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Abstract: Nowadays, most decision processes rely not only on the preferences of the decision maker
but also on the public opinions about the possible alternatives. The user preferences have been
heavily taken into account in the multi-criteria decision making field. On the other hand, sentiment
analysis is the field of natural language processing devoted to the development of systems that are
capable of analysing reviews to obtain their polarity. However, there have not been many works up to
now that integrate the results of this process with the analysis of the alternatives in a decision support
system. SentiRank is a novel system that takes into account both the preferences of the decision maker
and the public online reviews about the alternatives to be ranked. A new mechanism to integrate
both aspects into the ranking process is proposed in this paper. The sentiments of the reviews with
respect to different aspects are added to the decision support system as a set of additional criteria,
and the ELECTRE methodology is used to rank the alternatives. The system has been implemented
and tested with a restaurant data set. The experimental results confirm the appeal of adding the
sentiment information from the reviews to the ranking process.

Keywords: opinion mining; sentiment analysis; aspect-based sentiment analysis; multiple criteria
decision aid

1. Introduction

The surge of social networks, full of opinions about all possible kinds of objects, has
provoked a strong change in decision making. Preferences, prices and other criteria are still
very relevant; however, the weight of the opinion of other users is certainly growing [1–3].
Some studies show that a large majority of people reads public reviews on the Web before
buying any object [4,5]. Reviews are very important to know the quality of the products
and services offered by a company; for example, a restaurant may advertise that it offers
a free WiFi service, but the reviews may warn us that the connection quality is very low.

It is arguably important to integrate the information about the preferences of the user
with the public opinions on the products in a decision support system. The management
of preferences in ranking systems [6,7] and the automated analysis of the sentiments of
texts [8] have been heavily studied in their respective fields. However, there are not many
current works aiming at the integration of both aspects to rank the decision alternatives.

A multiple criteria decision aid (MCDA) [6] deals with different conflicting crite-
ria, establishing scientific bases to elaborate recommendations according to the needs of
decision-makers. Artificial intelligence techniques can be used to elicit and construct a
knowledge model for each particular decision-maker.

Sentiment analysis (SA) detects whether the polarity of the opinion of a user in a
text is positive or negative. It is commonly applied to online reviews in many different
domains [8–10]. The techniques of analysis developed in this field may be applied to
a whole document, to a sentence or even to a particular aspect in a sentence (aspect-based
sentiment analysis, ABSA) [11]. An aspect refers to a particular characteristic of an object
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(e.g., the quality of the food in a restaurant), which may be evaluated in a part of a sentence
(e.g., “Although the dinner was very expensive, the food was delicious”).

In this work we analyse how to integrate the public opinions of users about a certain set
of products in a standard multi-criteria decision support system. To make this integration
it is necessary to identify the aspects appearing in the reviews; to obtain the polarity
associated with each aspect in each review; to integrate this information as new criteria to
be considered in the MCDM process; and finally, to rank the alternatives considering the
user preferences, the knowledge about the values of the alternatives in different criteria
and the information about the opinions of the users on the Web.

SentiRank is a system that integrates the opinions of the users on a set of products
as a new set of criteria to be taken into account in ELECTRE, the well-known MCDM
ranking methodology. This paper focuses especially on the aspect-based sentiment analysis
task, which involves two main sub-tasks: aspect detection (detect the aspects of an object
mentioned in a sentence) and aspect polarity (identify if the opinion about that aspect of
the object is positive or negative).

To summarise, the main contributions of this work are the following:

1. We propose a new sentiment analysis system to obtain the polarity associated with
each aspect mentioned in every sentence of a review. First, the relevant aspects of
a sentence are detected; after that, a Support Vector Machine (SVM) is employed to
calculate the polarity of the opinion of the user for each aspect. The experiments
show that this new system has a performance comparable to the one of the current
state-of-the-art systems.

2. We integrate the sentiment information about the aspects as new (social) criteria
to be considered, alongside the standard criteria of the domain. Then, we apply
ELECTRE-III to rank the alternatives.

3. We show how the rankings change when social criteria are considered in a use case
with restaurant data.

The rest of the article is structured as follows. Section 2 overviews the state-of-the-art
in the fields of SA (specially ABSA) and MCDA. Section 3 describes the development of
the aspect-based sentiment analysis system, the architecture of our ranking system and its
implementation details. Section 4 presents and discusses the experimental results. Section 5
summarises the article and points out some ideas for future work.

2. Background and Related Works
2.1. Sentiment Analysis

Sentiment analysis is a field of natural language processing that develops mechanisms
to analyse the polarity of the opinion expressed in a sentence (or even a part of sentence)
automatically. Sentiment polarity is the most well-studied sub-problem of sentiment
analysis. It may be conceptualised as a multi-class text classification problem, in which
the goal is to determine whether the overall opinion expressed in a given text is positive,
negative or even neutral. There are many variants of this task. One is to classify a text
according to a rating scale, e.g., 1 = “worst” to 5 = “best”. We may consider different levels
of analysis, from the document level to the sentence level. It is also possible to formulate
the problem as a regression problem. The goal, in this case, is to predict the intensity of the
sentiment that represents better the mental state of the author [12]. The intensity is a real
value in the range from 0 (negative) to 1 (positive). Since it is a text classification problem,
we can apply any existing supervised learning method, e.g., naive Bayes or Support Vector
Machines [13–15].

2.2. Aspect-Based Sentiment Analysis

Classifying text opinions at the document or sentence level is not enough in most
applications. With these two levels, we cannot identify the aspects of the object and assign
sentiments to them for two main reasons. First, people tend to mention multiple aspects of
an entity in their reviews. Figure 1 shows the typical layout of online customer reviews.
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Second, a single sentence does not reflect the author’s opinion about all aspects of an entity.
Hence, we need to perform the analysis at a high level. To this end, we need two steps.
First, we need to find all the aspects mentioned in the document. As soon as we get
these aspects, we need to decide whether the sentiment expressed towards each aspect
is positive or negative. The first step is known as the aspect extraction task, whereas the
second step is known as the aspect polarity detection task. These tasks are described in the
following sections.

