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Reliable Solar Irradiance Forecasting Approach
Based on Choquet Integral and Deep LSTMs

Mohamed Abdel-Nasser, Karar Mahmoud, and Matti Lehtonen

Abstract—The intermittent nature associated with photovoltaic
(PV) generation is a challenging problem for the optimal planning
and efficient management in smart grids. A reliable forecasting
model of solar irradiance can play an essential role in allowing
high PV penetrations without degrading the grid performance.
For this purpose, most related works either use individual fore-
casting models or ensemble approaches (e.g., weighted average),
ignoring the interaction between the values to be aggregated
and thus may worsen the forecasting reliability. Differently, we
propose a reliable solar irradiance forecasting method based on
long short-term memory (LSTM) models and an aggregation
function based on Choquet integral. This novel combination has
the following features: 1) LSTM models can achieve accurate
predictions because they model the temporal changes in solar
irradiance, thanks to their recurrent architecture and memory
units, and 2) the Choquet integral can model the interaction
between the inputs to be aggregated through a fuzzy measure.
This aggregation technique can determine the largest consistency
among the conflicting forecasting results, taking advantage of
each individual model. To demonstrate the effectiveness of the
proposed approach, we compare it with several forecasting
methods using six realistic datasets collected from different
sites in Finland in which solar irradiance is intermittent. The
comparison reveals the high reliability of the proposed forecasting
model with different sites and solar profiles.

Index Terms—Photovoltaic; irradiance forecasting; deep
LSTM; choquet integral.

I. INTRODUCTION

Solar energy is considered as one of the most promis-
ing renewable energy sources that are still requiring further
investigations and development. Photovoltaic (PV) systems,
concentrated solar power stations, and solar water heating
are possible technologies to harness solar energy. Indeed,
PV systems with their modular and flexible structure are a
preferable configuration that can be allocated in the various
levels in power systems, including transmission systems, and
medium voltage and low voltage distribution feeders [1]–[3].
As the cost of PV systems is declining, their penetrations
are continuously expanding. PV systems could have strong
positive impacts from the technical and environmental respec-
tive. However, their generations have high daily periodicity
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and seasonal fluctuations as they mainly depend on the highly
fluctuated solar irradiance [4]. These characteristics can lead to
considerable challenges for integrating large-scale PV farms in
transmission systems and an excessive number of distributed
PV units in distribution systems. Therefore, reliable forecast-
ing of solar irradiance is of great importance for properly
allocating and sizing PV and optimal managing existing PV
stations.

In the literature review, several methods are available for
solar irradiance forecasting of PV systems. We can catego-
rize them into physical, statistical, persistence, and hybrid
approaches. To build the forecasting model, most of these fore-
casting methods have used mainly historical data of irradiance,
as it is the most dominant factor that affects PV generation.
In [5], [6], several techniques are introduced to forecast PV
irradiance/power for high PV penetrated power systems, as
well as smart grid energy management strategies. In [7],
various machine learning algorithms, including (1) adaptive
network-based fuzzy, (2) auto-regressive integrated moving
average (ARIMA), and (3) k-nearest neighbor (KNN) search
algorithm have been employed for constructing a numerical
based solar irradiance prediction model. The authors of [8]
have presented a hybrid forecasting model for global solar
irradiance based on the extreme machine learning method and
the coral reefs optimizer.

Besides, random forests and artificial neural networks are
applied in [9] for forecasting normal beam, horizontal diffuse,
and global components of solar irradiance. In [10], a multi-
stage multi-variate empirical mode decomposition integrated
with the ant-colony optimizer and random forest, have been
employed for forecasting monthly solar irradiance. In [11],
[12], quantile regression algorithms have been utilized for
short-term irradiance forecasting with a resolution of 5 min.
In [13], fuzzy logic has been employed to consider the uncer-
tainty of solar irradiance. The authors of [14] have integrated
fuzzy systems with neural networks to predict future solar
irradiance under different environmental conditions. In [15], a
fuzzy clustering method has been proposed to assign days with
similar patterns of solar irradiance, thereby improving accu-
racy rates. The authors of [16] have proposed two probabilistic
models based on Bayesian inference for short-term forecasting
of PV. Furthermore, a generative deep neural network model
has been suggested in [17] for probabilistic spatio-temporal
solar irradiance forecasting.

