feedback

of the students we have found some reasons for that

improvement. On the one hand, having a student of the 4th

course supervising students in the 2nd course has important

implications, such as starting the work earlier, an environment

that favours the continuous work (as the supervisors checks it

regularly) and it avoids that some students abandon. On the

other hand, the director has the responsibility of giving a correct

design of the exercise, making an appropriate and balanced task

distribution and following a well-defined time schedule. This

enables the students of PR to concentrate efforts in the

programming task. Finally, the continuous monitoring of their

work forces them to be constant in their work and to have a

sense of responsibility with the other teammates.

B. Analysis of the survey in PR

When evaluating the methodology, not only the academic

results are important, but also the perception of the students

who participate in the experience. For this purpose, we

conducted the surveys presented in Section 6 and below we

collect and discuss the results obtained.

We have collected 52 answers from students in PR subject.

We have analysed each of the questions separately, but, in

general we observed that positive evaluations (very high, high)

are always more than negative ones (low, very low), except in

two questions. They refer to the evaluation of the minutes of the

meetings and to the use of GIT repository to share code. In the

first case, the team of lecturers considers the minutes as a

requirement, because they show the decisions taken along the

project and are used by the lecturer to detect possible problems

in advance. We have identified that the main problem for

students is the lack of format of the content of the minutes. In

this regard, we propose to prepare a guide for the content of the

minutes, maybe as a predefined form with clear fields to fill in.

Regarding GIT, we have detected some problems in its use. We

will improve the user manual and documentation in the future.

We know that learning this kind of tool for the first time is not

easy, and it adds extra complexity to the project. For this reason,

we are considering to dedicate soma laboratory sessions to

improve the skills of the students in the use of this tool.

In the survey we had five questions related to the experience

of working in an integrated project. In Fig. 4, we can see the

results obtained.

The best rated aspect is the opinion of the director's work,

followed by the satisfaction with the teamwork. In a middle

range we have the fulfillment of the deadlines. On the other

contrary, it is evident that almost half of the students consider

that their classmates were not sufficiently committed to the

work to be done. The worst assessment corresponds to the

usefulness of the minutes of the meetings. We have analyzed

the open answers, but no reference is made to this point.

Therefore, we plan to continue with the modification stated in

the previous paragraph.

Another of the key questions is related to the aspects that the

students believe that have improved thanks to working with a

director. The students had 7 options to choose a subset of them.

The question was the following: Choose among the following

options, the ones that you have done better thanks to the

director.

The possible answers were:

1. Team coordination

2. Keep work up to date and meet deadlines

3. Design the program

4. Implementation of the code

5. Elaboration of the documentation

6. Avoid confusions in the development of the project.

The answer selected the most was number 6, by 61% of the

students. It is followed by options 1, 2 and 3, with values of 44,

42 y 40%, respectively. Answer number 4 was only selected

30% of the students and number 5 by 15%.

Fig. 4. Survey results on working in an integrated project in PR.

OA-RITA-05-2020-0038 8

Fig. 5. Analyzing the working model.

Another interesting question is whether the working model

would be repeated, or other similar alternatives would be

preferred. The results are depicted in Fig. 5, where we can see

that most students would repeat the same model.

We have also analyzed the textual answers given by the

students on the two open-ended questions. The first question

was about what the student considers that he/she has learned

beyond the technical knowledge and the experience. The

second question asked what improvements the student would

introduce to improve the project, from his/her point of view.

In these two questions we find positive answers ranging from

learning shared responsibility, to the feeling of learning how to

follow a plan on a project, and to the motivation that arises from

feeling that their work influences the team as a whole and the

success of the project. The number of positive opinions is much

larger than the number of negative opinions.

The negative reviews have focused on teams where

communication has not worked and problems appeared

between the director and the programmers. Specifically, a

minority have considered that the indications of the director

have harmed them.

A more detailed analysis relates the responses of the different

questions so that we can see dependencies between the answers

to some questions when they have answered with negative (or

positive) opinions in others. In general, the students that

consider that the director did not perform a good work, they also

say that they prefer to work without a director. We can also find

a dependency between the answers about the fulfillment of

deadlines and the question about the compromise of the team

members. We can see that the negative evaluations do not

depend on a unique factor, but they depend on the aggregation

of several problems inside the team.

C. Analysis of the survey in PSI

We have collected 17 answers from the students in the PSI

subject. We have analyzed each question separately and the

percentage of positive evaluations was always higher than the

negatives ones in all questions, except the one related to the

usefulness of writing meeting minutes.

First of all, we take a look at the answers related to the

satisfaction with the direction work. They were asked about the

interest of the experience of leading a team with 4 students of

the PR subject, about the easiness to contact with the team

members and the use of the minutes. The results are shown in

Fig. 6.

The element with negative opinions is again related to the

minutes. After reading the answers to the open questions, no

student justifies the lack of usefulness of the minutes. In fact,

they do not mention this issue at all. In any case, we will revise

the instructions about the minutes to simplify their use.