Review Title (Abstract)

Overall Rating

Review 
Text

R
atin

g
 

o
f 

A
sp

ects

Review Quality

Figure 1. Components of the review of a restaurant.

2.2.1. Aspect Extraction

Aspect extraction aims to extract the set of aspects mentioned in a given text. It is an
essential step in opinion mining. The first work on aspect extraction was introduced by Hu
and Liu, 2004 [16]. Although they considered explicit and implicit aspects, they only dealt
with the former ones. The main idea of their approach was to design a set of rules based on
statistical observations. Popescu and Etzioni, 2007 [17] improved this method by assuming
that the product class is known a priori. Based on that assumption, they proposed an
algorithm that detected whether a noun refers to an aspect by calculating the pointwise
mutual information between the product and the noun. Scaffidi et al. [18] improved Hu
and Liu’s method by assuming that the aspects of a product are more frequent in reviews
than in general text. Liu et al., 2015 [19] proposed a novel method to detect aspects by
using rules that consider the dependency relations between aspects and the opinion words.

Aspect extraction can be conceptualised as a sequential labelling problem. In this
case, the extracted aspects are terms rather than categories. The most popular methods in
this context are Hidden Markov Models (HMM) and Conditional Random Fields (CRF).
The authors in [20] used a lexicalised HMM to extract opinions along with their explicit
aspects. Jakob and Gurevych, 2010 [21], Li et al., 2010 [22] and Choi and Cardie, 2010 [23],
employed CRF to extract explicit aspects.

Some studies have employed the multi-label classification approach to extract aspect
categories from a text. First, they define a set of aspect categories. Then, they develop
a system to map sentences to aspect categories from the defined set. For example, the au-
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thors in [24] developed five binary SVM classifiers. Each one specifies whether a sentence
belongs to a specific category or not. The NLANGP team [25,26] also modelled aspect
category detection as a multi-class classification problem using logistic regression for each
category. Sentiue [27] proposed a separate maximum entropy classifier with syntactic
features (e.g., words, lemmas). Then, they applied heuristics to the outputs of the classifiers
to determine the categories of each sentence. Following this approach, i.e., multi-label
classification, we have developed a system to extract aspects from reviews, as explained
in Section 3.3.

2.2.2. Aspect Polarity Detection

The goal of aspect polarity detection is the identification of the polarity towards each
aspect extracted from a given customer review about a target entity. The aim is to obtain a
set of {a, p} tuples that represents the user’s opinions. The item a is extracted in the aspect
extraction step; p can be positive, negative, neutral or conflict. The task can be regarded
as a classification problem where the inputs are a sentence, s, and an aspect, a, and the
output is the polarity, p. A single sentence may contain opinions about different aspects,
with different polarities. The key to solve this problem is to design a set of useful features.
Such features need to be able to model the relations between the sentences and the aspects.

In this context, many studies have proposed efficient solutions. For example, the Sen-
tiue team [27] developed a three class polarity classifier by extracting features from the text
and the aspect category, including Bag of Words (BoW), lemmas, bigrams, punctuation
and polarised words. The ECNU team [28] found that each aspect is related to specific
fragments in the corresponding sentence. Based on that idea, they extracted from a given
sentence what they called pending words by applying two steps. First, each sentence
was divided into several fragments. Then, one or more fragments from the sentence
were associated to each aspect. The words in the selected fragments were the pending
words. After that, they used four types of features extracted from the pending words
to build logistic regression classifiers: linguistic, sentiment lexicon, topic-modelling and
word-embedding. The NRC-Can-2014 team [24] trained one multi-class SVM classifier for
all aspect categories. The feature set incorporated the information about a certain aspect
category. Following these approaches, we have designed our aspect category polarity
detection model, as explained in Section 3.4.

2.3. Multi-Criteria Decision Aid

Decision problems [6] are usually complex as they involve the evaluation of objects
defined on several conflicting criteria. MCDA methods aim to help users to make a decision
when confronted with a set of alternatives [29]. They are widely used in decision problems
to find the best alternative. MCDA makes the process more explicit, rational, and efficient.
It is a multidisciplinary field, derived from Operations Research, that uses mathematical
approaches to deal with complex problems encountered in human activities. Nowadays,
it also integrates Artificial Intelligence and economic welfare techniques.

In this work we have used ELECTRE-III, a well-known outranking MCDA method,
to compare and order the decision alternatives according to their performance in several
features, taking into account the decision maker preferences. The interested reader may
look at the details of this method in [30]. For the purposes of this paper, suffice it to say that
the user of ELECTRE-III must provide the following parameters for each feature (criterion):

• The weight of the criterion.
• Indifference threshold: if the difference between the values of the criterion in two

alternatives A and B is lower than this indifference threshold, then both objects have
the same interest for the user and one cannot be preferred to the other.

• Preference threshold: if the difference between the values of the criterion in two
alternatives A and B is higher than this preference threshold, then A will be preferred
to B in this feature.
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• Veto threshold: if the difference between the values of the feature in two alternatives
A and B is higher than this threshold, then B will never be preferred to A, even if it
has better values in the rest of features.

2.4. Combining MCDA and SA

There are not many previous works that use reviews to rank a set products. Moreover,
the existing ones do not take into account the preferences of the user. For example, a method
that ranks products considering the public reviews was proposed by Zhang et al. [31].
They first identified subjective and comparative sentences using dynamic programming;
then, they employed those sentences to generate a graph of products from which the top
ones can be computed.

Peng et al. [32] analysed reviews to identify their main aspects, and they used
PROMETHEE to rank the commented products. Zha et al. [33] proposed a similar system.
They used an aspect-based sentiment classifier on the reviews and, after that, they ranked
the aspects using probabilities taking into account their frequency of appearance in the
reviews. Kang et al. [34] calculated the user’s preference on a set of options by combining
a sentiment analyser and the VIKOR methodology. Liu et al. [35] integrated a lexicon-
based sentiment analyser with a representation of the performance of each object based
on an intuitionistic fuzzy number. The final ranking was made using PROMETHEE-II.
The combination of aspect-based sentiment analysis and intuitionistic fuzzy sets to rank
a set of items was also proposed in [36]; in that case, the employed MCDM mechanism was
IF-ELECTRE.