More recently, considerable interest has been directed to
develop ensemble forecasting methods. These methods are
based on the aggregation of multiple predictors to increase
accuracy rates of solar irradiance forecasting. In [18], the
authors have proposed a solar generation forecasting method
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based on combined cluster analysis and an ensemble model. 
In [19], an ensemble framework for the day-ahead forecast has 
been proposed based on five different structures of feedforward 
neural networks. In [20], [21], ensemble approaches that utilize 
boosting algorithms have been proposed for short-term solar 
irradiance forecast. These approaches provide accurate results 
while avoiding the over-fitting problem. Also, ensemble-based 
methods of different predictors have been introduced in [22] 
for the forecasting problem, including the Markov Chain 
model, Bayesian model, and quantile regression.

In general, ensemble models can significantly i mprove the 
accuracy in terms of minimizing forecasting errors compared 
with individual predictors. However, this improvement can be 
achieved by adopting 1) accurate individual forecasting mod-
els, and 2) an appropriate aggregation strategy. Regarding the 
aggregation strategies, most related works compute average or 
weighted average values between the predictions of individual 
forecasting models. Besides, these works ignore the interaction 
between the values to be aggregated (e.g., predicted solar 
irradiance values). Therefore, in the case of solar irradiance 
forecasting, this presumption may be inconsistent with the 
real scenario, in which solar irradiance holds intermittent 
characteristics. These aspects have significant i mpacts o n the 
reliability of the forecasting results of solar irradiance.

To meet the requirements above-mentioned for achieving 
reliable forecasting results, in this paper, we propose an 
ensemble-based forecasting approach based on deep long 
short-term memory (LSTM) models and Choquet integral 
based aggregation function. This promising combination has 
the following merits: 1) LSTM is an efficient d eep learning 
technique for constructing the individual forecasting models 
because they can model temporal changes in solar irradiance, 
thanks to their recurrent architecture and memory units, and 2) 
unlike other aggregation functions (e.g., a weighted average), 
the Choquet integral can model the interaction between the 
inputs to be aggregated through a fuzzy measure. Choquet 
integral is a strong reasoning approach under conditions of 
uncertainty because it deals with the information from multiple 
models that may conflict with each other [23]. Indeed, Choquet 
integral has generalization abilities and it does not require to 
assume independency of one model from another, and so it can 
be employed in non-linear problems. On the one hand, if the 
outputs of forecasting models are dependent, a fuzzy measure 
is utilized to define a  weight on each combination of models, 
allowing to model the interaction existing among the various 
individual forecasting models. On the other hand, when the 
forecasting models are independent, the fuzzy measure is 
additive, and the Choquet integral agrees with the weighted 
arithmetic mean technique. Considering the intermittent nature 
of solar irradiance, Choquet integral may be more suitable 
for solar irradiance forecasting by synthesizing the individual 
forecasting results to improve the reliability of forecasting 
performance. Further, it determines the largest consistency of 
the results among the conflicting a nd c onsistency forecasting 
results, taking advantage of each individual model.

Most related works compare the performance of different 
forecasting models and select the one with the top accuracy 
or average them. However, these approaches do not take into

account the relationship between the components and neglect
essential information. In turn, the Choquet integral introduces
an efficient handling strategy for reliable forecasting consid-
ering the high variability of the forecasting results among
individual forecasting models. To the best of the authors’
knowledge, this is the first paper that proposes the use of
Choquet integral and LSTM for solar irradiance forecasting
or even time-series forecasting problems in general. Here, we
focus on forecasting solar irradiance since it is the dominant
factor for PV generation. This forecasting approach does not
require complex meteorological instrumentation, and so it is
cost-effective. We validate the proposed method using six
realistic datasets collected from different sites in Finland in
which solar irradiance is intermittent. It worth noting that
the proposed forecasting approach has no assumption for the
data type, and so it is a promising tool for various forecast-
ing applications in smart grids, e.g., wind power, electricity
consumption, electricity prices, and electric vehicle demand
forecasting problems.

