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Abstract—In our data world, a host of not necessarily trusted controllers gather data on individual subjects. To preserve her privacy
and, more generally, her informational self-determination, the individual has to be empowered by giving her agency on her own data.
Maximum agency is afforded by local anonymization, that allows each individual to anonymize her own data before handing them to the
data controller. Randomized response (RR) is a local anonymization approach able to yield multi-dimensional full sets of anonymized
microdata that are valid for exploratory analysis and machine learning. This is so because an unbiased estimate of the distribution of
the true data of individuals can be obtained from their pooled randomized data. Furthermore, RR offers rigorous privacy guarantees.
The main weakness of RR is the curse of dimensionality when applied to several attributes: as the number of attributes grows, the
accuracy of the estimated true data distribution quickly degrades. We propose several complementary approaches to mitigate the
dimensionality problem. First, we present two basic protocols, separate RR on each attribute and joint RR for all attributes, and discuss
their limitations. Then we introduce an algorithm to form clusters of attributes so that attributes in different clusters can be viewed as
independent and joint RR can be performed within each cluster. After that, we introduce an adjustment algorithm for the randomized
data set that repairs some of the accuracy loss due to assuming independence between attributes when using RR separately on each
attribute or due to assuming independence between clusters in cluster-wise RR. We also present empirical work to illustrate the
proposed methods.

Index Terms—Privacy preserving data publishing, randomized response, curse of dimensionality, local anonymization, multivariate
data, differential privacy
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1 INTRODUCTION

Twenty years ago, National Statistical Institutes and a few
others were the only data controllers explicitly gathering
data on citizens, and their legal status often made them
trusted. In contrast, in the current big data scenario, there
is a host of controllers gathering information, and it is no
longer reasonable to take it for granted that the individual
subject trusts all of them to keep her data confidential
and/or to anonymize them properly in case of release [23].

Thus, to preserve her privacy and, more generally, her
informational self-determination, the individual has to be
empowered by giving her agency on her own data. Local
anonymization is a paradigm in which each individual
anonymizes her data before handing them to the data con-
troller, thereby giving maximum agency to the individual.
Several masking methods coming from statistical disclo-
sure control (SDC [16]) can be applied locally, including
generalization/recoding and noise addition. On the other
hand, there are methods specifically designed for local
anonymization that, in addition to helping subjects hide
their responses, allow the data controller to get an accurate
estimation of the distribution of responses for groups of
subjects (for example, randomized response [32], [15] and
FRAPP [1]). Also, a number of methods have been proposed
to obtain differentially private (DP) preselected statistics via
local anonymization, like RAPPOR [12] and local DP [6], [5].

While most of the local anonymization approaches were
designed to obtain statistics on the set of individuals who
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contribute their locally anonymized input, randomized re-
sponse (RR) has the attractive feature of being able to output
multi-dimensional full sets of anonymized microdata (indi-
vidual records) that are valid for exploratory analysis. In-
deed, an unbiased estimate of the distribution of the original
microdata (corresponding to the true attribute values of in-
dividuals) can be obtained from the empirical distribution of
the released randomized microdata. Most exploratory anal-
yses and statistical calculations can be performed based on
this estimated distribution, including what [10] call multi-
party computation with statistical input confidentiality. It is
even possible to re-create a synthetic estimate of the original
data set by repeating each combination of attribute values
as many times as dictated by its frequency in the estimated
joint distribution.

Furthermore, the privacy guarantees afforded by RR are
easily expressible in terms of rigorous privacy models such
as differential privacy [31], [30] or information-theoretic
secrecy [9].

Unfortunately, the picture is not as rosy as suggested by
the two previous paragraphs. Like so many methods, ran-
domized response suffers from the curse of dimensionality:

• Applying RR simultaneously to a set of attributes
amounts to applying it to the Cartesian product of
those attributes, which has a number of possible
categories that grows exponentially with the num-
ber of attributes. Unless the number of individuals
providing input is much greater than the number
of categories, the accuracy and hence the utility of
the estimated distribution of the original data will be
poor.

• RR can certainly be applied separately to each single
attribute. Nevertheless, by doing so the ability to esti-
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mate the joint distribution of the original data based
on the randomized data is lost; only the marginal
distributions of attributes can be estimated. This also
entails a loss of accuracy and hence a loss of utility
of the estimated distributions.

Dimensionality issues are common to all data
anonymization techniques. However, effectively dealing
with them is tougher in the local anonymization paradigm
because the global picture of the data is missing. Research
in this topic is ample. In particular, in differential privacy
and local differential privacy, many strategies have been
proposed to cope with a high number of attributes, such
as dealing with k-way marginals [35], [22], [34], taking
advantage of sparsity [33], [6] or taking advantage of the
dependence between attributes [29], [17].

Contribution and plan of this paper

In this paper, we propose several complementary ap-
proaches to mitigate the curse of dimensionality in random-
ized response. The paper’s contributions are as follows:

• We first present two basic protocols for RR and dis-
cuss their limitations: one performs separate RR for
each attribute and the other joint RR for all attributes.

• We then describe an intermediate approach based on
identifying clusters of attributes such that attributes
in different clusters can be viewed as (nearly) inde-
pendent. In this way, joint RR can be performed for
the attributes in each cluster. Since our clustering al-
gorithm requires as input the dependences between
attributes, we present several methods for assessing
these dependences in an RR scenario in which the
true data of each individual must stay confidential to
that individual.

• After that, we introduce an adjustment algorithm of
the randomized data set that “repairs” some of the
accuracy loss incurred by assuming independence
between attributes when using RR separately on each
attribute or assuming independence between clusters
when using RR cluster-wise.

Section 2 gives background on RR, its privacy guar-
antees and its estimation error. Section 3 introduces the
two basic RR protocols: separate RR for each attribute and
joint RR for all attributes. Section 4 presents the approach
based on attribute clustering and the methods for privacy-
preserving evaluation of attribute dependences. Section 5
details the adjustment to reduce the accuracy loss caused
by the independence assumptions. Experimental work is
reported in Section 6. Section 7 reviews related work. Finally,
conclusions and future research directions are gathered in
Section 8.

2 BACKGROUND

2.1 Randomized response

Randomized response [32], [15] is a mechanism that respon-
dents to a survey can use to protect their privacy when
asked about the value of sensitive attribute (e.g. did you take
drugs last month?). In many respects RR was a forerunner

when proposed in the 1960s: it was not only an anonymiza-
tion method avant la lettre (before anonymization and sta-
tistical disclosure control were introduced by Dalenius [8] a
decade later), but it ushered in the even more modern notion
of local anonymization. Closely related to RR are the more
recent PRAM [19] and FRAPP [1] methods. PRAM, which
stands for post-randomization method, differs from RR on
who performs the randomization [28]: whereas in RR it is
the individual before delivering her response, in PRAM it is
the data controller after collecting all responses (hence the
name post-randomization). FRAPP extends the original RR
method along the lines proposed in [4].

Beyond historical merit, a strong point of RR is that
the data collector can still estimate from the randomized
responses the proportion of each of the possible true answers
of the respondents.

Let us denote by X the attribute containing the answer
to the sensitive question. If X can take r possible values,
then the randomized response Y reported by the respondent
instead of X follows an r × r matrix of probabilities

P =

 p11 · · · p1r
...

...
...

pr1 · · · prr

 , (1)

where puv = Pr(Y = v|X = u), for u, v ∈ {1, . . . , r}
denotes the probability that the randomized response is v
when the respondent’s true attribute value is u.

Let π1, . . . , πr be the proportions of respondents whose
true values fall in each of the r categories of X and let
λv =

∑r
u=1 puvπu for v = 1, . . . , r, be the probability of the

reported value Y being v. If we define λ = (λ1, . . . , λr)
T

and π = (π1, . . . , πr)
T , it holds that λ = PTπ. Furthermore,

if λ̂ is the vector of sample proportions corresponding to λ
and P is nonsingular, in Chapter 3.3 of [4] it is proven that
an unbiased estimator π can be computed as

π̂ = (PT )−1λ̂ (2)

and an unbiased estimator of the dispersion matrix is also
provided. In particular, the larger the off-diagonal probabil-
ity mass in P, the more dispersion (and the more respondent
protection).