The biggest problems stated in the open answers are related

to the lack of involvement of some students of the team. The

survey has a specific question about this aspect, where 30% of

the directors say that PR students were poorly committed with

the work, 53% say that they were sufficiently engaged and only

17% are totally satisfied with the level of engagement of the

programmers. There was another question related to the

previous one; in that question they should indicate if the

deadlines given by the director were fulfilled. To this question,

23% state that they were not satisfied with the fulfillment at all,

17% that the deadlines where poorly followed, 53% are quite

satisfied with the fulfillment and only 7% are very satisfied with

the work of the PR students.

The students of 4th grade had also a question about the utility

of the GIT tool and how it can help in the supervision of the

work. In this case, 41% of the directors are very satisfied with

the use of this took, 24% are moderately satisfied and only 35%

are not satisfied. This change in the evaluation of this tool in

comparison with the one of the students of 2nd course may be

due to the fact that the students in the 4th course are more used

to work with these tools as they are used in other subjects too.

However, for students of the 2nd course, it is the first time and

they find more difficulties in working with shared code.

In the survey, a question was devoted to analyse the

difficulties found by the director in his/her role. The question

was a multi-choice one and the results are displayed in Fig. 7.

We can see that the main problems are in the supervision of the

documentation. In general, the directors say that the students

completed the documentation too late and, consequently, they

had few time to revise it.

Fig. 6. Analysis of answers related to the satisfaction with the direction work.

OA-RITA-05-2020-0038 9

Fig. 7. Difficulties found by the director in his/her role.

Fig. 8. Satisfaction of integrating the practices of different subjects.

Another aspect that we have analysed regards the experience

of integrating the practical part of 3 different subjects. In the

survey, we have included two questions about this issue and the

results are shown in Fig. 8.

The first question, shown in blue in the bar chart, is about the

advantage resulting from using the design made in ADA in the

direction of the project and the team of programmers. The

second question asks the opinion about whether the integration

of the three practical exercises helps to understand better the

software life cycle or not.

In Fig. 8, we can see that the students are greatly satisfied

with the methodology, giving very positive answers.

It is worth to note that there is a subset of students that do not

carried out ADA the year before but in some previous years, in

that case when they are in PSI the project is about a different

topic than the one they solved in ADA. This is the case shown

in the last bar, denoted “No ADA”, which corresponds to only

3 students.

D. Impact

Given the results, both academic and personal opinions, we

consider that the integrated project has had a very positive

impact on the training of computer engineering students.

From the surveys, we can conclude that the experience

acquired throughout the different subjects and roles has favored

learning personal values, not only specific competences to the

profession, but also transversal skills. This is the feeling

expressed by the students in the collected answers. They

consider to have improved in:

[1] Being aware of the work performed at different levels

of the process.

[2] Knowing the importance of good design, good planning

and proper follow-up and risk management.

[3] Learning to work as a team with people with different

personalities and different knowledge levels, either as a

director or as a programmer.

[4] Understanding the importance of committing to the

team and completing the tasks within the stipulated

period.

 [5] The experience has also had a positive impact at the

academic level, which can be seen in the success rate and

the grades obtained in PR.

VIII. CONCLUSIONS

After the experience of deploying this integrated project

during 4 courses, and looking at the results presented in this

paper, we consider that the proposed model is highly positive

both from the academic point of view (with a significant

improvement in the quality of the programming, which in turn

improves the grades in PR) as well as from the point of view of

the training of competences in the 4th grade (mainly about

leadership, teamwork, planning and work commitment).

We find it interesting that the same exercise serves as a

practice in several subjects, instead of working with different

practical problems independently. In this way it is easier to see

the relations between software creation and development steps,

obtaining an overall view of this area of Computer Engineering.

From the point of view of the Bachelor study plan, the proposed

methodology helps also to improve the vertical coordination

among the three subjects participating, avoiding overlapping or

gaps in the content given to the students.

As general recommendations collected throughout the years

of implementation, we want to highlight the need to provide

clear instructions on the roles of each student in each subject.

Also, during the management-development phase, it is

important that students have a teacher in PR as reference tutor,

in order to help to solve incidents related to student behavior in

the team.

Finally, it is worth mentioning that we have observed some

collateral advantages derived from this experience. In

particular, the students in the 2nd course think that knowing

other students from 4th course has been positive, it has helped

them to have a broader view of the studies and understand the

relations between different software courses. Moreover, we

have detected that the project improves the participation of

students that usually would be isolated.

0% 20% 40% 60%

Organization of the

team work

Supervision of the

tasks

Supervision of the

code

Supervision of the

documentation

None

OA-RITA-05-2020-0038 10

ACKNOWLEDGMENTS

The authors acknowledge the financial and technical support

of the School of Engineering and the Department of Computer

Engineering and Mathematics of the Universitat Rovira i

Virgili.