Similarly, we propose to use the power of aspect-based sentiment analysis systems
and ELECTRE ranking methods to develop a novel ranking system. However, unlike the
previous studies, our system is the first that integrates the preferences of the users and the
sentiment analysis of the reviews, as shown in the following section.

3. Methodology

Figure 2 shows the architecture of SentiRank, the system that has been designed and
developed to rank objects using ELECTRE-III, taking into account the preferences of the
user on certain domain attributes and the global opinions of users on the Web about the
decision alternatives. It is composed by three main modules. The first one is the customers’
reviews unit, which transforms the reviews about alternatives into a matrix of real numbers
which we call the social performance table. The second one is the domain analysis unit.
It takes as an input the description of the alternatives and the goals of the decision-maker
and it converts them to another matrix of real numbers called domain performance table.
As soon as we get the output of the two units, we merge them to get the final performance
table. Finally, we feed the performance table to the last unit, i.e., the ranking unit, to have
the alternatives ranked.
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Result

Decision-maker Consumers

R5

R1, R4

R3

R7

R2, R6

Parameters Setup

Figure 2. The architecture of SentiRank.

3.1. Customers’ Reviews Unit

This module receives a set of reviews about a given set of objects. It analyses the
aspects mentioned in each review, it determines their polarity, and then it builds the social
performance matrix. In this structure each row represents a particular object, and each
column corresponds to the one of the detected aspects. As shown in Figure 3, the first
step is to preprocess the text. After that, sentences are separated and tokenised. Then,
the aspects mentioned in each sentence are found and their polarity is calculated. All these
steps are explained in the following subsections.
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Extracted 
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Sentences Splitting

Word Tokenaization

POS Tagging
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Aspect Category Polar ity 
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Set of Aspects and 
Corresponding 
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Figure 3. The architecture of the ABSA model.

3.2. Text Preprocessing

Text preprocessing is an essential step for most text analytics problems, especially for
sentiment analysis. It is especially important when the text to be analysed comes from
reviews on social media, which tend to be written in an informal way. The following text
normalisation steps are applied in SentiRank:

• Text is moved to lowercase.
• HTML tags are removed.
• The URLs are replaced by the <URL> symbol.
• The user mentions are replaced by the <USER> symbol.
• The emails are replaced by the <EMAIL> symbol.
• The dates are replaced by the <DATE> symbol.
• The times are replaced by the <TIME> symbol.
• The numbers are replaced by the <NUMBER> symbol.
• The money is replaced by the <MONEY> symbol.

The text was split into sentences, tokenised and tagged with the Part-Of-Speech (POS),
using Stanford’s tokeniser and POS-tagger.

3.3. Extraction of Aspect Categories

A sentence may contain references to several aspects. Thus, finding these aspects
may be conceptualised as a multi-label classification problem [37]. Let X = {x1, x2, . . . , xn}
be the instance set and A = {α1, α2, . . . , αm} the aspect set, with dimensions n and m
respectively. The supervised multi-label data set D can be defined as follows:

D = {(xi, Âi)|xi ∈ X and Âi ⊆ A is the set of aspects associated with xi} (1)

We use the binary relevance mechanism [37–39] to solve the multi-label classification
problem. The main idea is to transform this problem into several binary problems (one for
each aspect), that can be solved by independently trained binary classifiers. In order to
train the binary classifier for each corresponding aspect αj, 1 6 j 6 m, we first construct
the following binary data set:

Dj = {(xi, φ(Âi, αj))|1 6 i 6 n} (2)
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In this expression, φ(Âi, αj) is a function that returns 1 if αj ∈ Âi and 0 otherwise.
Figure 4 illustrates the decomposition process.

Ex# Label Set

1 { a1, a2}
2 { a2, a4}
3 { a1, a3, a4}
4 { a4}

Ex# a2

1 true
2 true
3 false
4 false

Ex# a3

1 false
2 false
3 true
4 false

Ex# a4

1 false
2 true
3 true
4 true

Ex# a1

1 true
2 false
3 true
4 false

Figure 4. Illustration of the decomposition of a multi-label data set into multiple binary data sets.

After that, we build a SVM binary classifier hj : X → {0, 1} from each training set Dj.
When the system is given a new sentence x, the aspects that are associated with it are
detected by these binary classifiers. Hence, the function h : X → 2A can be defined
as follows:

h(x) = {αj|hj(x) = 1, 1 6 j 6 m} (3)

3.4. Calculation of the Aspect Polarity

In this step the system has to calculate whether the opinion of the user about each
aspect of each sentence is positive, negative, neutral or “conflict.” A multi-class Support
Vector Machine is trained for each aspect category. In the next section it will be seen how the
set of features of each SVM is enlarged with specific knowledge about the aspect category.

We define the aspect polarity detection function f : X× A→ {positive, negative,
neutral, con f lict} as follows:

f (x, α) =


positive If PositionMax(x, α) = 1
negative If PositionMax(x, α) = 2
neutral If PositionMax(x, α) = 3
conflict If PositionMax(x, α) = 4

(4)

In this expression σ : X × A → R4 is the classification support function, and the
function PositionMax returns the position of the input vector with the highest value.
We summarise the aspect extraction and polarity detection steps in Algorithm 1.
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Algorithm 1: Aspect extraction and polarity detection algorithm.
input :A review rev.
output :A list of pairs L = {(α1, p1), ..., (αl , pl)}, where αk is an aspect and pk its corresponding polarity.