The main contributions of the paper are listed bellow:
• Proposing a reliable ensemble-based solar irradiance fore-

casting approach without requiring complex meteorolog-
ical instrumentation;

• Introducing an effective aggregation technique for in-
dividual deep LSTM forecasting models based on the
Choquet integral;

• Improving the accuracy of solar irradiance forecasting
compared to existing individual and ensemble forecasting
models;

• Evaluating the effectiveness of the proposed solar irradi-
ance forecasting approach at different sites in Finland.

The remaining of this manuscript is organized as follows.
Sections II and III describe preliminary concepts and the
proposed method, respectively. The results and conclusion, as
well as future work, are given in Section IV and Section V,
respectively.

II. DEEP LSTM FORECASTING MODELS

Given a historical solar irradiance dataset for a certain site,
we individually train different LSTM models to construct a
solar irradiance forecasting model for that site. Assume that
we have n LSTM models (M1,M2, . . .Mn), and xi is the
prediction of LSTM model Mi, we use Choquet integral to
aggregate the predictions of LSTM Models. In this section,
we substantially describe the LSTM models which are the
basic building blocks of the proposed reliable deep forecasting
model (RDFM).

A. Basic LSTM unit

An LSTM network [24] can model sequence data and the
corresponding target (x1, y1) , (x2, y2) , . . . , (xm, ym) . The
LSTM network handles new input xi ∈ RM ∀ pair (xi, yi)
and predicts the target yi given preceding inputs x1, . . . , xi.
The state of the LSTM comprises two vectors: a hidden state
vector h ∈ RD and a cell state vector c ∈ RD. Fig. 1 shows
the basic unit of LSTM. In includes input, forget, and output
gates.



3

At each time step t the activation vectors of the input gate 
it ∈ RD, forget gate ft ∈ RD, output gate ot ∈ RD and block 
input gt ∈ RD as follows:

it =σ
(
Wi [ht−1,xt]

T
+ bi

)
(1)

ft =σ
(
Wf [ht−1,xt]

T
+ bf

)
(2)

ot =σ
(
Wo [ht−1,xt]

T
+ bo

)
(3)

gt =tanh
(
Wg [ht−1,xt]

T
+ bg

)
(4)

where Wo = [Woh;Wox], Wi = [Wih;Wix],
Wg = [Wgh;Wgx], Wf = [Wfh;Wfx],
Woh,Wih,Wgh,Wfh ∈ RD×D are hidden-to-hidden
matrices, Wox,Wix,Wgx,Wfx ∈ RD×M are input-to-
hidden matrices, bi, bf , bo, bg ∈ RD are the bias vectors,
σ(x) = 1/1 + e−x is logistic sigmoid used as gate activation
function, and the hyperbolic tangent tanh(x) is used as
activation function for the block input and output.
After we compute the activation vectors of the gates, the next
cell state and hidden state are calculated as follows:

ct =ft � ct−1 + it � gt (5)

ht =ot � tanh (ct) (6)

where � refers to the element-wise product.

B. Solar irradiance forecasting using LSTM models

Solar irradiance forecasting can be phrased as supervised
learning. Given a set of solar irradiance measurements Rl =
{rt1, rt2, . . . , rtd} collected from site l, we can restructure
the data to look like a supervised learning problem, where the
forecasted values y can be computed from an input variables
x using a mapping function y = f(x). This can be done by
using previous time steps as input variables and use the next
time step as the output variable:

Sl =
[
x y

]
(7)

in which

x =


rt1−LB . . . rt1−1 rt1
rt2−LB . . . rt2−1 rt2

...
...

...
...

rtd−LB . . . rtd−2 rtd−1

 (8)

it

ct

ft

ot
Output 
Gate

Forget 
Gate

Input 
Gate

Block of basic LSTM 

xt ht

Figure 1. LSTM Cell [25].

y =


rt2
rt3
...
rtd

 (9)

Note that at a certain time step, the input variable x can
include solar irradiance measurements of several previous time
steps, for example, with a look-back of 2, the first row of Sl

can be extend as x = {rt0, rt1} with y = {rt2}. The Sl

matrix of (7) can be transformed to a normalized matrix z in
which each element of raw i and column j can be expressed
as follows:

zij =
Sl,ij −min(Sl)

max(Sl)−min(Sl)
(10)

The proposed RDFM receives predictions from individual
LSTM models [3]. Each LSTM model learns a different
mapping function fMi() that maps the input variable X to
one output variable to be predicted. Below, we explain the
architecture of each LSTM forecasting model. In this paper,
we use the following four LSTM models.