REFERENCES

[1] Adecco, “Empleos tecnológicos en el mercado laboral español,” April
2016. Available at: https://adecco.es/wp-content/uploads/notas-de-

prensa/764.pdf

[2] R. Colomo-Palacios, E. Tovar-Caro, A. García-Crespo and J.M. Gómez-
Berbís, “Identifying Technical Competences of IT Professionals: The Case

of Software Engineers,” International Journal of Human Capital and

Information Technology Professionals, vol. 1, pp. 1-13, 2010.
[3] Brian Fitzgerald, “Software crisis 2.0,” IEEE Computer, vol. 45, pp. 89-

97, 2012.

[4] M. Ferré, C. García-Barroso, M. García-Famoso, D. Sánchez and A. Valls,
“Mejora de la formación en el diseño y desarrollo de software a partir de la

coordinación de distintas asignaturas”, in Actas de las XXV Jornadas de

Enseñanza Universitaria de Informática, Jenui 2019, pp. 23-30, Murcia,
July 2019.

[5] J.W. McManus and P.J. Costello, “Project Based Learning in Computer

Science: A Student and Research Advisor’s Perspective,” Journal of
Computing Sciences in Colleges, vol. 34, no. 3, pp. 38-46, 2019.

[6] A. Breiter, G. Fey and R. Drechsler, “Project-Based Learning in Student

Temas in Computer Science Education,” SER.:ELEC. ENERG., vol. 18,
no. 2, pp. 165-180, 2005.

[7] I. Calvo, J.M. López-Guede and E. Zulueta, “Aplicando la metodología

Project Based Learning en la docencia de Ingeniería Técnica en
Informática de Gestión,” Revista de formación e Innovación Educativa

Universtiaria, vol. 3, pp. 166-181, 2010.

[8] F.O. García, D.G. Rosado, M.A. Moraga and M.A. Serrano, “Formación
integral en la intensificación de Ingeniería del Software en el grado en

Ingeniería Informática,” in Actas de las XXIV Jornadas de Enseñanza

Universitaria de Informática, Jenui 2018, pp. 197-204, Barcelona, July
2018.

[9] J. Ruiz de la Peña, L. Lamoth-Borrero, M.R. Concepción-García and F.

Rodríguez-Expósito, “El proyecto integrador como experiencia didáctica
en la formación del ingeniero informático: Universidad de Holguín, Cuba

(UHOLM),” Escenarios, vol. 10, pp. 106-115, 2012.

[10] P. Sánchez, C. Blanco, A. Pérez, J. Medina, P. López, A. de la Vega, D.
García and M. Sierra, “Experiencia y Lecciones Aprendidas durante el

Desarrollo de un Proyecto Software Común a Diversas Asignaturas,” in

Actas de las XXIII Jornadas de Enseñanza Universitaria de Informática,
Jenui 2017, pp. 291-298, Cáceres, July 2017.

[11] R. Asenjo-Plaza, S. González-Navarro, F.J. Corbera-Peña, A. Navarro, A.

Rodríguez-Sabadell, J. Villalba and E. Hendrix, “La plataforma Raspberry
Pi como base para la coordinación vertical,” Enseñanza y Aprendizaje de

Ingeniería de Computadores, vol. 7, pp. 5-20, 2017.

[12] I. Jacobson, G. Booch and J. Rumbaugh, “The unified software
development process,” Addison-Wesley Longman Publishing Co., Boston,

USA, 1999.

María Ferré got a MSc and PhD in computer science by the
Polytechnic University of Catalonia in 1990 and 2003,

respectively. She has authored several papers in journals and

national and international conferences. She has participated
in several research projects in the field of computer graphics

and has conducted technology transfer in the areas of

medicine and nursing. (e-mail: maria.ferre@urv.cat)

Carlos García Barroso got a MSc in computer science by

the Polytechnic University of Catalonia (1992). He has
authored several papers in international journals and

conferences in the areas of computer vision and teaching (e-

mail: carlos.garciabarroso@urv.cat)

Montse Garcia-Famoso got a MSc in computer science by

the University of Deusto (1994). Her interests include

teaching methodologies and tools applied to computer

engineering. (e-mail: montse.garcia@urv.cat)

David Sánchez got a MSc and a PhD in computer science by

the Universitat Rovira i Virgili (2003) and the Polytechnic
University of Catalonia (2008), respectively. He has authored

more than 150 papers in journals and international

conferences. He has participated and coordinated several
national and international projects in the areas of artificial

intelligence and information security. (e-mail:

david.sanchez@urv.cat)

Aïda Valls has a MSc and a PhD in computer science by the

Polytechnic University of Catalonia in 1997 and 2002,
respectively. She has authored more than 160 papers in

journals and international conferences. She is the coordinator

of the doctoral program in computer science at the
Department of Computer Engineering and Mathematics of the

URV. She is also the mobility coordinator of computer engineering students at

the URV. (e-mail: aida.valls@urv.cat)

https://adecco.es/wp-content/uploads/notas-de-prensa/764.pdf
https://adecco.es/wp-content/uploads/notas-de-prensa/764.pdf
mailto:maria.ferre@urv.cat
mailto:carlos.garciabarroso@urv.cat
mailto:montse.garcia@urv.cat
mailto:david.sanchez@urv.cat
mailto:aida.valls@urv.cat