1 L←− Empty;
2 Split rev to a set of normalised sentences and store them in Sents;
3 for x ∈ Sents do
4 Let Â be the set of aspects extracted from x using Equation 3;
5 for α ∈ Â do
6 Let p be the polarity obtained with Equation (4);
7 Add the pair (α, p) to L;
8 end
9 end

3.5. Transforming the Sentiment Information into Social Criteria

In the previous step the system has detected the aspects mentioned in a review and
the polarity of the opinion about each of them. In order to integrate this information into a
MCDM system, we consider each of the aspects as a social criterion. Thus, we generate
a matrix in which each row represents an alternative, and each column is one of the aspects
evaluated in the textual reviews. The value for a specific cell is the polarity index [9], which
is a number from 0 to 100 that indicates the positiveness of the opinion of the users’ reviews
about a certain aspect for a given alternative. This index is calculated as follows (P and N
are the amounts of positive and negative opinions, respectively):

Pindex(P, N) =


1− N

P if, P > N
P
N − 1 if, P < N
0 otherwise

(5)

The range of Pindex is [−1, 1], so we transform it to [0, 100] by adding 1 and multiplying
the result by 50. Thus, 0 is the lowest satisfaction and 100 represents the highest degree of
satisfaction. Algorithm 2 illustrates the transformation steps.

3.6. Domain Analysis Unit

As depicted in Figure 2, this module employs utility functions to transform the
values of the domain attributes into numerical values that represent the user’s degree
of satisfaction, taking into account his/her preferences. The transformation to be made
depends on the type of attribute that is being considered. We have considered three kinds
of attributes: numerical, categorical and linguistic. In the case of numerical attributes,
they do not need any transformation, as they are already numbers. Features of this kind
sometimes have to be maximised (e.g., the social features that indicate the opinion gathered
from the reviews on some aspects of an object) and sometimes they have to be minimised
(e.g., the distance of a restaurant to the city centre). The utility functions needed in the
other two cases are described in the following subsections.

3.6.1. Categorical

The utility function used for categorical attributes is the following:

g(U; F) =
|U ∩ F|
|U| (6)

In this formula U is the set of values preferred by the user and F is the set of values of
the attribute for a particular object. Thus, the utility function computes the percentage of
preferred values offered by the object, which the user will desire to maximise.
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Example: let us have a categorical criterion (e.g., food types served in a restaurant)
and let us assume that the user preferences are U = {a, b, c, d, e} and the values provided
by an alternative are F = {a, d, f , g, h}; then, the utility value of this alternative given the
preferred values is g(U; F) = |{a,d}|

|{a,b,c,d,e}| =
2
5 = 0.4.

Algorithm 2: Creation of the social performance table.
input :A set of alternatives O, a set of aspects A and a set of reviews RV.
output :The social performance table, M.

1 initialisation;
2 r ←− |O|;
3 m←− |A|;
4 POS←− Zeros[r, m];
5 NEG ←− Zeros[r, m];
6 M←− Zeros[r, m];
7 i←− 1;
8 while i 6 r do
9 RVi ←− RV[i];

10 for rev ∈ RVi do
11 let L be the list of extracted aspects from rev using Algorithm 1;
12 for (α, p) ∈ L do
13 let j be the index of aspect α;
14 if p == “positive” then
15 POS[i, j] = POS[i, j] + 1;
16 else
17 if p == “negative” then
18 NEG[i, j] = NEG[i, j] + 1;
19 end
20 end
21 end
22 end
23 i = i + 1;
24 end
25 i←− 1;
26 while i 6 r do
27 j←− 1;
28 while j 6 m do
29 P←− POS[i, j];
30 N ←− NEG[i, j];
31 M[i, j] = Pindex(P, N);
32 j = j + 1;
33 end
34 i = i + 1;
35 end

3.6.2. Linguistic

The utility function that is employed by the system to transform linguistic values into
numbers is the following:

g(x; p) = |L| − abs(pos(x)− pos(p)) (7)

In this formula L is the set of linguistic terms used in that attribute, the function pos
returns the position of a particular value in this set, p is the term preferred by the user
and x is the term appearing in a certain alternative. The utility function returns a number
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between 1 and the number of terms; the higher this number, the higher the satisfaction of
the user with that alternative.

Example: Let us have the price feature represented as a linguistic variable. Let L =
{very low, low, high, very high} be the linguistic values. Here, pos(low) is 2. Assuming that
the user prefers p = low and the alternative value is x = very high, then the utility value of
this alternative given the user preference is g(very high; low) = 4− abs(4− 2) = 4− 2 = 2.

3.7. Ranking Unit

This module receives the performance table (which integrates the domain attributes
and the social attributes derived from the sentiment analysis of the reviews) and ranks
the alternatives using ELECTRE-III. In order to use this methodology, it is necessary to
know the range of values of each attribute, whether an attribute has to be maximised or
minimised to satisfy the user, the weight to be given to each attribute and the ELECTRE
thresholds of each criterion (preference, indifference and veto). ELECTRE-III compares
each pair of alternatives and creates the outranking relations between them; after that, the
exploitation step is done to compute the final ranking of the alternatives.

4. Experiments and Results

A set of restaurants from the city of Tarragona was chosen as a use case to test the
system, considering users with different preferences. This section is structured as follows.
First, we describe in Section 4.1 the data and the criteria used in this study. Section 4.2
explains how we built the sentiment analysis models. We show the features that have
been used to extract the aspects and to evaluate the polarity of the users’ opinions of them,
and the values of the parameters of the employed classifiers. We also show and discuss
the performances of the developed models with a publicly available benchmark on the
restaurant domain presented in SemEval-2014 [40]. In Section 4.5, we show the performance
of SentiRank by varying the preferences of the user and analysing the obtained results.

4.1. Data

Table 1 shows all the criteria that define the peculiarities of each restaurant. The do-
main criteria include the information of the restaurants provided in the TripAdvisor
website. The sentiments of the reviews were analysed with respect to five aspect categories,
as described in the ABSA task of SemEval-2014: food, price, service, ambience and anec-
dotes [40]. The polarities of the reviews on these categories constitute the values of the
social criteria.