1) Architecture of Model 1 (M1): Given the solar irradiance
at time-step t, our target is to predict the solar irradiance at
time t + 1. M1 is designed as follows: one input, a hidden
layer with four LSTM blocks, and an output layer that gives
the predicted solar irradiance. This model is trained for a total
of 100 epochs with a batch size of 1.

2) Architecture of Model 2 (M2): In this model, we employ
multiple recent time-steps to predict solar irradiance at the next
time step (a window technique). In this technique, we can tune
the size of the window for the solar irradiance forecasting
problem. Given the current time t, we aim at predicting the
solar irradiance at the next time in the sequence t+ 1. To do
so, we use the solar irradiance of the current time t and the
ones of two prior times (t− 1 and t− 2) as input variables to
the LSTM unit. In this case, the input variables of the LSTM
unit are the solar irradiance at t − 2, t − 1, and t while the
output variable is the solar irradiance at t+ 1.

3) Architecture of Model 3 (M3): Indeed, time steps pro-
vide another way to phrase the solar irradiance forecasting
problem. Like M2, we take previous time steps in the solar
irradiance time series as inputs to predict the output power
at the next time step. In this model, instead of using the
past observations as separate input features, we use them
as time steps of the one input feature, which is a more
accurate framing of the solar irradiance forecasting problem.
For instance, if the time step equals 3, the LSTM unit outputs
the solar irradiance at t after it handles the solar irradiance at
t−3, t−2 and t−1. The main difference between M3 and M2
is the structure of the data fed into each model. Specifically,
we use the same data representation of M2 to construct the
data for M3, but we set its columns to be the dimension of
time steps and set the features dimension to 1.

4) Architecture of Model 4 (M4): In this model, we stack
LSTM layers on top of each other in a similar way of the
traditional neural networks [26]. The first layer receives the
solar radiance values xt, xt+1, . . . xN , and the hidden vector
hi is inputted to the next top layer. The hidden states of all
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the layers are computed from the bottom layer to the top one. 
The stacked LSTM network can be expressed as follows:

h
(l)
t = φh

(
WT
l h

(l)
t−1 + UTl h

(l−1)
t

)
(11)

where φ is a nonlinear function, and h
(l)
t is the hidden state

of the lth layer at time step t. In the case of the first layer,
l = 1 and thus h(l−1)

t = xt in this case.
The LSTM models used in this paper have been used in

existing studies of solar irradiance and PV power forecasting
[3], [27], [28]. Based on these studies, the high performance
of LSTM models has been demonstrated.

III. AGGREGATION FUNCTION BASED ON CHOQUET
INTEGRAL

In general, the performance of an individual forecasting
model, to some extent, depends on the pattern characteristics
of data, and each model has its own uncertainty. Aggregation
of information is the process of combining different pieces
of information provided by several sources to obtain a unified
decision. Unlike the individual models, the aggregation of mul-
tiple forecasting models can reduce the variance of forecasting
errors and enhance the forecasting results. The aggregation
function aggregates n-tuples values belonging to a particular
set, into a value of the same set [29]. An aggregation operator
is a function that specifies a real number y to n-tuple of real
numbers (x1, x2, . . . , xn):

y = α (x1, x2, . . . , xn) (12)

Definition III.1. An n-tuple function α : [0, 1]n → [0, 1] is an
aggregation function, if and only if, the following properties
are satisfied:

• Identity: α(x) = x.
• Boundary conditions: α(01, ..., 0n) = 0 and
α(11, ..., 1n) = 1.

• Monotonicity: If xi ≤ yi ∀ i ∈ {1, . . . , n} then
α(x1, ..., xn) ≤ α(y1, ..., yn).

Common examples of the aggregation functions are the max-
imum function (α(x) = max{x1, . . . , xn}), the minimum
function (α(x) = min{x1, . . . , xn}) and the arithmetic mean
function (α(x) = 1/n

∑n
i {x1, . . . , xn}).