The estimation obtained from Equation (2) may not
be a proper probability distribution: it may have values
below 0 and above 1. This happens when the empirical
distribution of the randomized data is not consistent with
the randomization matrix. For instance, if all the values in
the first column of P are greater than 0.5, then we should
expect the frequency of the first category to be greater
than 0.5. If it is not, then Equation (2) will necessarily
return some negative values. In [2] an iterative Bayesian
update is proposed that converges to a proper probability
distribution. In Section 6.4, we describe a simpler solution
to ensure a proper distribution.

2.2 Privacy guarantees
The confidentiality guarantee given by RR results from each
individual potentially altering her response by randomly
drawing from a previously fixed distribution. Thus, given
the individual’s randomized response, we are uncertain
about what her true response would have been.
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In spite of the previous intrinsic guarantee of random-
ized response and given the popularity of differential pri-
vacy [11], we will also quantify the privacy afforded by
randomized response in terms of differential privacy. How-
ever, we would like to remark that attaining a given level
of differential privacy is not the goal of this work. Among the
algorithms we propose, some enforce differential privacy
while others only qualify as differentially private if certain
assumptions are made about the information that is publicly
available. While we do not claim that such algorithms are
differentially private, we would like to note that making
assumptions about externally available information is usual
(e.g. see invariants in [14]).

A randomized query function κ gives ε-differential pri-
vacy if, for all data sets D1, D2 such that one can be
obtained from the other by modifying a single record, and
all S ⊂ Range(κ), it holds

Pr(κ(D1) ∈ S) ≤ exp(ε)× Pr(κ(D2) ∈ S). (3)

In plain words, the presence or absence of any single record
is not noticeable (up to exp(ε)) when seeing the outcome
of the query. Hence, this outcome can be disclosed without
impairing the privacy of any of the potential respondents
whose records might be in the data set. A usual mechanism
to satisfy Inequality (3) is to add noise to the true outcome
of the query, in order to obtain an outcome of κ that is
a noise-added version of the true outcome. The smaller ε,
the more noise is needed to make queries on D1 and D2

indistinguishable up to exp(ε).
In [31], [30], a connection between randomized response

and differential privacy is established: randomized response
is ε-differentially private if

eε ≥ max
v=1,...,r

maxu=1,...,r puv
minu=1,...,r puv

. (4)

The rationale is that the values in each column v (v ∈
{1, . . . , r}) of matrix P correspond to the probabilities of
the reported value being Y = v, given that the true value is
X = u for u ∈ {1, . . . , r}. Differential privacy requires that
the maximum ratio between the probabilities in a column
be bounded by eε, so that the influence of the true value X
on the reported value Y is limited. Thus, the reported value
can be released with limited disclosure of the true value.

2.3 Frequency estimation error

We want to minimize the error in the estimation of π̂. Fol-
lowing Equation (2), the error in π̂ comes from two sources:
(i) the error in the estimation of λ̂, and (ii) the propagation
of that error when computing the product (PT )−1λ̂.

Following [1], the propagation error is lower-bounded
by Pmax/Pmin, where Pmax and Pmin are the maximum
and minimum eigenvalues of PT . Indeed, [1] show that to
minimize the propagation of the error the randomization
matrix must have the form

P =


pu pd · · · pd

pd pu
. . .

...
...

. . .
. . . pd

pd · · · pd pu

 ,
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Fig. 1. Evolution of the factor
√
B (y-axis) of the absolute error of λ̂ in

terms of the number of categories r (x-axis) when α = 0.05

with pu ≥ pd. Provided we use a randomization matrix that
minimizes the propagation of the error, the error in π̂ is a
function of the error in λ̂. In the rest of this section, we
bound the error in the estimation of λ̂.

We can view the sample of Y as a draw from a multi-
nomial distribution with n trials (the data set size) and
probabilities λ. Thus, it is natural to derive the estimate λ̂
from the observed frequencies of Y . Let us deal with the
accuracy of λ̂, which in [27] is measured using confidence
intervals as follows.

Definition 1. The absolute error of λ̂ as an estimation of λ
is eabs with confidence α if

Pr[
⋂

u=1,...,r

(λ̂u − eabs ≤ λu ≤ λ̂u + eabs)] ≥ 1− α.

The absolute error can be determined, based on the
frequencies and the data set size, as

eabs = max
u=1,...,r

√
Bλu(1− λu)/n, (5)

where B is the α/r upper percentile of the χ2 distribution
with 1 degree of freedom.

The absolute error grows with
√
B, which in turn grows

with the number of categories r as shown in Figure 1.
While the impact r on the absolute error via

√
B seems

limited, the actual effect of increasing r on Expression (5)
can be greater. The reason is that increasing the number of
categories decreases the absolute frequency of each category,
which makes the relative error of λ̂ more noticeable.

Definition 2. The relative error of λ̂ as an estimation of λ is
erel with confidence α if

Pr[
⋂

u=1,...,r

((1− erel)λ̂u ≤ λu ≤ (1 + erel)λ̂u] ≥ 1− α.

Analogously to Expression (5), we can determine the
relative error based on the frequencies and the data set size:

erel = max
u=1,...,r

√
B

1− λu
λu

1

n
, (6)

where B is the α/r upper percentile of the χ2 distribution
with 1 degree of freedom.
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Protocol 1 RR-Independent
1) Randomization Protocol
2) Let xji be the value of party i for attribute j.
3) Let Pj be the randomization matrix for attribute j.
4) Each party i = 1, . . . , n applies RR with matrix Pj

to xji , for j = 1, . . . ,m, and publishes the result.

5) Attribute Distribution Estimation
6) Let λ̂j be the experimental distribution of the ran-

domized attribute Aj .
7) The distribution of Aj is estimated as π̂j =

((Pj)T )−1λ̂j .

8) Joint Distribution Estimation
9) Let S ⊂ A1 × . . . × Am be a subset of the data

domain.
10) The frequency of S is estimated as∑

(x1,...,xm)∈S π̂
1(x1)× . . .× π̂m(xm).

3 BASIC RR PROTOCOLS: RR-INDEPENDENT AND
RR-JOINT

Assume n parties i = 1, . . . , n each holding one record
xi = (x1i , . . . , x

m
i ) that contains the values for m attributes.

A data controller wants to perform exploratory analysis
and/or machine learning tasks on the pooled data of the n
parties. However, no party wants to disclose her true record
even if she is ready to disclose a masked version of it.

In the above situation RR is a good option, as motivated
in the previous sections. In this section we describe two
basic RR methods to estimate the pooled true data of the
parties, and we also highlight the limitations of such meth-
ods.

3.1 RR-Independent

This is the most naive solution. Each party i separately deals
with each attribute value xji for j = 1, . . . ,m via RR. If the
j-th attribute Aj can take rj different values, then an rj×rj
probability matrix Pj (see Expression (1)) can be used for
each party to report a randomized value yji for Aj instead
of her true value xji . See Protocol 1.

As mentioned in Section 2.1, this would allow all parties
to approximate the marginal empirical distribution πj =
(πj1, . . . , π

j
rj ) of each attribute Aj as

π̂j = ((Pj)T )−1λ̂j ,

where λ̂j is the empirical distribution of attribute Aj in the
data set Y containing the randomized responses.

The problem is that estimating the marginal empirical
distributions of attributes does not yield in general an
estimate of the joint empirical distribution of the data set
X formed by the true responses. Only if the attributes in
X are (nearly) independent can their joint distribution be
estimated from the marginal attribute frequencies. In this
case, the frequency of a set S ⊂ A1 × . . . × Am can be
estimated as

∑
(x1,...,xm)∈S π̂

1(x1)× . . .× π̂m(xm). Clearly,
the more dependent the attributes, the less accurate is the
previous estimate.