The models to detect the aspects and determine the polarity of the user’s opinion
of them were built and tested using the training and testing sets provided in the ABSA
task of the SemEval-2014 competition [40]. They had 3041 and 800 sentences in English,
respectively. Each sentence was labelled with a set of pairs (aspect, polarity). The number
of opinions for each aspect and each polarity is shown in Table 2. Most of the sentences
contain positive opinions, and the aspect that received the most opinions was the quality
of the food.
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Table 1. Domain and social criteria used in the case study.

Criterion Attribute Type Domain Goal

A-Domain

Price Linguistic {Very Low, Low,
High, Very High} MAX

Cuisines Categorical Italian, Chinese,
Grill, Bar, ... MAX

Special Diets Categorical Vegetarian Friendly,
... MAX

Meals Categorical Lunch, Drinks, ... MAX

Features Categorical Private Dining,
Seating, WiFi, ... MAX

Distance-to-city-
centre Numerical [0, ∞] MIN

B-Social

Food Numerical [0, 100] MAX
Price Numerical [0, 100] MAX
Service Numerical [0, 100] MAX
Ambience Numerical [0, 100] MAX
Anecdotes Numerical [0, 100] MAX

Table 2. Aspect categories distribution per sentiment class.

Aspect Positive Negative Conflict Neutral Total
Train Test Train Test Train Test Train Test Train Test

FOOD 867 302 209 69 66 16 90 31 1232 418

PRICE 179 51 115 28 17 3 10 1 321 83

SERVICE 324 101 218 63 35 5 20 3 597 172

AMBIENCE 263 76 98 21 47 13 23 8 431 118

ANECD 546 127 199 41 30 15 357 51 1132 234

Total 2179 657 839 159 163 52 500 94 3713 1025

4.2. Sentiment Analysis Model: Training Setup

We describe in this subsection the training setup of the aspect extraction and the aspect
polarity detection models. We used LIBLINEAR (https://www.csie.ntu.edu.tw/~cjlin/
liblinear/) to build all the linear classifiers. First, we define all the features used in our
system, and then we show the configuration of features for each model. After that, we
present the evaluation metrics and the performances of the models, and finally we discuss
the results on the Tarragona case study.

4.2.1. Features

The features used in our system are the following:

• Word n-grams: appearances of 1, 2, ..., n consecutive words.
• Character n-grams: appearances of 3, 4, ..., n consecutive characters.
• Part-Of-Speech tags: appearances of each kind of POS.
• Lexicon-Based features: A sentiment lexicon associates to a word a number that

represents its degree of positiveness/negativity. For each word w and polarity value
score(w; l) in a given lexicon l, we calculate the following features: (1) the total score
∑w score(w; l); (2) the highest value maxw score(w; l); (3) the number of positive words
in the sentence; (4) the lowest value minw score(w; l); (5) the number of negative words

https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
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in the sentence, and (6) the value of the last word in the sentence. The lexicons used in
this work are the following:

– Yelp Restaurant Sentiment Lexicon (Yelp-Res): this lexicon, which contains almost
40,000 unigrams, was created automatically from restaurant reviews contained in
Yelp [41] (http://www.yelp.com/dataset_challenge).

– NRC Hashtag Sentiment Lexicon (NRC-Hashtag): This lexicon was constructed
from a pseudo-labelled corpus of tweets [41]. It contains almost 40,000 unigrams
and 180,000 bigrams.

– NRC Yelp Word-Aspect Association (WA-Lexicon): It contains lexicons of words
associated with the five aspect categories shown in Table 2, created from over
180,000 reviews in Yelp. Thus, unlike the other lexicons, this one is centred in the
aspect categories. The value that represents the relationship between each word
and each category was calculated using the PMI metric [24].

• Word Clusters: The CMU POS-tagger (http://www.cs.cmu.edu/~ark/TweetNLP/
clusters/50mpaths2) employed Brown clustering to divide the English words appear-
ing in over 50 million tweets in 1000 clusters. We used the total occurrences of words
from each of the clusters as features.

4.2.2. Configurations

Table 3 shows the features employed to build the aspect detection module. Their val-
ues were obtained using 5-fold cross-validation.

Table 3. The features used to detect each aspect category.

Word-
Ngram

Char-
Ngram POS Clusters WA-

Lexicon

Food X, N = 3 X X X

Price X, N = 4 X X

Service X, N = 1 X, N = 6 X

Ambience X, N = 3 X X X

Anecdotes X, N = 3 X X X

As suggested in [24], a domain adaptation mechanism was used to enlarge the features
used to train this module. Given an aspect category a, two copies were made of each word
x. They are called x#general and x#a. The former refers to the general use of the word,
whereas the latter represents the usage of the word when referring to a particular aspect. In
that way, the classifier may learn that a certain word is positive in general (e.g., “splendid”),
and it also may learn that a word is positive in a particular context (e.g., “tasty” is a very
good word when referring to the quality of food).

As described in Section 3.2, first the sentences of the reviews are separated into words
and POS-tagged. After that, the system calculates all the features mentioned in the previous
section, except the n-grams based on characters: word 3-grams (both general and aspect-
based), Part-Of-Speech tags and the cluster and lexicon-based features (with the three
lexicons mentioned above).

4.3. Evaluation Metrics

To evaluate the module of aspect detection, the standard precision (P), recall (R) and
F1 measures were used (S is the set of aspects calculated by SentiRank, and G is the set of
correct aspects of each sentence).

P =
|S ∩ G|
|S| (8)

http://www.yelp.com/dataset_challenge
http://www.cs.cmu.edu/~ark/TweetNLP/clusters/50mpaths2
http://www.cs.cmu.edu/~ark/TweetNLP/clusters/50mpaths2
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R =
|S ∩ G|
|G| (9)

F1 =
2 · P · R
P + R

(10)

The correctness of the polarity of the opinion with respect to an aspect is measured by
the accuracy (correct polarity labels associated with an aspect by the system divided by the
number of correct labels).