In this paper, we use the Choquet integral that is formed
based on a fuzzy measure. A fuzzy measure represents the
degree of relationship between the elements to be aggregated.
Choquet integral regards the relevance of each component to
be aggregated and its interactions with other items.

Definition III.2. Let Q = {1, . . . , n} be a reference set, and
2Q be the power set of Q. A function µ : 2Q → [0, 1] is
said to be fuzzy measure if it fulfills the following properties
∀ A,B ⊆ Q:

• Boundary condition: µ(∅) = 0, µ(X) = 1.
• Monotonicity: If A ⊆ B then µ(A) ≤ µ(B).

Definition III.3. The discrete Choquet integral χ : [0, 1]n →
[0, 1] of n-tuple of real numbers x = (x1, x2, . . . , xn) wrt. a
fuzzy measure µ : 2Q → [0, 1], can be defined as follows:

χµ(x) =
n∑
i=1

(x(i) − x(i−1)) · µ(A(i)), (13)

An increasing permutation is applied on x = (x1, x2, . . . , xn)
to get (x(1), x(2), . . . x(n)), in which (i) refers to an index i =
{1, 2, . . . , n}, and thus 0 ≤ x(1) ≤ x(2) ≤ . . . ≤ x(n), x(0) =
0, and Ai = {x(i), . . . , x(n)} are the indices of n−i+1 largest
element of x.

As we can see, χµ(x) fulfills the properties of aggregation
functions (Definition III.1). The Choquet integral χµ(x) can
be also expressed as follows:

χµ(x) =
n∑
i=1

(x(i) · µ(A(i))− x(i−1) · µ(A(i))) (14)

Regarding the fuzzy measure, in this work, we adopt the
power measure defined as the power mean of the cardinality
of the set of values aggregated. This fuzzy measure µpm :
2N → [0, 1] is defined as follows:

µpm(A) = (
|A|
n

)q with q > 0 (15)

We use the grey wolf optimizer (GWO) [30] to determine the
best value for q, finding that the best value is 2. Note that
any other evolutionary algorithm can be employed for this
purpose. Fig. 2 shows the proposed aggregation procedure
of various LSTMs using the Choquet integral. Unlike other
aggregation functions, the main feature of the Choquet integral
is that it considers, through the fuzzy measure, the interaction
between the components when aggregating them. For example,
the maximum does not take into account the relationship
between the components and neglects essential information.
The Choquet integral can represent wide expressive capabil-
ities and model various aggregation operators, such as the
weighted sum, the minimum, maximum, and ordered weighted
average. Fuzzy measure can be considered as the degree of
subjective importance of various individual forecasting models
in the aggregation process. For this reason, the application
of Choquet integral introduces an efficient handling strategy
for reliable forecasting considering the high variability of the
forecasting results of individual forecasting models.

IV. IMPLEMENTATION OF RDFM USING CHOQUET
INTEGRAL AND DEEP LSTMS

In the training phase, we rephrase the dataset of each site Sl
as described in (7), and then train the LSTM model Mi to get
a mapping function fMi

() for this model. At a time step t, the
predicted solar irradiance value yt using the LSTM model Mi

is calculated as follows: yt = fMi
(xt). For n LSTM models,

we obtain n predicted solar irradiance values by feeding xt
into the learned mapping functions:

rl = {fM1(xt), fM2(xt), . . . , fMn(xt)} (16)

In Algorithm 1 we describe the steps to implement RDFM.
In the testing phase, the predicted solar irradiance values rl
are aggregated using Choquet integral expressed by (14). Note
that the aggregation function (14) requires the computation of
µpm given in (15), in which the parameter q has previously
been obtained using the validation set.
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results

Figure 2. Proposed aggregation using Choquet integral.