Protocol 2 RR-Joint
1) Randomization Protocol
2) Let xi be the record of party i.
3) Let P be the randomization matrix of A1× . . .×Am.
4) Each party i = 1, . . . , n runs RR with matrix P on

xi and publishes the result.

5) Joint Distribution Estimation
6) Let S ⊂ A1 × . . . × Am be a subset of the data

domain.
7) The frequency of S is estimated as∑

x∈S(PT )−1λ̂(x).

With respect to the computational cost, the fact that each
attribute is dealt with separately is positive because the
randomization matrices remain small. The computational
complexity for each of the individuals that participate in
the protocol is as follows:

• Estimating the distribution of the true values of
attribute Aj as per Expression (2) amounts to com-
puting the inverse of an |Aj |-dimensional matrix
followed by an |Aj |-dimensional matrix-vector prod-
uct. The actual cost is dominated by the matrix
inversion. If using Strassen’s algorithm (the best-
performing practical algorithm, [26]), inversion
takes O(|Aj |2.807). In the particular case of the ran-
domization matrices described in Section 2.3, their
regularity makes it possible to easily compute their
inverses with a cost O(|Aj |2).

• The cost of estimating the joint frequency of one
combination of attribute values is O(m).

3.2 RR-Joint

To estimate the frequency of an arbitrary set S ⊂ A1× . . .×
Am without requiring attribute independence, we need to
directly estimate the joint distribution. To do this via RR,
each party must report her randomized response for the
value of A1× . . .×Am. After this, the frequency of a set S ⊂
A1× . . .×Am can be estimated as

∑
x∈S(PT )−1λ̂(x), where

λ̂(x) is the empirical distribution of x in Y. See Protocol 2.
Two observations are in order. First, thanks to RR, all par-

ties preserve the confidentiality of their true inputs during
Protocol 2. Second, once the estimate of the empirical joint
distribution of X is published, any parties can perform sta-
tistical computations on it; they can even create a synthetic
data set by repeating each combination ofA1×A2×. . .×Am
as many times as dictated by its frequency in the joint
distribution.

Unfortunately, direct estimation of the joint distribution
is not without limitations. As the number of attributes grows
linearly, the number of categories of the Cartesian product
grows exponentially. This causes the computational cost
to increase and the accuracy of the frequency estimates to
decrease in ways that are not acceptable.

The high computational cost comes from having a vec-
tor of frequencies of exponential size Πj=1,...,m|Aj | and a
(huge) randomization matrix with Πj=1,...,m|Aj | rows and
the same number of columns. According to Expression
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(2), to estimate π̂ we need to multiply the inverse of the
transpose of the randomization matrix times λ̂. Even if
we assume that the (computationally costly) inverse matrix
is available so that we only need to perform the matrix
multiplication, the cost remains exponential in the number
of attributes.

Regarding the accuracy of the frequency estimates, direct
estimation of the joint distribution only works well if the
number of parties n is much larger than the number of
possible values of the above Cartesian product, that is, when

n� |A1| × |A2| × . . .× |Am|. (7)

The necessity of Bound (7) becomes obvious when we
analyze the error as per Expression (6) for n = |A1| ×
|A2| × . . . × |Am| = r. Even if frequencies λu were evenly
distributed and equal to 1/r —which would minimize their
relative estimation error—, Expression (6) would yield ap-
proximately

√
B. By looking at Figure 1, we observe that√

B is too big (above 200%) to be acceptable as a relative
error.

3.3 Accuracy analysis
Let us compare the relative error achieved by Protocols RR-
Independent and RR-Joint. As above, we will perform the
analysis in the best case, that is, when frequencies are evenly
distributed.

Thus, for R-Independent we take λju = 1/|Aj | for all
j = 1, . . . ,m and all u = 1, . . . , |Aj |. According to Expres-
sion (6), the relative error of attribute frequencies in RR-
Independent is

erel = max
j=1,...,m

√
Bj
|Aj | − 1

n
,

where Bj is the (α/|Aj |) upper percentile of a χ2 distribu-
tion with one degree of freedom.

Similarly, the relative error of the estimated frequencies
in RR-Joint is

erel =

√
B

Πj=1,...,m|Aj | − 1

n
,

where B is the (α/Πj=1,...,m|Aj |) upper percentile of a χ2

distribution with one degree of freedom.
Notice that the relative error grows as the square root

of the number of categories, which is exponential in the
number of attributes. Thus, RR-Joint is likely to have poor
accuracy estimates already for a small number of attributes.
As described in Section 3.2, this can only be mitigated by a
large data set size n, which becomes unrealistic already for
a moderate number of attributes.

4 RR-CLUSTERS

Neither Protocol RR-Independent nor Protocol RR-Joint are
satisfactory, the former due to the independence require-
ment and the latter due to the combinatorial explosion of
the number of categories. In this section, we propose RR-
Clusters, a protocol that strives to use as little as possible
the independence assumption, while keeping a reasonable
computational cost and estimation accuracy.

The RR-Clusters protocol splits attributes into clusters
according to their mutual dependence and performs RR-Joint
independently on each of the attribute clusters.

Running RR-Joint separately on each attribute cluster
implies neglecting the possible dependences between at-
tributes in different clusters. Thus, we need to determine
clusters in such a way that no significant dependence exists
between any two attributes in different clusters.

Additionally, to keep the computational cost and the
estimation error within reasonable bounds, we want the
cardinality of the Cartesian product of attributes within each
cluster to be small compared with the number of records of
the data set. Thus, the clustering algorithm should try to
place in the same cluster only those attributes that have a
strong mutual dependence.

More specifically, we want a set of clusters C1, . . . , Cl,
for some l, such that:

•
⋃
k=1,...,l Ck = {A1, . . . , Am} and Ci ∩ Cj = ∅ for

i 6= j;
• It holds that n� maxk=1,...,l Πj∈Ck

|Aj |;
• The dependence between attributes in different clus-

ters is as low as possible.

Since attributes are to be clustered based on their de-
pendences, we start by describing the clustering algorithm
assuming that those dependences are available. Computing
the dependences between attributes would be easy if one
could resort to a trusted party holding the entire data set.
Lacking a trusted party, we need methods to assess attribute
dependence without requiring parties to disclose their data.
We describe such methods in Sections 4.1, 4.2 and 4.3; they
differ in their accuracy and in the disclosure risk for the
parties’ true attribute values.

The clustering algorithm is formalized in Algorithm 1.
It starts with single-attribute clusters. It then loops through
the list of cluster pairs in descending order of dependence,
and merges two clusters if the number of combinations of
attribute values in the merged cluster remains below a given
threshold. Additionally, to avoid clustering attributes that
are not really dependent, the algorithm uses a threshold
on the dependence measure below which clusters are not
merged. The dependence between two clusters of attributes
is defined as the maximum dependence between pairs of
attributes such that one attribute is in one cluster and the
other attribute is in the other cluster.

The specific measure of dependence to be used must
take into account the type of the attributes. We will use the
following dependence metrics adopted in [10]. If Ai and Aj

are ordinal, we can take as a measure of dependence

|rij |, (8)

where rij is Pearson’s correlation coefficient betweenAi and
Aj . Expression (8) can also be used for continuous numerical
attributes, but to be accommodated by RR these need to be
discretized into ordinal attributes (for example by rounding
or by replacing values with intervals).