4.4. Results

Table 4 shows the performance of the aspect detection module for each category.
In general, the model shows a very good F1 value in all the categories. The model gives
the best performance in the food and price categories, whereas the worst value appears in
the anecdotes category.

Table 4. Evaluation of the aspect detection module.

Aspect P R F1 Accuracy

Food 94.43 89.23 91.76 91.63

Service 93.75 87.21 90.36 96

Price 98.61 85.54 91.61 98.25

Ambience 86.73 83.05 84.85 95.63

Anecdotes 80 75.21 77.53 87.25

Average 90.70 84.04 87.22 93.75

SentiRank was also compared with the top three systems in the ABSA task in SemEval-
2014 [40], as shown in Tables 5 and 6. The best values are shown in bold. The results for
SentiRank are quite close to the ones of the top system, NRC-Can-2014 [24], in both tasks.

Table 5. Evaluation of the aspect detection module.

System P R F1

NRC-Can-2014 [24] 91.04 86.24 88.58

UNITOR [42] 84.98 85.56 85.26

XRCE [43] 83.23 81.36 82.28

SentiRank 90.41 84.68 87.45

Table 6. Evaluation of the polarity calculation module.

System Accuracy

NRC-Can-2014 [28] 82.92

UNITOR [42] 76.29

XRCE [43] 78.14

SentiRank 82.44

To get more insights into the system’s performance, we analysed the confusion ma-
trices shown in Figure 5. The figure on the top left is the confusion matrix of the overall
score, when we ignore the category and consider only the polarities. The other five figures
show the confusion matrices at the category level of analysis. In general the system’s
performance is quite good, as 82.8% instances were correctly classified. The best values
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correspond to the positive and negative classes, whereas the worst ones appear in the con-
flict and neutral classes, where most samples were misclassified as positive. To understand
the performance of the system for each category, we analysed the confusion matrix for
each of them. The best performance appeared in the food, service and price categories.
The ambience category showed the worst performance, followed by the “Misc” category.
Such a finding can be attributed to the low number of training examples for these two
categories. As the positive class had the highest number of training samples in all the
categories, it showed a remarkable performance in all of them. However, on the other hand,
this superiority of the positive examples caused a bias in the classifications and led to a
low performance in other categories.
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Figure 5. Confusion matrices.

4.5. Case Study

The information available in TripAdvisor about 23 local restaurants was collected.
As it may be seen in Figure 6, there is information about the number of reviews, the distance
to the city centre, the range of prices, the types of food and the catering of special culinary
requirements. There is also a rating for each domain attribute and a global rating of the
restaurant. The ratings for the 23 alternatives are shown in Table 7. Interested readers may
find the remaining details in TripAdvisor.
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Figure 6. Restaurant details in TripAdvisor.

Table 7. The alternatives and the ratings based on TripAdvisor.

Id Restaurant Name Overall Food Service Price Amb.

1 AQ 4.5 4.5 4.5 4 4.5

2 ELIAN Cafe Restaurant 4.5 4.5 4.5 4.5 4.5

3 La Caleta 4.5 4.5 4.5 4 4.5

4 Tarakon 4.5 4.5 4.5 4.5 4

5 Sadoll Restaurant 4.5 4.5 4.5 4.5 4.5

6 El Taller 4.5 4.5 4.5 4 4

7 El Trull 4.5 4.5 4.5 4.5 4.5

8 Les Coques 4 4 4 4 4

9 Mas Rosello 4 4.5 4.5 4 4.5

10 Les Fonts de Can Sala 4.5 4.5 4.5 4 4.5

11 La Xarxa 4.5 4.5 4.5 4.5 4

12 El Encuentro 4.5 4 4 4.5 3.5

13 La Capital 4 4 4.5 4 3.5

14 Barquet 4.5 4.5 4 4 4

15 Arcs Restaurant 4.5 4.5 4.5 4 4.5

16 Restaurante Ca L Eulalia 4.5 4.5 4 3.5 3.5

17 Restaurante Club Nautico Salou 4.5 4.5 4.5 4 4.5

18 Octopussy 3.5 3.5 3.5 3.5 3.5

19 Palermo 1962 S.c.p. 4 4 4 4 3

20 The Cotton Club Restaurant & Cocktails 4.5 4.5 4.5 4.5 3.5

21 Lizarran Parc Central 3 3.5 3.5 3 3

22 Buffalo Grill 3 3.5 3.5 3 4

23 Indian Restaurant Mirchi Tarragona 3 2 2 3 3

We analysed the correlation between the TripAdvisor ratings and the results of the
ABSA module as follows. First, we calculated the polarity index of each pair (alternative,
aspect) given a set of reviews as described in Algorithm 2. Then, the overall polarity index
of an alternative was obtained by taking the average of all the aspects. Finally, we converted
the polarity index into a rating value from 0 to 5 by dividing the polarity index value by 20.
The obtained correlations were 0.93 (food), 0.83 (service), 0.55 (price), 0.73 (ambience) and
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0.8 (overall rating). Thus, the correlation between the overall rating provided by our system
and the overall rating provided by TripAdvisor is strong. This shows the robustness of
our sentiment analysis system and indicates that it is applicable to the restaurant domain.
The low correlation in the “price” aspect may be attributed to the fact that people tend to
give their opinion towards the quality of the service rather than the price, as we found
that the “price” aspect has the lowest number of reviews. The “ambience” aspect shows
an acceptable correlation with a value of 0.73; however, it is not quite strong. This can
be attributed to the low performance of our system with respect to this aspect as shown
in Table 4.

As the results discussed above show the effectiveness of our sentiment analysis system,
now we can use it to combine the preferences of the users with the analysis of the reviews
to rank the restaurants. In the next subsection we will show the results of SentiRank
considering two different kinds of users, and examining the influence of the addition of
the social criteria derived from the sentiment analysis.