Algorithm 1 Implementation of RDFM
1: Read historical data (solar irradiance) of all sites.
2: Structure the data by splitting them into training, valida-

tion, and testing sets.
3: Rearrange the data using for all sites using (7), and

normalize them using (10).
4: while i ≤ n do
5: Train the LSTM model i (i.e., Mi)
6: Save the LSTM model i
7: i = i+ 1
8: end
9: while true do

10: Read Sl, M1, M2, M3, M4, q
11: foreach time step t do
12: Compute fM1(xt), fM2(xt), fM3(xt), fM4(xt)
13: rl ← {r1, r2, r3, r4}
14: Permute rl increasingly
15: Compute µpm(A) using (15)
16: Aggregate rl using (14)
17: Forecast value← χκµ

18: end

To assess the accuracy of the forecasting models, root mean
square error (RMSE) is calculated, which can be formulated
as follows:

RMSE =

√√√√ 1

N

N∑
i=1

(Rpredicted,i −Robserved,i)
2 (17)

where Rpredicted and Robserved are the predicted and observed
values of solar irradiance, respectively.

V. RESULTS AND DISCUSSION

A. Finland Solar Irradiance Datasets

In this paper, we use realistic datasets for solar irradiance
in Finland to assess the performance of the proposed method.

4

6

3

5

21

Figure 3. The sites where solar irradiance are measured in Finland.

Table I
RMSE OF THE PROPOSED RDFM AND 4 DEEP LSTM MODELS

Model Site 1 Site 2 Site 3 Site 4 Site 5 Site 6
M1 31.05 34.91 37.15 23.58 36.61 23.21
M2 30.24 34.98 35.00 23.50 35.84 23.27
M3 34.14 31.30 33.83 26.52 30.74 24.36
M4 34.23 36.55 36.70 24.63 38.51 29.13
RDFM 26.71 30.33 29.88 20.77 30.20 19.72

These datasets are collected from the Finnish meteorological
institute [31]. The datasets involve measured global solar
irradiance for a whole year with a 1-hour resolution for
different six sites in Finland. Here, global solar irradiance
refers to the horizontal plane. Fig. 3 shows the six sites (sites
1, 2, 3, 4, 5, 6) represented by red dots on the map of Finland
where solar irradiance is collected. As noticed, these sites are
distributed from the north to the south of Finland, where each
site can represent a different climate zone.

To show the variability of the datasets, in Fig. 4 we provide
the distribution of solar irradiance at sites 1 and 4, which are
located in two away areas. Specifically, we present the dis-
tribution of solar irradiance in datasets with (a,d) hours, (b,e)
days, and (c,f) samples. The first and second rows represent
the distributions of datasets of sites 1 and 4, respectively. Fig.
4 (a) shows that the maximum solar irradiance at site 4 during
the day where it is noticed at 12:00 o’clock; however, it is at
13:00 o’clock at site 1 (based on the median values for each
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Figure 4. The distribution of solar irradiance in datasets with (a,d) hours, (b,e) days, and (c,f) samples. The first and second rows represent the distributions
of datasets of sites 1 and 4, respectively.

Table II
RMSE OF THE PROPOSED RDFM AND 4 DEEP LSTM MODELS WITH THREE DIFFERENT SOLAR PROFILES (SP1, SP2 AND SP3)

Model RDFM M1 M2 M3 M4
Profile SP1 SP2 SP3 SP1 SP2 SP3 SP1 SP2 SP3 SP1 SP2 SP3 SP1 SP2 SP3
Site 1 23.19 60.03 50.36 25.79 63.98 51.35 23.78 71.32 51.33 178.73 176.95 103.66 25.44 62.23 53.27
Site 2 37.69 62.05 39.32 42.78 72.12 47.91 43.29 63.85 47.76 38.51 59.33 42.36 42.33 58.32 45.46
Site 3 32.49 67.60 56.09 44.30 81.92 64.61 40.95 73.54 59.92 36.72 68.99 40.79 64.57 63.94 47.78
Site 4 23.98 47.75 40.41 29.07 56.09 29.67 28.06 55.92 28.91 23.72 49.54 33.93 23.76 49.94 29.52
Site 5 20.07 59.46 38.24 26.93 75.02 37.10 26.73 72.63 37.57 20.02 61.09 37.29 19.55 63.30 33.11
Site 6 17.95 37.22 20.48 25.77 45.15 27.16 26.53 49.23 27.25 22.17 44.93 25.42 22.09 44.38 25.42

hour), as shown in Fig. 4 (d). Another difference is that the
solar irradiance at site 1 has a higher trend than those of site
4 (see Fig. 4 (b, e, c, f)). Interestingly, the solar irradiance
at the beginning of the year follows an increasing trend until
the mid-year where it starts to decrease. This figure illustrates
the difference between the solar radiation at different sites in
Finland. This high variability associated with the Finnish solar
irradiance profile requires a reliable forecasting method to
represent such intermittent and fluctuating features accurately.

