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ABSTRACT: The controlled reaction of [RuCl2(p-cymene)]2 with H2IMes
generates the previously challenging precatalyst and Ru synthon RuCl2(p-
cymene)(H2IMes) (Ru-2) in 96% isolated yield. Critical to success is inhibiting
premature p-cymene displacement. This is achieved by carrying out the
synthesis at ambient temperatures, protected from light, and at sufficient
dilutions (25 mM in THF) to enable stoichiometric control and inhibit
bimolecular decomposition. The ease with which p-cymene loss can be
deliberately induced, however, is key to the utility of Ru-2 in both catalysis and
catalyst synthesis. The transformation of Ru-2 into two second-generation olefin metathesis catalysts is described.
RuCl2(H2IMes)(CH(o-C6H4-O

iPr)) (HII) and RuCl2(H2IMes)(PPh3)(CHPh) GII′ (a desirable, faster-initiating
analogue of GII) are accessible in ca. 80% yield over two steps from commercially available [RuCl2(p-cymene)]2. Synthesis
from RuCl2(PPh3)3, in comparison, requires three or four steps for HII or GII′, respectively, and proceeds in lower yields.

Piano-stool complexes of the group 8 metals are privileged
structures in catalysis, and in bioinorganic and medicinal

chemistry.1−7 p-Cymene complexes of ruthenium dominate,
owing to their ease of access from commercially available
[RuCl2(p-cymene)]2 (Ru-1), although expanding roles for iron
complexes8 and functionalized arene derivatives9 have been
documented in recent reviews. In particular, attention has
focused on catalysis via N-heterocyclic carbene (NHC)
derivatives of Ru-1 (Chart 1).1−6

Notably sparse, however, are reports of high-performing p-
cymene catalysts containing N,N’-diarylimidazolidin-2-yli-
denes, of which the H2IMes complex Ru-2 (Chart 1) may
be regarded as an exemplar. This is particularly striking given
early advances establishing a convenient in situ synthesis of
Ru-2,13 for use in olefin metathesis and atom-transfer radical
polymerization.13,16−18 Ledoux and co-workers subsequently
described Ru-2 as too unstable to isolate.19 The Jensen group
recently succeeded in isolating the complex,10,20 albeit in yields
(26%) that support this view. The N-o-phenol analogue of Ru-
2 also decomposes rapidly.19 In contrast, IMes analogue Ru-2′
is stable, and indeed isolable in ca. 80−90% yield.11,12

The behavioral difference between these complexes is critical
to their informed deployment. In some cases (e.g., outer-
sphere transfer hydrogenation),21 retention of the arene ligand
is required. In other contexts (e.g., metathesis, arylation,
alkylation or hydrogen-borrowing catalysis, or synthesis of new
catalysts by elaboration of the RuCl2(H2IMes) core), p-
cymene loss is necessary, and its facile, controlled displacement
represents a key potential asset. In the present work, we sought
to clarify and control the instability of Ru-2, as an essential
step toward harnessing the potential of this and related p-
cymene complexes in synthesis and catalysis. Here we identify
key factors that promote loss of the p-cymene ring; we report
the successful development of a high-yield route to Ru-2, and
we demonstrate the exceptional utility of this complex in
enabling a concise, efficient route to high-performing second-
generation Ru metathesis catalysts.
Literature reports describe the use of thermal and photolytic

triggers to displace the p-cymene ligand from phosphine22 and
NHC derivatives of Ru-1.12,13 In the case of Ru-2, we
suspected that steric pressure exerted by the H2IMes mesityl
groups could add to the lability of the η6-arene ligand. While
rotation about the Ru−H2IMes bond is restricted23−25 (a
consequence of the π-acceptor character of the saturated
NHC),26,27 N−Mes bond rotation is facile. In contrast, the
IMes ligand has a higher barrier to N−Mes rotation,28,29 as
well as a lower buried volume.30 These factors could account
for the improved stability of Ru-2′. NOE experiments on
isolated Ru-2 (Figure S2; generated as described below)
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confirm the presence of steric interactions between the mesityl
o-Me groups and the p-cymene ligand in solution.
We bore these points in mind in seeking to synthesize Ru-2