4.5.1. Example 1

In this first example we are going to consider a user with the following preferences:

• Price: low.
• Cuisine: bar, seafood, Spanish.
• Special Diets: no gluten, vegetarian.
• Meals: brunch, cocktails, lunch.
• Features: parking, private dining, high chairs, handicap accessible, free WiFi, credit

cards accepted.
• Distance: the distance to the city centre must be as small as possible.

The user has some flexibility in the type of food and the general services of the
restaurant, but it is not as tolerant with regard to the times in which meals are served and
the diet—special requirements. The values of the ELECTRE thresholds that represent this
knowledge are shown in Table 8. All the social criteria are treated in the same way.

Table 8. The values of the ELECTRE thresholds for all criteria.

Criterion Indifference Preference Veto

A-Domain

Price 0 1 2
Cuisine 0 0.4 No Veto

Special Diets 0 0 0.5

Meals 0 0 0.5

Features 0 0.4 No Veto

Distance 0.5 1 3

B-Social

Food 7.5 20 40

Price 7.5 20 40

Service 7.5 20 40

Ambience 7.5 20 40

Anecdotes 7.5 20 40

Figures 7 and 8 show the domain and social performance tables respectively. Figure 9
shows the ranking results using only the standard criteria of the domain (left) and also
taking into account the social criteria (right). As expected, the addition of the social
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criteria derived from the analysis of the textual reviews produce changes in the ordering of
the restaurants.

Seq Restaurant Price Cuisines Special Diets Meals Features Distance 

1 AQ 2 0.33 1 0.33 0.67 2.6 

2 ELIAN Cafe 3.5 0.33 1 0.33 0.33 0.5 

3 La Caleta 2 0.33 1 0.33 0.89 3.5 

4 Tarakon 3 0.33 0.5 0.33 0.33 1.9 

5 Sadoll 3.5 0.33 1 0.33 0.67 2.1 

6 El Taller 3.5 0.33 1 0.33 0.78 1.4 

7 El Trull 3.5 0.33 1 0.33 0.67 7.6 

8 Les Coques 2 0.33 1 0.33 0.56 2.3 

9 Mas Rosello 2 0.33 1 0.33 0.67 6.1 

10 Les Fonts de Can Sala 2 0.00 1 0.33 1.00 3 

11 La Xarxa 3.5 0.67 0.5 0.33 0.78 1.6 

12 El Encuentro 3 0.33 0 0.33 0.67 0.9 

13 La Capital 3 0.67 0.5 0.00 0.78 1 

14 Barquet 3.5 0.67 1 0.33 0.56 1.1 

15 Arcs 2 0.33 1 0.33 0.67 2.5 

16 Ca L Eulalia 2 0.67 0.5 0.33 0.56 2.3 

17 Club Nautico Salou 3.5 0.67 0 0.33 0.89 14.3 

18 Octopussy 3.5 0.67 0.5 0.67 0.89 2 

19 Palermo 1962 S.c.p. 3.5 0.67 0.5 0.33 0.44 11.2 

20 The Cotton Club & Cocktails 3.5 0.33 1 0.67 0.78 11.3 

21 Lizarran Parc Central 3.5 0.33 0 0.33 0.56 1.3 

22 Buffalo Grill 3.5 0.00 0 0.33 0.33 5.7 

23 Indian Mirchi 3.5 0.00 0 0.00 0.11 0.75 

 
Figure 7. Example 1: domain performance table. The colour indicates the degree of satisfaction, green being the worst and
red the best.
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Seq Restaurant  Food Service Price Ambience Anecdotes 

1 AQ 95.51 91.67 38.89 91.30 93.75 

2 ELIAN Cafe 98.75 93.33 100.00 83.33 96.88 

3 La Caleta 97.22 76.92 100.00 100.00 96.15 

4 Tarakon 96.43 100.00 100.00 75.00 90.38 

5 Sadoll 95.28 95.00 95.00 96.15 96.30 

6 El Taller 97.83 91.67 83.33 100.00 90.91 

7 El Trull 97.22 76.92 100.00 100.00 96.15 

8 Les Coques 92.47 68.42 33.33 96.15 91.67 

9 Mas Rosello 96.15 100.00 87.50 97.22 100.00 

10 Les Fonts de Can Sala 97.22 100.00 100.00 100.00 75.00 

11 La Xarxa 100.00 80.00 75.00 75.00 97.37 

12 El Encuentro 92.00 75.00 87.50 66.67 83.33 

13 La Capital 81.25 87.50 100.00 83.33 73.08 

14 Barquet 92.50 82.50 81.25 80.77 82.00 

15 Arcs 95.08 91.59 75.00 94.26 95.08 

16 Ca L Eulalia 96.88 84.62 35.71 78.57 92.31 

17 Club Nautico Salou 91.67 85.71 83.33 96.15 100.00 

18 Octopussy 50.00 14.71 50.00 16.67 70.00 

19 Palermo 1962 S.c.p. 93.65 92.31 70.00 77.27 90.48 

20 The Cotton Club & Cocktails 87.01 86.50 78.89 92.22 87.59 

21 Lizarran Parc Central 50.00 50.00 50.00 50.00 50.00 

22 Buffalo Grill 78.95 81.25 50.00 50.00 100.00 

23 Indian Mirchi 20.00 10.00 50.00 0.00 25.00 
 

Figure 8. Example 1: social performance table. Colours have the same meanings as in the previous table.
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Figure 9. Profile 1: ranking results.
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The difference in the rankings reflects the importance of taking into account the
opinions of the users expressed in the reviews. In the case of domain criteria, as it may be
seen in Table 7, most of the criteria have similar values (especially those for which the user
has a stronger preference). The attribute in which there is a greater difference between the
restaurants is the distance to the city centre.

Several interesting facts may be noted when considering social criteria:

• The restaurant “El Taller” has better reviews than “Barquet” in all aspects, as shown
in Figure 8, which allow it to obtain the first position when these opinions are taken
into consideration. For the same reason, “Sadoll” and “ELIAN Cafe” reach the same
level as “Barquet”.