If one ofAi andAj is nominal (without an order relation-
ship between its possible values) and the other is nominal
or ordinal, we can take as a measure of independence

Vij , (9)
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Algorithm 1 Clustering of attributes based on their depen-
dence

1) Let Tv be the maximum number of combinations of
attribute values allowed in a cluster

2) Let Td be the minimum dependence required be-
tween two clusters for them to be merged

3) Let Clusters = {{A1}, . . . , {Am}}
4) Let DependenceList be the list of dependences

between cluster pairs

5) Sort DependenceList in descending order
6) Let dep be the first element of DependenceList
7) While dep ≥ Td do
8) Let (C1, C2) be the cluster pair whose depen-

dence is dep
9) If ΠA∈C1∪C2

|A| ≤ Tv then
10) Remove C1 and C2 from Clusters
11) Add C1 ∪ C2 to Clusters
12) Recompute DependenceList for Clusters
13) Sort DependenceList in descending order
14) Let dep be the first element of DependenceList
15) Else
16) Let dep be the next element of DependenceList
17) End if
18) End while

where Vij is Cramér’s V statistic [7], that gives a value
between 0 and 1, with 0 meaning complete independence
between Ai and Aj and 1 meaning complete dependence.
Cramér’s Vij is computed as

Vij =

√
χ2
ij/n

min(ri − 1, rj − 1)
,

where ri is the number of categories of Ai, rj is the number
of categories of Aj , n is the total number of parties/records
and χ2

ij is the chi-squared independence statistic defined as

χ2
ij =

ri∑
a=1

rj∑
b=1

(oijab − e
ij
ab)

2

f jab
,

with oijab the observed frequency of the combination (Ai =
a,Aj = b) and eijab the expected frequency of that combi-
nation under the independence assumption for Ai and Aj .
This expected frequency is computed as

eijab =
nian

j
b

n
,

where nia and njb are, respectively, the number of parties
who have reported Ai = a and Aj = b.

Finally, if one of Ai, Aj is nominal and the other is
numerical, the latter must be discretized. After that, the
contingency table between Ai and Aj can be constructed,
and the measure of dependence given by Expression (9) can
be computed.

Note that Expressions (8) and (9) are bounded in [0, 1],
and hence the outputs of both expressions are comparable
when trying to cluster the attributes.

With respect to the computational cost, the fact that the
number of combinations of attribute values within each

cluster is relatively small (because each cluster contains
only a subset of attributes) leads to a set of randomization
matrices of relatively small size; this is positive to keep the
computational cost reasonable. The computational cost for
each of the individuals that participate in the protocol is as
follows:

• Estimating the joint distribution of the true val-
ues of attributes in cluster Ck as per Expres-
sion (2) amounts to computing the inverse of
a
∏
A∈Ck

|A|-dimensional matrix followed by a∏
A∈Ck

|A|-dimensional matrix-vector product. As
far as the order is concerned we can overlook the less
costly matrix-vector product. As to the cost of com-
puting the inverse matrix, with Strassen’s algorithm
it is O(

∏
A∈Ck

|A|2.807).
• The cost of estimating the joint frequency of one

combination of attribute values is O(l), where l is
the number of clusters.

Since X is formed by the true responses of the parties
and these do not disclose them, no single party can compute
the dependences between the attributes in X. In the follow-
ing subsections, we describe several methods to compute
such dependences based on partial and/or inaccurate infor-
mation submitted by the individual parties. Each method
has a different level of accuracy as well as a different impact
on privacy. The overall privacy risk is the aggregation of
the risk that results from the computation of the depen-
dences between attributes and the risk that results from
applying RR to the resulting clusters of attributes. In dif-
ferential privacy terms, the sequential composition property
applies [18]: if the computation of the dependences between
attributes is ε1-differentially private and the RR data release
is ε2-differentially private, overall one has ε1+ε2-differential
privacy.

In Subsection 4.1, we describe an efficient method for
computing the dependences between the attributes in X
when the dependence measure is the covariance. Subsec-
tions 4.2 and 4.3 deal with arbitrary dependence mea-
sures and differ in the adversary model. Taking advantage
of a common distinction between confidential and quasi-
identifying attributes, Subsection 4.2 computes the depen-
dence measure over each pairwise distribution of attributes.
Subsection 4.3 avoids such a distinction and leverages ran-
domized response to compute the dependences between
attributes.

4.1 Randomized response on each attribute
In this section, we approximate the dependences between
pairs of attributes based on a data set Y obtained by
independently randomizing each attribute in X (see Sec-
tion 3.1). Dependences between attributes in Y are likely
to be attenuated versions of those in X, but as long as
the former dependences preserve the ranking of the latter,
attribute clustering based on the former should be fine. In
other words, if in X the dependence between A1 and A2

is stronger than the dependence between A3 and A4, our
requirement is that the same relation hold in Y.

To analyze the effect of RR on the dependence between
attributes, we view each attribute of X as a random vari-
able whose distribution is the empirical distribution of the
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attribute values. Note that this view is not entirely accurate,
because it is unlikely that the same set of values is obtained
if the attribute’s random variable is sampled. However, this
is a useful approximation that significantly simplifies the
analysis.

Proposition 1 examines the effect on the covariance be-
tween attributes when RR is independently run on each at-
tribute. This proposition is later used in Corollary 1 to show
that when RR is appropriately run, the relative strength of
the covariances between pairs of attributes is not altered.

Proposition 1. Let Xa and Xb be two finite random variables
that are independently randomized into Y a and Y b, respectively,
as follows:

• With probability pa (resp. pb), Y a := Xa (resp. Y b :=
Xb).

• With probability 1 − pa (resp. 1 − pb), Y a := Ua (resp.
Y b := Xb), where Ua (resp. U b) is a random variable
that is uniformly distributed on the support of Xa (resp.
Xb).

Then the covariance of Y a and Y b is Cov(Y a, Y b) = pa× pb×
Cov(Xa, Xb).

Proof. The covariance Cov(Y a, Y b) can be expressed as

Cov(Y a, Y b) = E(Y aY b)− E(Y a)E(Y b). (10)

Let us start by computing E(Y a)E(Y b). The expected
values of Y a and Y b areE(Y a) = paE(Xa)+(1−pa)E(Ua)
and E(Y b) = pbE(Xb) + (1− pb)E(U b). Their product is

E(Y a)E(Y b) = papbE(Xa)E(Xb)

+ pa(1− pb)E(Xa)E(U b)

+ (1− pa)pbE(Ua)E(Xb)

+ (1− pa)(1− pb)E(Ua)E(U b). (11)

Let us now compute E(Y aY b). The random variable
Y aY b can be expressed as:

Y aY b =


XaXb with probability papb;
XaU b with probability pa(1− pb);
UaXb with probability (1− pa)pb;

UaU b otherwise.

Hence, E(Y aY b) = papbE(XaXb) + pa(1 −
pb)E(XaU b) + (1 − pa)pbE(UaXb) + (1 − pa)(1 −
pb)E(UaU b). Since Ua and U b are independent from each
other and also are independent from Xa and Xb, we can
write the expected values as products:

E(Y aY b) = papbE(XaXb) + pa(1− pb)E(Xa)E(U b)

+ (1− pa)pbE(Ua)E(Xb)

+ (1− pa)(1− pb)E(Ua)E(U b). (12)

By plugging Expressions (11) and (12) into Expression
(10) and simplifying, we can express the covariance as:

Cov(Y a, Y b) = papb(E(XaXb)− E(Xa)E(Xb))

= papbCov(Xa, Xb).

Corollary 1. Let X be a data set with attributes X1, . . . , Xm,
that are randomized into Y 1, . . . , Y m as follows:

Y j =

{
Xj with probability p,
U j otherwise,

where U j is uniformly distributed over the support ofXj and p ∈
(0, 1]. Then the randomization does not alter the relative strength
of the covariance between attributes, that is, if Cov(Xj , Xk) >
Cov(X l, Xm) then Cov(Y j , Y k) > Cov(Y l, Y m).

Proof. The proof immediately follows from Proposition 1:

Cov(Y j , Y k) = p2Cov(Xj , Xk) > p2Cov(X l, Xm)

= Cov(Y l, Y m).

According to Proposition 1, RR attenuates the covariance
between attributes, but Corollary 1 shows that it preserves
the relative strength of the covariances between pairs of at-
tributes. Since when clustering attributes with Algorithm 1
we are interested in the relative strength of the dependence
between attributes, it makes sense to run Algorithm 1
using dependences between randomized attributes. Thus,
attribute clusters can be obtained as follows:

1) Every party publishes the value of each of her at-
tributes using RR with the randomization of Corol-
lary 1.

2) Dependences are computed on the randomized at-
tributes.