for direct study. The thermal lability of the p-cymene ring rules
out, for example, in situ production of H2IMes from its
imidazolinium salt,19 which typically requires high temper-
atures as well as strong base. Instead, Ru-2 was prepared by
adding free H2IMes to dimeric Ru-1, under conditions
designed to minimize exposure of the product to light and
heat: that is, at 22 °C in a foil-wrapped vessel, with the
glovebox light switched off.
The stoichiometry of the reactionand hence the solubility

of Ru-1emerged as a key additional criterion. Synthesis of
Ru-2 in CH2Cl2, in which Ru-1 is fully soluble, is precluded by
the rapid reaction of H2IMes with CH2Cl2.

31 THF was
therefore employed, despite only partial solubility of Ru-1 in
this solvent even at millimolar concentrations. An important
insight was offered by the observation of negligible yields of
Ru-2 when solid H2IMes was added to the Ru-1 suspension,
but greatly improved yields when THF solutions of H2IMes
were added. We infer that a local excess of H2IMes is able to
displace the p-cymene ligand from Ru-2. In an optimized
synthetic protocol (Scheme 1), we therefore slowly infused a

solution of the free carbene (1 mL/min; 25 mM) into a THF
suspension of Ru-1 (ca. 15 mg/mL). Addition was complete
after 30 min, at which point a clear deep red solution was
present. Evaporation of the solvent and reprecipitation of the
residue from CH2Cl2−hexanes afforded Ru-2 as a dark red
powder, in 96% yield.
With clean Ru-2 in hand, we examined its stability. As

anticipated from the experiments above, adding H2IMes to Ru-
2 caused extensive loss of the p-cymene ring (minutes at room
temperature; Figure 1a). Exposing C6D6 solutions of Ru-2 to
fluorescent laboratory light at room temperature caused nearly
70% decomposition over 5 h, vs 10% for a foil-wrapped sample
over the same period (Figure 1b,c). Of note, the photolytic
reaction showed a first-order rate dependence on [Ru-2], while
decomposition in the dark was second order, albeit slower
(Figure 1d). The latter, bimolecular reaction underscores the
importance of maintaining low concentrations during the
synthesis of Ru-2. Irradiating CH2Cl2 solutions of Ru-2 at 465
or 365 nm led to broadening of the absorption bands (Figure
S7) and formation of a black suspension, suggesting nano-
particle formation.32

The historical difficulties in isolating Ru-2 noted above are
unsurprising, given the need to inhibit loss of p-cymene by
protecting from (i) light and heat, (ii) uptake of a second
H2IMes ligand, and (iii) bimolecular decomposition. Once
recognized, however, these conditions are readily met, as
indicated by near-quantitative isolation of Ru-2 on a nearly 1 g
scale via the protocol of Scheme 1.

From a complementary perspective, the ease with which the
p-cymene ring can be displaced is a core asset that enables use
of Ru-2 as a clean source of “RuCl2(H2IMes)” in catalysis or
catalyst synthesis. A final aspect of this work focused on the
latter opportunity: specifically, use of Ru-2 as an entry point to
olefin metathesis catalysts. The important “second-generation”
metathesis catalysts are typically accessed via multiple steps
(Scheme 2),33−39 commencing with transformation of

hydrated RuCl3 into RuCl2(PPh3)3 and then the first-
generation Grubbs catalyst GI.36a RuCl2(PPh3)3 is attractive
relative to many alternative Ru precursors for its ease of
handling,36b and because the bulk of the stabilizing phosphine
ligands provides leverage for ligand exchange.40

A major drawback, however, is the need to first install, and
then remove, the PPh3 ligands and one or more PCy3 ligands.

Scheme 1. High-Yield Synthesis of Ru-2

Figure 1. (a−c) Decomposition of Ru-2 (20 mM; C6D6, room
temperature), showing plausible initial products, and (d) first-order
dependence of decomposition on [Ru] in the light, vs second-order
dependence in the dark.