B. Performance of the Forecasting Models

In this study, we split each solar irradiance dataset into
training, validation and testing ones (70% for training, 15%
validation and 15% testing). The time step for RDFM is 1
hour. Table I compares the values of RMSE for the four LSTM
models (M1, M2, M3, and M4) and RDFM. As we can see,

the RMSE values of RDFM are much lower than those of
the other individual LSTM models for all sites. For instance,
M1, M2, M3, and M4 achieve RMSE values of 31.05, 30.24,
34.14, 34.23, respectively, with the data of site 1. However,
the proposed RDFM yields only an RMSE value of 26.71 with
the data of the same site. We also notice similar reductions in
the RMSE values in the other five sites.
To visualize the performance of forecasting models, in Fig. 5
we compare the predicted solar irradiance obtained by the five
forecasting models with the actual solar irradiance values of
the six sites for seven days (one week). The individual four
LSTM models deliver accurate prediction results, and thus we
fulfill the first requirement for achieving a reliable forecasting
model (i.e., selecting accurate individual forecasting models).
Yet, the RDFM gives more accurate predictions for the differ-
ent solar irradiance profiles. Fig. 5 demonstrates that the four



7

20 40 60 80 100 120 140 160
0

100

200

300

400

500

600

700

Time (Hour)

S
o
la

r 
Ir

ra
d
ia

n
c
e
 (

W
/m

2
)

 

Actual RDFM M1 M2 M3 M4

(a)

20 40 60 80 100 120 140 160
0

100

200

300

400

500

600

700

Time (Hour)

S
o
la

r 
Ir

ra
d
ia

n
c
e
 (

W
/m

2
)

 

Actual RDFM M1 M2 M3 M4

(b)

20 40 60 80 100 120 140 160
0

100

200

300

400

500

600

700

Time (Hour)

S
o
la

r 
Ir

ra
d
ia

n
c
e
 (

W
/m

2
)

 

Actual RDFM M1 M2 M3 M4

(c)

20 40 60 80 100 120 140 160
0

100

200

300

400

500

600

700

Time (Hour)

S
o
la

r 
Ir

ra
d
ia

n
c
e
 (

W
/m

2
)

 

Actual RDFM M1 M2 M3 M4

(d)

20 40 60 80 100 120 140 160
0

100

200

300

400

500

600

700

Time (Hour)

S
o
la

r 
Ir

ra
d
ia

n
c
e
 (

W
/m

2
)

 

Actual RDFM M1 M2 M3 M4

(e)

20 40 60 80 100 120 140 160
0

100

200

300

400

500

600

700

Time (Hour)

S
o
la

r 
Ir

ra
d
ia

n
c
e
 (

W
/m

2
)

 

Actual RDFM M1 M2 M3 M4

(f)

Figure 5. The predicted solar irradiance with RDFM for (a) Site 1, (b) Site 2, (c) Site 3, (d) Site 4, (e) Site 5, and (f) Site 6.

LSTM models (represented by dots) often overestimate or un-
derestimate the solar irradiance values while RDFM achieves
higher matching concerning the actual values, thanks to the
Choquet integral based aggregation approach that can model
the interaction between the predicted values of the individual
LSTM models through the fuzzy measure. The reductions
achieved with the aggregation approach implies that we fulfill
the second requirement for achieving a reliable forecasting
model (i.e., selecting appropriate aggregation function). This
analysis reveals the reliability of the proposed model since
its prediction results are much accurate than the ones of the
individual models at all sites.