3) Algorithm 1 computes attribute clusters based on
the dependences between randomized attributes.

As to the communication cost of this method, at least
one individual must gather the entire randomized data set
in order to compute attribute dependences and thereby the
attribute clustering, which is then shared with the rest of
individuals. Since the size of the randomized data set is
O(nm), the communication cost for the individual(s) com-
puting the clustering is O(nm). For the rest of individuals,
the communication cost is only O(m): they have to send
their randomized record, then receive the attribute cluster-
ing and finally return their randomized record according to
the received clustering. Regarding the computational cost,
the computations are fairly simple for most individuals:
they only need to randomize their records, which takes cost
O(m). For the individual(s) computing the dependences
and the clustering of the m attributes there is an additional
cost that depends on the dependence measure and the
clustering algorithm used.

In the above proposition and corollary, we have focused
on covariance to measure dependence. Intuition tells us that
the effect of randomization on other dependence measures,
such as the ones mentioned in Section 4 for use with
Algorithm 1, can be expected to be similar: attenuation of
dependence but preservation of its relative strength. How-
ever, this need not always be the case —see Section 4.2 for a
method that is agnostic of the dependence measure.

Once attribute clusters have been determined, parties
can use RR-Joint within each cluster, which yields the final
randomized data set.
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Due to the fact that RR yields differential privacy (see
Section 2.2), this method to compute the dependence be-
tween attributes yields differential privacy.

4.2 Exact bivariate distribution via secure sum

The method described in the previous section does not
generalize to an arbitrary measure of dependence between
attributes. In this section, we propose an alternative method
that exploits the following two facts:

• We can remove identifier attributes from X without
affecting its statistical utility;

• Bivariate distributions are enough to compute the
dependence between pairs of attributes.

Essentially, the alternative procedure consists of each
party releasing her true values for each pair of attributes,
which yields bivariate distributions wherefrom attribute
dependences are obtained. Note that, since parties release
unmasked data, differential privacy does not apply. In spite
of that, the risk of disclosure is low. Since X does not include
identifiers, we are in one of the following situations:

• If none of the attributes of a given pair is confidential,
then there is no risk of disclosure.

• If there is one confidential attribute (or two) in the
pair, then intruders cannot re-identify the party to
whom the record corresponds because there is (at
most) one quasi-identifier attribute in the pair. Recall
that a single quasi-identifier is not enough to re-
identify a record (otherwise it would be an identi-
fier).

The fact that a pair of attribute values is not re-
identifying is of little help if the sender of the pair can be
traced. Thus, we need the following:

• Anonymous communication. The communication chan-
nel should be anonymous. Otherwise, the identity
of the party to whom a pair corresponds can be
established by an intruder.

• Unlinkability of communications originated by a party. If
an intruder can link several pairs of values originated
by a party, he can acquire the values of several quasi-
identifiers for that party, which may lead to her re-
identification. Further, if confidential attributes are
also among the acquired attributes, confidential in-
formation on the re-identified party has been dis-
closed.

The above properties can be attained by using a secure
sum protocol. To illustrate how this can work to obtain the
empirical distribution of two categorical attributes, we give
a simple secure sum protocol that instantiates the general
framework of [3]. Let (a, a′) be a possible combination of
values of attributes A and A′. To compute the absolute
frequency of (a, a′), n parties proceed as follows:

1) Each party i chooses a set of n random numbers rij
such that

∑
j=1,...,n rij (mod n + 1) = 0, that is, so

that the sum of the chosen numbers is a multiple of
n+ 1;

2) Each party i sends rij to party j, for each j;

3) Each party j collects r1j , . . . , rnj , computes∑
i=1,...,n rij , and broadcasts:

• rj =
∑
i=1,...,n rij + 1 if attributes A and A′

take the values a and a′, respectively, for party
j;

• rj =
∑
i=1,...,n rij , otherwise;

4) Each party i collects rj for j = 1, . . . , n and
computes the absolute frequency of (a, a′) as∑
j=1,...,n rj (mod n+ 1).

Computing the frequency of every combination of values
for each pair of attributes increases the communication
cost with respect to the method of Subsection 4.1. Taking
into account that the cost of the secure-sum protocol is
proportional to the number of individuals n and that it must
be run for each possible value of each pair of attributes,
the communication cost is O(

∑
1≤i<j≤m(|Ai||Aj |)×n). The

computations needed to run the method in this subsection
are fairly simple. For this reason, the overall cost is domi-
nated by the communication cost.

4.3 Randomized response on each pair of attributes

The procedure described in Section 4.2 makes sure that only
bivariate distributions are made available. Since a distri-
bution does not report information on any specific party,
its publication should in principle be safe. However, small
frequencies are problematic as they may enable linking two
or more pairs of values and this may lead to re-identification
and disclosure. For example, if upon seeing the bivariate
distribution of attribute A1 and some other attribute A2, an
intruder learns there is a single party with A1 = x, then
he can link all pairs (A1 = x,Aj) for j 6= 2 that have
nonzero frequency and thereby rebuild the party’s entire
record, which may lead to the party’s re-identification.

To prevent the above from happening, we can use RR
on each pair of attributes, which renders the computation
differentially private (see Section 2.2). The procedure is as
follows:

1) Let A1, . . . , Am be the attributes of data set X;
2) Let Pij be a randomization matrix for the pair of

attributes (Ai, Aj), for 1 ≤ i < j ≤ m;
3) For every pair (Ai, Aj) of attributes:

a) Each party uses Pij to mask her value for the
pair via RR;

b) The n parties engage in the secure sum pro-
tocol described in Section 4.2 to compute the
distribution of the masked attribute pair;

c) Each party uses Equation (2) to estimate the
empirical distribution of the unmasked pair of
attributes (Ai, Aj) in X.

Once the above procedure is complete, the dependence
between any two attributes Ai and Aj can be assessed by
all parties based on the estimated empirical distribution of
(Ai, Aj).

Notice that, in spite of using RR, the above procedure
still resorts to the secure sum procedure: the purpose is
to make each masked pair unlinkable to the party that
originated it and also to make masked pairs corresponding
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to the same party unlinkable between them. Indeed, in the
above procedure RR is computed m − 1 times on each
attribute (once for each other attribute in X); if an intruder
was able to link a party’s m− 1 masked responses, the risk
of disclosing the party’s true responses and identity would
increase significantly.

If the randomization matrix is chosen adequately, this
method to compute the dependence between attributes can
achieve differential privacy, as recalled in Section 2.2. Strictly
speaking, since each attribute is randomized and released
m− 1 times in the secure sum, sequential composition tells
that the overall level of differential privacy is the sum of
the levels of each release. However, the secure sum makes
releases unlinkable, so an intruder cannot take advantage
of the multiple releases to increase his knowledge about
the value of an attribute. In this situation, we can waive
sequential composition and take the overall level of differ-
ential privacy to be same as if each attribute were released
only once: the unlinkability property closely matches the
requirements of parallel composition.

The cost of the method in this subsection is easily com-
puted by noticing that it is simply the method described in
Subsection 4.2 with an additional randomization step. As
the cost of the randomization step is not significant with
respect to the cost of the secure sum, the cost of the method
here equals that of Subsection 4.2: O(

∑
1≤i<j≤m(|Ai||Aj |)×

n).

5 RR-ADJUSTMENT

To estimate the joint distribution in RR-Independent, we
needed to assume that attributes were independent. We then
proposed RR-Clusters to partially circumvent that need.
We write “partially” because RR-Clusters still needs to
assume that attributes in different clusters are independent.
The purpose of the method described in this section, RR-
Adjustment, is to “repair” some of the loss in estimation ac-
curacy caused by these independence assumptions. The idea
is to leverage the information about the relation between
attributes that remains in the randomized data set in order
to obtain more accurate estimates of the joint distribution.