• The restaurant “Les Fonts de Can Sala” improves very heavily its position in the
ranking when the results of the sentiment analysis are considered. In Figure 8 it may
be seen that it is the only option that has perfect reviews in three of the five social
criteria. “Tarakon” is another example of a place with very good reviews in four of
the five aspects that make it improve its position in the ranking.

• The three restaurants at the bottom are not able to improve their positions, as the
customers’ opinions about them are not very good.

In summary, this example shows the clear influence of the social criteria on the ranking
process.

4.5.2. Example 2

In this second example the following user preferences are considered:

• Price: very high.
• Cuisine: grill, barbecue, bar.
• Special Diets: no gluten, vegetarian.
• Meals: dinner, drinks, late night.
• Features: private dining, serves alcohol, table service, free WiFi, credit cards, outdoor

seating, parking, full bar.
• Distance: restaurants in the city centre are preferred.

We keep the same weight for all criteria and the same ELECTRE thresholds as in the
previous example. The utility values of the domain criteria are shown in Figure 10 and
the ranking results of the two cases (without and with the social-based criteria) are shown
in Figure 11. As we can see, there are clear differences in the two ranking graphs. For
example, the alternative “La Caleta” changes from the third to the first position. On the
other hand, the alternative “Les Coques” is downgraded from position 1 to position 8 and
“AQ” is downgraded from position 2 to position 7. The analysis of the domain performance
table for this example, depicted in Figure 10, shows that the more relevant criteria are price,
distance to the city centre and features, in this order.

Changes similar to those reported in the first example may also be noted here. For
example, the restaurant “Les Coques”, which was the best in terms of domain criteria, goes
down to the middle of the ranking when users’ opinions are considered.

Given all that, we can conclude that the incorporation of the social-based criteria adds
more constraints to the ranking process. However, we believe that the integration of the
users’ reviews with the decision-maker preferences needs more investigation to improve
the results. The next section discusses this point in more detail.
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Seq Restaurant  Price Cuisine Special Diets Meals Features Distance 

1 AQ 4.00 0.00 1.00 0.33 0.63 2.60 

2 ELIAN Cafe 2.50 0.00 1.00 0.33 0.50 0.50 

3 La Caleta 4.00 0.00 1.00 0.33 1.00 3.50 

4 Tarakon 1.00 0.00 0.50 0.33 0.25 1.90 

5 Sadoll 2.50 0.00 1.00 0.33 0.50 2.10 

6 El Taller 2.50 0.00 1.00 0.33 0.63 1.40 

7 El Trull 2.50 0.67 1.00 0.33 0.75 7.60 

8 Les Coques 4.00 0.00 1.00 0.67 0.50 2.30 

9 Mas Rosello 4.00 0.00 1.00 0.67 0.63 6.10 

10 Les Fonts de Can Sala 4.00 0.00 1.00 0.00 1.00 3.00 

11 La Xarxa 2.50 0.00 0.50 0.33 0.63 1.60 

12 El Encuentro 1.00 0.00 0.00 0.33 0.63 0.90 

13 La Capital 1.00 0.33 0.50 0.00 0.75 1.00 

14 Barquet 2.50 0.00 1.00 0.67 0.38 1.10 

15 Arcs 4.00 0.00 1.00 0.33 0.50 2.50 

16 Ca L Eulalia 4.00 0.00 0.50 0.33 0.50 2.30 

17 Club Nautico Salou 2.50 0.00 0.00 0.33 0.88 14.30 

18 Octopussy 2.50 0.00 0.50 0.67 0.88 2.00 

19 Palermo 1962 S.c.p. 2.50 0.00 0.50 0.33 0.38 11.20 

20 The Cotton Club & Cocktails 2.50 0.00 1.00 1.00 0.75 11.30 

21 Lizarran Parc Central 2.50 0.00 0.00 0.33 0.38 1.30 

22 Buffalo Grill 2.50 0.33 0.00 0.33 0.13 5.70 

23 Indian Mirchi 2.50 0.00 0.00 0.00 0.13 0.75 
 

Figure 10. Profile 2: the domain performance-table. The colour indicates the degree of satisfaction, and colours range from
green, the worst, to red, the best.
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(a) Ranking with domain criteria (b) Ranking with all criteria 

  
 

          

  

         

                 

                           

      

                                                                      

           

                      

            

                     

       

             

                                  

                  

         

                     

                 

    

                   

           

                                          

                   

        

       

            

            

         

                  

                     

                   

                            

Figure 11. Profile 2: ranking result.
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5. Conclusions and Future Work

Decision making is a very hard task, as it often requires the analysis of hundreds of
potential alternatives defined on multiple and conflict criteria. Methods based on decision
rules, utility functions or outranking methods have been proposed in the multi-criteria
decision aid field. All of these methods use only the utility values of the so-called domain
criteria. With the rapid growth of the Web, there is a myriad of online platforms on
which users can express their opinions on the products or services offered by a company.
This paper has presented SentiRank, a ranking system based on the well-known ELECTRE
methodology that takes into account not only the standard domain attributes describing
the alternatives but also the opinions of the users about them. A novel ABSA module
has been incorporated to calculate the polarity of the users’ comments about different
aspects and to integrate this information as new “social” criteria. A use case with a set
of restaurants has shown the important contribution of these new features in the ranking
process. The degree of relevance of this contribution may be modulated with the ELECTRE
weights associated with each domain and social criterion. Thus, SentiRank opens up a new
line of research on the integration of the polarity of textual reviews on MCDA systems.

Concerning the future work, from a practical perspective we plan to extend the
implemented system by adding more domains, such as hotels, laptops and cameras. We
also plan to make the system a Web-based application and implement RESTfull APIs to
allow developers and users to use the system remotely. We also plan to perform a prof-of-
concept (PoC) analysis with surveys on real customers using the system. On the theoretical
side, we plan to make the system multi-lingual, so that it is able to analyse reviews in other
languages. We are also planning to study the possibility of using deep learning techniques
in the aspect detection and aspect polarity assessment modules, as it is already being done
in recommender systems [44].
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