Scheme 2. Dominant Routes to HII and GII′a,b

aOverall yields 34−52% for HII and 29−33% for GII’: see the
Supporting Information. bConditions: (1) 6 PPh3, refluxing MeOH;41

(2) 2 PhCHN2 + 2.2 PCy3, CH2Cl2, −78 °C to room temperature;36a

(3) 1.1 H2IMes, THF, Merrifield resin;38 (4) 1.1 ArCHCH2, 1.3
CuCl, refluxing CH2Cl2;

37 (4′) 1/3 toluene/py:42 the product is a
mono/bis-py mixture;43 (5′) 1.1 PPh3, C6H6.

42 For further details, see
the Supporting Information. Steps 3 and 4 in the synthesis of HII can
be advantageously reversed.38,39
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While phosphine scavengers can significantly improve isolated
yields,38 the net process is laborious and wasteful.44 More
efficient routes to Ru metathesis catalysts, which circumvent
reliance on RuCl2(PPh3)3 as a precursor,36b are highly
desirable.
In important early work, metathesis-active allenylidene or

indenylidene complexes were generated by treating [RuCl(p-
cymene)(PCy3)](OTf) or Ru-2′ with terminal alkynes,11,45,46

while benzylidene species were generated by treating piano-
stool Os complexes with phenyldiazomethane.47,48 Here we
sought to build on these advances by displacing the arene ring
from Ru-2, while simultaneously introducing a benzylidene
ligand and a stabilizing donor. We envisaged that this could
offer access to the second-generation Hoveyda catalyst HII
(Scheme 3a),33,34 for example, in a single step.

Accordingly, we adapted to Ru-2 a procedure used by the
Hoveyda group to install chelating benzylidene ether ligands
on RuCl2(PPh3)3.

33 Adding ArCHN2 (Ar = o-C6H4-O
iPr)49 to

a CH2Cl2 solution of Ru-2 at −78 °C caused evolution of N2,
accompanied by a color change from red to green over the ca.
20 min time of addition. The solution was then warmed to 0
°C and briefly (10 min) irradiated with a standard portable UV
lamp mounted 5 cm away. HII was obtained after flash
chromatography in 82% isolated yield, or ca. 70% overall yield
from the ultimate precursor RuCl3. This compares favorably
with the dominant route shown in Scheme 1 (four steps and
3−5 days from RuCl3, with a maximum net yield of ca. 50%).
Chelation of the stabilizing ligand is not essential, as

demonstrated by the synthesis of GII′ (Scheme 3b), an
analogue of the Grubbs catalyst GII. Such PPh3 derivatives are
attractive for the higher lability50 and reduced nucleophilicity51

of the phosphine ligand, which helps inhibit catalyst
decomposition.52 Owing to their cumbersome synthesis,42,53

however, these catalysts see little use.54 GII′ was synthesized as
above, but with addition of PPh3 to the cold solution of Ru-2
prior to cannula addition of PhCHN2. GII′ was obtained in
81% yield after flash chromatography. In comparison, the
literature route42a to GII′ requires five steps from RuCl3 and
proceeds in overall yields of 29−33%. From the perspective of
atom efficiency, the new route represents an improvement of
more than 3-fold (see the Supporting Information).
The foregoing describes the successful synthesis and

isolation of the long-sought precatalyst and synthon
RuCl2(p-cymene)(H2IMes) (Ru-2). This previously intract-
able complex is readily generated in high yields at room
temperature by controlling reaction stoichiometry, limiting
exposure to light, and keeping concentrations low to inhibit

bimolecular displacement of the p-cymene ring. We anticipate
that these precautions may likewise afford access to related p-
cymene complexes bearing bulky, inflexible imidazolidene or
other donors, and hence expand the deployment of such
complexes in catalysis.
Importantly, the lability of the η6-arene ring represents a

major asset in use of Ru-2 as a precatalyst or a building block.
An exceptionally efficient route to high-performing phosphine-
free and phosphine-stabilized metathesis catalysts from Ru-2 is
demonstrated. Attractive features are its brevity (just two
synthetic steps from commercially available Ru-1), time
efficiency, and high yields (ca. 70% from RuCl3). In
comparison, existing routes proceed in overall yields of ca.
30−50% over four to five steps and require up to 1 week.
These findings are anticipated to open the door to new,
efficient transformations based on Ru-2 as a precatalyst, and to
improve the efficiency, economy, and reliability of synthetic
routes to leading metathesis catalysts.
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