Our description of RR-Adjustment will be given in terms
of attributes. However, the same description is valid if
we substitute clusters of attributes for attributes. Indeed, a
cluster of attributes can also be viewed as a special attribute
obtained as the Cartesian product of the attributes in the
cluster. So where we write “attribute”, “marginal distribution”
and “RR-Independent” in the rest of this section we could write
“cluster of attributes”, “attribute cluster marginal distribution”
and “RR-Clusters”, respectively.

RR-Adjustment is based on the fact that, although at-
tenuated, the relation between attributes in X is likely to
survive in Y. The greater the probability that randomization
preserves the true values (i.e. the greater the probability
mass in the diagonal of the randomization matrix), the
better the relation between attributes is preserved in Y. For
instance, when the RR matrix is the identity, Y contains the
same information as X. In contrast, when randomization
replaces each true value by a draw from a uniform distribu-
tion, no information remains in Y.

Algorithm 2 RR-Adjustment. Adjustment of the random-
ized data set Y to match the estimated distributions of each
attribute

1) Let Y = {(y1i , . . . , ymi )}i=1,...,n be the randomized
data set

2) Let π̂j be the estimated marginal distribution for
attribute Xj

3) Let w = (w1, . . . , wn) be a vector of weights for
records in Y

4) Initialize wi = 1/n for i = 1, . . . , n
5) Repeat {
6) For j = 1, . . . ,m
7) Y′= Adjust_weights (Y, w, j, π̂j)
8) } Until (convergence_or_termination_condition)
9) Return Y′

10) Adjust_weights(Y, w, j, π̂j)
11) For k = 1, . . . , |Xj |
12) Let sk =

∑
yji=k

wi
//sk is the sum of weights of records in Y with j-th
attribute equal to k

13) End for
14) For i = 1, . . . , n
15) v = yji
16) Set wi = wi × π̂j

v

sv
17) End for
18) Return Y, w

RR-Adjustment is formalized in Algorithm 2. The al-
gorithm generates the estimate of the joint distribution of
X by assigning weights (probabilities) to the records in Y
in such a way that marginal distributions coincide with
the estimates obtained from RR-Independent. An iterative
approach is used in this task. Initially, each point of Y is
assigned weight 1/n. Then the algorithm loops through
each attribute Aj and adjusts the current weights so that
the marginal distribution of Aj coincides with its RR-
independent estimate. As the weight adjustment for Aj
is likely to break the adjustments previously done, the
previous process needs to be iterated until it converges to
a stable set of weights. If strict convergence is desired, iter-
ation must carry on until weights do not change any more.
However, less strict termination conditions such as using a
threshold on the weight changes or simply running a small
fixed number of iterations are also valid. Recall that the
relations between attributes in Y have been attenuated by
randomization; therefore, regardless of the convergence or
termination criterion used, the relations between attributes
in X will be recovered only approximately.

Regarding privacy, RR-Adjustment transforms the ran-
domized data Y without making use of the true data X.
Thus, RR-Adjustment does not increase the risk of disclo-
sure with respect to Y.

As to the computational cost, Adjust_weights is called
m times for each iteration of the algorithm. Since each
iteration of Adjust_weights has cost O(n), the total cost of
the algorithm isO(n×m×iter), where iter is the number of
iterations (this number depends on the termination criterion
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used).
We next give a numerical toy example to illustrate the

operation of Algorithm 2.

Example 1. Consider a randomized data set Y obtained
by using RR-Independent on n = 10 parties with two
attributes, so that the first attribute can take values a11 and
a12 and the second attribute can take values a21 and a22. The
empirical joint distribution of Y is as follows:

(a11, a
2
1) appears in the first 4 records,

(a12, a
2
1) appears in the next 2 records,

(a11, a
2
2) appears in 0 records and

(a12, a
2
2) appears in the last 4 records. (13)

This yields marginal distributions λ̂1 = (4/10, 6/10) and
λ̂2 = (6/10, 4/10) for the two attributes Y 1, Y 2 in the
randomized data set Y. Assume that after using Expression
(2) independently on each attribute, we obtain estimated
marginal distributions π̂1 = (1/2, 1/2) and π̂2 = (1/2, 1/2)
for the two attributes X1, X2 in the true data set X.
Algorithm 2 assigns an initial weight wi = 1/10 to each
record for i = 1, . . . , 10; adding these weights for records
sharing the same value of Y j yields the marginal distribu-
tion of attribute Y j . Then the algorithm adjusts the weights
of records in order to make the marginal distributions of
Y 1 and Y 2 as close as possible to the estimated marginal
distributions of X1 and X2:

• For the first attribute, the Adjust_weights routine
in Algorithm 2 changes λ̂1 from (4/10, 6/10) into
(1/2, 1/2) (which is the value of π̂1 = (1/2, 1/2).
To do this, the procedure computes (s1, s2) =
(4/10, 6/10). Then for the first record, it sets v =
y11 = a11 and

w1 = 1/10× 1/2

4/10
= 1/8.

Similarly, for the second to fourth records v = a11
and w2 = w3 = w4 = 1/8. Then for the fifth to
tenth records v = a12 and w5 = w6 = w7 = w8 =
w9 = w10 = 1/12. After these changes, we have
λ̂1 = (1/2, 1/2) and, as a side effect, we also have
an updated λ̂2 = (2/3, 1/3)

• For the second attribute, Adjust_weights changes
λ̂2 from (2/3, 1/3) into (1/2, 1/2) (which is the value
of π̂1 = (1/2, 1/2)). This is done in a way analogous
to what was done for the first attribute. As a side
effect, this will change again λ̂1, that will no longer
be (1/2, 1/2).

We see that changes in the distribution of one attribute result
in changes of the distribution of the other attribute. This is
why Adjust_weights must be iterated to try to bring the
empirical distributions λ̂1, λ̂2 close to the estimated distri-
butions π̂1 = (1/2, 1/2), π̂2 = (1/2, 1/2). In this example,
this can be achieved because the joint empirical distribution
converges towards the first 4 records having weight 1/8, the
next 2 having weight 0, and the last 4 records having weight

1/8. Thus, RR-Adjust yields the following joint empirical
distribution for the four combinations of categories:

Pr(a11, a
2
1) = 1/2; Pr(a11, a

2
2) = 0;

Pr(a12, a
2
1) = 0; Pr(a12, a

2
2) = 1/2. (14)

In contrast, estimating the joint empirical distribution using
just RR-Independent would yield:

Pr(a11, a
2
1) = 1/4; Pr(a11, a

2
2) = 1/4;

Pr(a12, a
2
1) = 1/4; Pr(a12, a

2
2) = 1/4. (15)

In both cases, we have the same marginal distributions
λ̂1 = (1/2, 1/2) and λ̂2 = (1/2, 1/2). However, Distribution
(14) yielded by RR-Adjust is more similar than Distribution
(15) to the empirical distribution of the randomized data
set Y (Expression (13)). Hence, Distribution (14) is a more
plausible estimation of the joint distribution of X.

6 EXPERIMENTAL RESULTS

6.1 Dataset
We based our experiments on the Adult dataset. This is
a data set with over 32,500 records and a combination of
numerical and categorical attributes. We assumed that each
record was held by a different individual who wanted to
anonymize it locally with RR. For the experiments, we only
took categorical attributes into account. These attributes
were: Work-class (with 9 categories), Education (with 16
categories), Marital-status (with 7 categories), Occupation
(with 15 categories), Relationship (with 6 categories), Race
(with 5 categories), Sex (with 2 categories), and Income (with
2 categories).

6.2 Evaluated methods
In the test dataset there were 1,814,400 possible combina-
tions of attribute values. Such a large number made RR-
Joint on the Cartesian product of all attributes computa-
tionally unfeasible. Even if RR-Joint had been computation-
ally affordable, the estimated distribution would have been
extremely inaccurate, because the number of categories in
the Cartesian product was much larger than the number of
individual records (see Section 3.3).

Discarding RR-Joint on all attributes for the above rea-
sons left us with trying RR-Independent, RR-Clusters and
RR-Adjustment to estimate the joint distribution of X. We
ran them as explained next:

1) RR-Independent. We took as the baseline for our
experiments this method that performs RR indepen-
dently for each attribute.