C. Performance of Forecasting Models with Different Solar
Irradiance profiles

Solar irradiance can have highly fluctuating daily profiles.
Here, we evaluate the forecasting models with different solar
irradiance daily profiles. This observation implies that the
accuracy of forecasting models increases with the clearness
index. From now on, we refer to clear, cloudy, and partially
cloudy profiles as SP1, SP2, and SP3, respectively. We identify
these three profiles according to the clearance index given
in [32]. In Table II, we compare the RMSE values of the

proposed RDFM and four deep LSTM models with the three
different solar irradiance profiles. In general, the proposed
RDFM yields the lowest forecasting errors at the six sites for
the three solar irradiance profiles. Another important notice
is that the lowest and highest forecasting errors for M1,
M2, M3, and M4 at the six sites are founded with SP1
and SP3, respectively. However, the proposed RDFM shows
lower errors even with low clearness index values, i.e., highly
fluctuated days. This comparison reveals the high reliability of
the proposed forecasting model with different sites and solar
profiles. Consequently, RDFM is a suitable tool for forecasting
the high fluctuating solar irradiance in Finland, thanks to
the Choquet integral based aggregation method that properly
combines the predictions of the individual LSTM models.
Regarding the case when applying the proposed approach
to data referring to different seasons, it is expected that the
proposed approach will give similar performance compared to
the existing approaches.

D. Comparisons

Here, we compare the accuracy of the proposed RDFM with
two individual forecasting methods (persistence and ARIMA)
and 4 ensemble forecasting methods. Specifically, we compare
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Figure 6. Performance evaluation of the proposed RDFM approach against different forecasting models. (a) RMSE and (b) R2 evaluation metrics.

RDFM with four ensemble integration techniques: the average
ensemble (Ensemble Model 1) [33], the weighted average
ensemble (Ensemble Model 2) proposed in [34], the median
ensemble (Ensemble Model 3) [35], and ensemble of deep
three LSTM models and ARIMA (Ensemble Model 4). It
worth noting that Ensemble Model 4 is a variant of the
proposed approach, but we replace M4 with ARIMA.

In Fig. 6(a,b), we compare the RMSE and R2 (coefficient
of determination) values of the proposed model against the
two individual forecasting methods (ARIMA and persistence)
as well as the four ensemble strategies. The highest RMSE
values are noticed with the persistence method at all sites
while the lowest R2 values are noticed in the same method.
This trend implies that the persistence method has the worst
accuracy rate compared to the other forecasting methods and
the proposed method. ARIMA obtains better performance that
the persistence model for all sites. In turn, Ensemble Models
1, 2 and 3 achieve better forecasting results than the ARIMA
and persistence methods. Ensemble Model 4 yields a better
forecasting results compared to Ensemble Models 1, 2 and 3,
thanks to the Choquet integral. Obviously, the proposed RDFM
outperforms the compared ensemble aggregation strategies
as well as the individual forecasting methods for all sites.
The superiority of the proposed RDFM is justified by the
high accuracy of the 4 individual LSTM models and the
effectiveness of the Choquet integral.

VI. CONCLUSIONS

In this paper, we have proposed a reliable forecasting
method based on LSTM models aggregated by Choquet in-
tegral, which can inherit advantages of the individual models
and avoids their disadvantage. The individual LSTM models
achieve accurate predictions because they can model the tem-
poral changes in solar irradiance while the Choquet integral
can model the interaction between the predictions of individual
models through the fuzzy measure. Most related works com-
pare the performance of different forecasting models and select
the one of the highest accuracy or average them. However,
these approaches do not take into account the relationship
between the components and neglect inherent information. In

turn, Choquet integral introduces an efficient handling strategy
for reliable forecasting by considering the high variability of
the forecasting results of individual forecasting models. To
validate the proposed approach, we have applied it to forecast
solar irradiance at six sites in Finland. Furthermore, we have
compared it with different individual and ensemble-based
forecasting approaches. The proposed forecasting approach
has shown lower forecasting errors than the other methods,
even with highly fluctuated solar irradiance profiles.

Notably, the proposed approach has no assumption for the
data type, and thus it can be a sufficient tool for diverse
forecasting problems in smart grids (wind power, electricity
consumption, etc.). An economic impact of the proposed
approach is that the complex meteorological instrumentation
is inessential. However, whenever local weather stations are
available, such further weather measurements (e.g. wind speed,
cloud cover, and temperature) can be fed into the proposed
RDFM. In the future, we will integrate the forecasting model
with predictive management in smart grids.
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