2) RR-Clusters. We used RR-Clusters in an attempt
to improve the estimation of the joint distribution
with respect to RR-Independent. RR-Clusters was
evaluated for different thresholds on the maximum
number of category combinations in each cluster
and for different thresholds on the minimum de-
pendence required for attributes to be in the same
cluster.

3) RR-Independent + Adjustment. We leveraged the
method described in Section 5 to improve the dis-
tribution estimated with RR-Independent.
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4) RR-Clusters + Adjustment. We used the method of
Section 5 to improve the distribution estimated with
RR-Clusters.

6.3 Construction of the RR matrix

To make results across methods comparable, we evaluated
the accuracy of the frequency estimates at an equivalent
level of risk. We used differential privacy as the risk mea-
sure.

First of all, we describe how we generated the RR
matrix for RR-Independent. After that, we describe how
we generated an RR matrix for RR-Clusters that yielded an
equivalent level of differential privacy.

6.3.1 RR matrix for RR-Independent
Having selected differential privacy as the measure of risk,
we wanted an RR matrix that was optimal with respect to
it. That is, we wanted an RR matrix that had the minimum
level of randomization for a given level of differential pri-
vacy. For an attributeA, such an RR matrix has the following
form:

• p in the main diagonal;
• (1− p)/|A| outside the main diagonal.

According to Expression (4), the level of differential
privacy that such a matrix provided for attribute A was

εA =

∣∣∣∣ln( p

(1− p)/|A|

)∣∣∣∣ .
6.3.2 RR matrix for RR-Clusters
RR-Clusters identifies clusters of attributes and applies RR-
Joint within each cluster. Let C be a cluster of attributes. For
the risk of RR-Clusters and RR-Independent to be equiva-
lent, we needed RR-Clusters to yield

∑
A∈C εA-differential

privacy on cluster C , where εA is the level of differential
privacy that RR-Independent yields for A.

We aimed for an RR matrix for cluster C that is optimal
at providing

∑
A∈C εA-differential privacy. Such a matrix

had the form:

• pC in the main diagonal;
• pC exp (−

∑
A∈C εA) outside the main diagonal.

To have a proper RR matrix, we needed the total proba-
bility mass in each row to be 1. This happened when

pC =
1

1 + (1−ΠA∈C |A|) exp (−
∑
A∈C εA)

.

6.4 Estimation of the true distribution

The estimation returned by Equation (2) need not be a
proper probability distribution. In our experiments, we
selected as an estimate of the true distribution the proper
probability distribution closest (according to the Euclidean
distance) to the output of Equation (2). Such distribution
was found by applying the following procedure to the
output of Equation (2):

• Replace any negative values by 0;
• Rescale the rest of values so that their sum is 1.
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Fig. 2. Absolute error (left) and relative error (right) of Randomized
and RR-Independent when p = 0.7. The x-axis represents the domain
coverage σ.

6.5 Evaluation results

In line with the measures used in Section 3.3, we measured
the accuracy of the estimated distribution of the true data as
the absolute and the relative error in count queries.

Let S be a subset of the data domain. Let XS be the
true number of records of X that belong to S. Let YS be the
number of records in S estimated from the randomized data
set Y. The absolute error is

eS = |YS −XS|

and the relative error is

rS =

∣∣∣∣YS −XS

XS

∣∣∣∣ . (16)

In all subsequent experiments, the values reported for eS
and rS are median values over 1000 runs.

The subsets S of the data domain that we used in this
evaluation were generated as follows:

• We chose a proportion σ of the data domain that we
wanted S to cover.

• We took two random attributes of Adult to define S
(the results with S configured by a higher number of
attributes did not differ significantly).

• We randomly chose the subset S to contain a σ
proportion of all the possible combinations of values
of the previously selected two attributes.

First, we measured the accuracy of the baseline method,
RR-Independent. We also measured the accuracy of the
empirical distribution of the raw randomized data Y ob-
tained with RR-Independent (without using Expression (2)
to estimate the true distribution); we called this distribution
“Randomized”.

Figure 2 shows the absolute and the relative error in
counts for p = 0.7, as a function of the coverage σ, both
for RR-Independent and for Randomized. We observe that,
thanks to Expression (2), RR-Independent significantly re-
duced the absolute and the relative errors with respect to
Randomized. The absolute error peaked at σ = 0.5: the
more combinations in S, the larger the absolute error could
be. For larger σ, the absolute error decreased: for example,
for σ = 0.6 the error was the same as for σ = 0.4 (the
absolute error of taking 60% of categories is the same as
the absolute error associated with the remaining 40% of
categories that are not covered). Regarding the relative error,
it decreased as σ grew, because XS in the denominator of
Expression (16) was larger.
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TABLE 1
Relative error of RR-Clusters in the Adult data set for

Tv ∈ {50, 100, 300}, Td ∈ {0.1, 0.2, 0.3} and a randomization matrix
with p ∈ {0.1, 0.3, 0.5, 0.7}

Tv
p Td 50 100 300

0.1 0.1 0.335 0.404 0.495
0.1 0.2 0.357 0.351 0.501
0.1 0.3 0.285 0.426 0.505
0.3 0.1 0.335 0.334 0.426
0.3 0.2 0.262 0.310 0.435
0.3 0.3 0.199 0.306 0.445
0.5 0.1 0.094 0.148 0.214
0.5 0.2 0.107 0.127 0.236
0.5 0.3 0.116 0.119 0.212
0.7 0.1 0.069 0.069 0.074
0.7 0.2 0.070 0.075 0.071
0.7 0.3 0.070 0.068 0.079

The accuracy of estimations reported by RR-Clusters
depends on the thresholds Tv (maximum number of cate-
gory combinations per cluster) and Td (minimum required
dependence between attributes in a cluster), the actual data
set and the randomization matrix used. Next, we analyzed
the behavior of RR-Clusters for the Adult data set and for
randomization matrices generated as per Section 6.3. In this
evaluation, S was generated with σ = 0.1. Table 1 shows
the relative error of RR-Clusters for Tv ∈ {50, 100, 300},
Td ∈ {0.1, 0.2, 0.3} and a randomization matrix with p ∈
{0.1, 0.3, 0.5, 0.7}. We observe that:

• As a rule, the relative error increased with Tv . This
means that clusters with a high number of category
combinations had a clear negative effect on the esti-
mation accuracy.

• Regarding Td, for small p taking larger Td yielded
better accuracy, whereas for larger p taking smaller
Td yielded better accuracy. Note that Td = 0
means that attributes can be clustered regardless
of their dependence, whereas Td = 1 means that
attributes are never clustered (in this case we have
RR-Independent). Thus, clustering attributes turned
out to be more rewarding for larger p, whereas for
small p, there was less incentive for clustering and
the advantage of RR-Clusters on RR-Independent
was less noticeable.

Next, we compared the accuracy of the methods listed
in Section 6.2 for different levels of randomization (p ∈
{0.1, 0.3, 0.5, 0.7}) and for different coverages of S (σ ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}). Figure 3 shows the
relative error in the count queries. For each p, we took the
best values for Tv and Td identified in Table 1. We observe
that:

• For small values of p (that is, for p = 0.1 and p = 0.3),
RR-Independent yielded the best accuracy. For these
values, using RR-Clusters and RR-Adjustment was
counter-productive.

• For larger values of p (that is, for p = 0.5 and p = 0.7)
and large coverages (σ ≥ 0.3) all methods behaved
similarly and offered a very small relative error.

• For larger p and small coverages (σ < 0.3), RR-
Clusters offered much more accuracy than RR-
Independent. Furthermore, using RR-Adjustment
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Fig. 3. Relative error for different randomizations: p = 0.1 (top left),
p = 0.3 (top right), p = 0.5 (bottom left) and p = 0.7 (bottom right). The
x-axis represents the domain coverage σ.

brought a substantial accuracy improvement, no
matter whether plugged after RR-Independent or
RR-Clusters.

In summary, for strong randomization, the dependences
between attributes in X are mostly lost in Y. For this reason,
in this case RR-Independent is as good as RR-Clusters, and
RR-Adjustment does not bring much. In contrast, for weak
randomization, it makes sense to leverage whatever depen-
dences might be preserved in Y, and thus RR-Clusters and
RR-Adjustment outperform RR-Independent. This superior
behavior is visible only for small coverages, because for
large coverages the denominator of Expression (16) is so
large that any method achieves a small relative error.

Finally, we analyzed the effect of the data set size on
the accuracy of the estimates. For the comparison with
the previous results to be fair, we needed a data set with
the same distribution. We obtained an expanded data set
Adult6 by concatenating the original Adult data set 6 times.
In this way, Table 1 for Adult became Table 2 for Adult6,
which shows the relative error of RR-Clusters for Tv ∈
{50, 100, 300}, Td ∈ {0.1, 0.2, 0.3} and a randomization
matrix with p ∈ {0.1, 0.3, 0.5, 0.7}. By comparing Tables 1
and 2 we observe that the relative error decreased for all
parameterizations but the reduction achieved depended on
the specific parameterization. Specifically:

• For p = 0.7, the reduction was small, because for
so little randomization the relative error was already
quite low in Table 1. In this case, the highest reduc-
tion occurred for Tv = 300, because Adult6 being
larger than Adult, a larger number of category com-
binations had a lower negative impact on estimation
accuracy. This highest reduction for Tv = 300 caused
the lowest relative error for p = 0.7 to occur when
Tv = 300, which shows the advantages of allowing
a great number of category combinations when the
data set is sufficiently large.

• For smaller p (that is, for higher randomization lev-
els), the reduction in the relative error was more
remarkable for Tv = 50 and Tv = 100. These
thresholds on category combinations could be better



VOL. ?, NO. ?, MONTH YYYY 13

TABLE 2
Relative error of RR-Clusters in the Adult6 data set for

Tv ∈ {50, 100, 300}, Td ∈ {0.1, 0.2, 0.3} and a randomization matrix
with p ∈ {0.1, 0.3, 0.5, 0.7}

Tv
p Td 50 100 300

0.1 0.1 0.189 0.312 0.459
0.1 0.2 0.173 0.310 0.449
0.1 0.3 0.183 0.339 0.462
0.3 0.1 0.149 0.202 0.369
0.3 0.2 0.171 0.225 0.376
0.3 0.3 0.178 0.217 0.369
0.5 0.1 0.080 0.084 0.123
0.5 0.2 0.082 0.075 0.126
0.5 0.3 0.083 0.079 0.127
0.7 0.1 0.064 0.066 0.056
0.7 0.2 0.064 0.066 0.057
0.7 0.3 0.065 0.065 0.060

accommodated using the larger data set Adult6. In
contrast, allowing up to Tv = 300 category com-
binations had an impact on the relative error that
was compensated only partially by the increase in
the data set size; hence, the reduction in the relative
error for p = 0.1, 0.3, 0.5 and Tv = 300 was less
spectacular than for lower Tv . Further, unlike for
p = 0.7, the highest Tv did not achieve the lowest
relative error: this seems to indicate that, as the
randomization level increases, one needs larger data
set sizes to be able to work with a great number of
category combinations.

• The effect of the threshold Td on dependence did not
seem to change with the data set size.

7 RELATED WORK

Privacy preservation in data set releases has a substantial
tradition in the statistics and computer science communities.
Privacy models such as k-anonymity [24], t-closeness [20]
and differential privacy [11], as well as many statistical
disclosure control techniques [16], have been used to protect
data sets before releasing them. All these works assume
there is a trusted party that collects the true original data
and takes care of protecting them.

Some attempts to enforce privacy models in a distributed
manner have been made. For example, [25] proposed a
way to enforce k-anonymity by promoting the collaboration
between users. Also, local differential privacy has been
proposed as an adaptation of differential privacy to the
untrusted collector scenario. Most of the work in local dif-
ferential privacy targets the distributed computation of data
analytics. However, some well-known attempts to generate
locally differentially private data sets have been made. For
instance, RAPPOR [12] generates a data set that allows users
to compute the frequencies of a given set of items. RAPPOR
is based on randomized response and Bloom filters. An
extension of RAPPOR is available that allows users to com-
pute multivariate distributions [13]. While privacy models
usually offer privacy guarantees at the record level (e.g. k-
anonymity limits the chances of succesful re-identification of
a record based on quasi-identifier attributes), attaining such
guarantees becomes increasingly difficult as the number of

attributes grows. This difficulty is serious in the trusted
data collector scenario, and a fortiori in the more complex
untrusted data collector scenario.

Some masking techniques can be applied locally by each
individual before releasing her record (e.g. noise addition or
generalization). However, the lack of a global view generally
prevents adjusting the masking to the data set formed by
all original individual records (e.g. to preserve covariances
between attributes or to apply a stronger generalization
to those values that are rare). In this context, randomized
response is very convenient because despite being a local
masking approach it allows the data collector to estimate
the distribution of the original data. However, estimating
the true original joint distribution is only feasible for a
small number of attributes. For example, in [31] an approach
is presented that starts with RR followed by estimation
of the original distribution for a single binary attribute,
then generalizes to a single multicategory attribute, and
finally to several multicategory attributes (the case we deal
with in this paper). However, the authors of [31] apply
RR independently for each attribute, in a way similar to
our RR-Independent protocol, which does not preserve the
relations between the original attributes. Our proposal is
to strike a compromise between dimensionality reduction
and preservation of attribute relations by performing RR on
clusters of attributes.

In [21], a method was proposed for clustering the at-
tributes of high-dimensional data sets in view of mitigating
the curse of dimensionality. The authors used hierarchical
clustering algorithms to identify clusters of strongly cor-
related attributes. A substantial difference with our pa-
per is that they considered the centralized anonymiza-
tion paradigm, in which a data controller holds the entire
original data set and can compute attribute dependences
in a straightforward way. In contrast, we deal with local
anonymization, in which the original record of each indi-
vidual is only known to that individual.

An attribute clustering approach to allow randomized
response of several attributes was presented in [10]. Un-
fortunately, this method requires non-negligible disclosure
of original attributes to compute attribute dependences.
Furthermore, it can yield large attribute clusters with too
many category combinations and/or nearly independent
attributes, which hampers accuracy. Our attribute clustering
method is superior in several aspects: i) it does not cluster
attributes unless the number of category combinations of
the clustered attributes is below a certain threshold and
unless the dependence between the clustered attributes is
above a certain threshold; ii) it specifies three carefully
crafted procedures to compute attribute dependences with
minimum privacy loss for the individual parties; iii) our ad-
justment algorithm can partly compensate the accuracy lost
by assuming independence between attributes in different
clusters.

8 CONCLUSIONS AND FUTURE RESEARCH

Randomized response is an appealing anonymization ap-
proach in our big data era for several reasons. On the
one side, it offers local anonymization and on the other
side it can yield microdata useful for exploratory analysis
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and even machine learning. The main hindrance for using
RR on multivariate data is the curse of dimensionality: as
the number of attributes grows, the accuracy of the esti-
mated distribution for the true original microdata quickly
degrades.

In this paper, we have proposed mitigations to the di-
mensionality problem, based on performing RR separately
for each attribute —which implicitly assumes all attributes
are (nearly) independent— or jointly within clusters of
attributes —which needs attributes in different clusters to
be weakly dependent if not independent. We have then pro-
posed a method to recover some of the estimation accuracy
loss incurred by the above independence assumptions.

The proposed approaches open future research avenues.
Randomized response assumes that all attributes are cat-
egorical or can be made categorical. Thus, a challenge is
to devise local anonymization approaches yielding good
distribution estimates for original numerical microdata with
a large number of attributes. Another intriguing issue is
whether there exist alternative ways to recover a larger share
of the utility loss incurred by independence assumptions.
Yet more daunting is to tackle a scenario in which all at-
tributes are so correlated that any independence assumption
will result in unaffordable accuracy loss.
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