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ABSTRACT The aim of this paper is to propose a novel room-level localization approach to locate LoRa
backscatter devices, which can be easily embedded into wearable devices or smartphones. The advantages
of this system lie in its series of low-cost, low-power, low-complexity and long-range features. LoRa
backscattering operates by alternatively connecting an antenna, through a switch, to two loads with high
reflection coefficients and opposite phase. The result is a frequency shift of the LoRa incident signal equal
to the backscatter switching frequency. The localization system comprises several LoRa receivers distributed
among the rooms, a LoRa transmitter located at a central point and the backscatter device, which is carried or
worn by a subject. The position of the LoRa backscatter device can be determined by comparing the received
signal strength between all receivers. In order to improve the accuracy of the system, different machine
learning classifiers were compared. System performance was tested in a real-life scenario, achieving an
accuracy up to 89.7% using linear discriminant analysis (LDA).

INDEX TERMS Backscatter communications, LoRa, localization, wireless sensor networks, RFID,
zero-power sensor, Internet of Things (IoT).

I. INTRODUCTION
Modulated backscatter communication systems are based
on a device that reflects received radiofrequency (RF) sig-
nals from an RF transmitter and introduces a modula-
tion that is used to transmit data. The use of modulated
backscatter communications has expanded rapidly since
they were first introduced by Stockman in 1948 [1]. This
technology is the basis for radiofrequency identification
(RFID) [2]. Recently, several low-power communication sys-
tems based on backscattering communications have been
investigated [3]–[6]. In spite of these efforts, low-power wire-
less systems based on backscattering communications are not
widely used. Traditional backscatter communications operate
passively, meaning that the RF source has to be positioned
near the backscatter device. However, ambient backscatter
communication systems have recently emerged as a technol-
ogy with great potential for future low-power communica-
tions for the internet of things (IoT) [4], [7]. These systems
propose using surrounding signals (e.g. FM and TV towers,
mobile signals, and Wi-Fi access points) as RF sources for
backscatter devices.

The associate editor coordinating the review of this manuscript and
approving it for publication was Alessandro Pozzebon.

One of the main challenges in the implementation of a
large area wireless sensor network is the deployment and
maintenance cost. To this end, low-power wide-area net-
works (LPWANs) such as UNB (ultra-narrow band), LoRa,
and SigFox have become popular for machine-to-machine
(M2M) IoT applications [8], [9]. LoRa is based on a
robust chirp spread spectrum (CSS) technique operating at
industrial, scientific and medical (ISM) bands (433 MHz,
868 MHz, and 915 MHz) [10], [11]. Although LoRa was
originally designed for long-range outdoor communications,
the high sensitivity of the LoRa receiver [12] and the
low attenuation of the walls at these frequencies make
LoRa an interesting option for indoor coverage [13], [14].
Lately, LoRa-based modulation was used for backscatter
communication environments and achieved long-range oper-
ation [15]–[18]. In a previous work [19], we presented a LoRa
backscatter communication system for monitoring deeply
implanted medical devices.

In recent years, indoor localization systems have generated
great interest due to their potential applications [20]–[22].
Most of the methods proposed in the literature as well as
commercial systems focus on improving localization preci-
sion [23]. In some applications, such as autonomous robot
guidance [24], localization accuracy is fundamental because
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they require an exact location in a coordinate system. Perfor-
mance depends greatly on the method used (time of arrival
(ToA), time difference of arrival (TDoA), angle of arrival
(AoA), or received signal strength indicator (RSSI) based),
the environment, the attenuation introduced by objects, move-
ment, and the localization algorithm employed. Depending
on the localization method, different wireless systems have
been explored: Wi-Fi, Bluetooth, UWB, modulated continu-
ous wave (FMCW) radar, RFID, etc. LoRa-based localization
systems have recently been proposed for indoor and outdoor
environments [25]–[28]. Some of these systems were com-
pared in [1], [2]. Their precision often increases with the
number of anchors [29], [30] and these systems require LOS
(line of sight) scenarios [31].

Another interesting group of localization techniques
includes those that are based on fingerprint classification.
In this case, the system estimates the location of an object by
matching received signal strength indicator (RSSI) measure-
ments with the closest location fingerprints. The RSSI mea-
surements are often obtained from Wi-Fi access points [32]
or Bluetooth beacons [33], [34] in indoor applications or
Sigfox, LoRaWAN [35] or mobile communications in large
areas [36]. However, these methods require a calibration of
the system by recording the exact location on a map. Two
main groups of techniques have been reported for classi-
fication in these systems: neuronal networks[37], [38] and
machine learning techniques [39]. The main drawback of
previous localization methods is that the high number of
anchors and the manual calibration procedure decrease the
system’s return on investment (ROI). However, there are other
applications in which knowing an approximate area, such
as a room [34], [40], [41], is sufficient. Within the various
medical applications, monitoring activities of daily living
(ADL) [42]–[45] constitute an example of the second group.
A major challenge for these applications is that the tracking
devices must be noninvasive and private because they are
intended to be used by the elderly. Therefore, the devicesmust
be worn and the battery lifetime must be very long to avoid
continuous recharges that can cause the user to stop using the
system. Both the installation of the localization system and
the cost mean that a reduced number of anchors capable of
covering large areas (e.g. care facilities or hospitals) have to
be installed. From a practical perspective, it should be noted
that in most indoor localization methods, when the number
of anchors used is small (or when the cost of installing
several anchors is prohibitive), the precision is around several
meters [33]. In other words, they can be used to roughly
recognize a room.

This paper describes the study of the performance and
viability of an indoor room-level localization system based
on LoRa signal backscattering. This work aims to contribute
to the improvement of human and social welfare through
the application of the system in fields such as patient man-
agement in hospitals and care facilities, capacity monitoring
in establishments of different types, autonomous buildings,
etc. Compared to other systems based on active beacons

(e.g. Bluetooth, Wi-Fi, or UWB), LoRa backscatter stands
out for its lower power consumption and long range due to
the high sensitivity of LoRa receivers. This LoRa backscatter
device can be embedded in a wrist band or any other wearable
device, thereby obviating the need for uncomfortable, heavy
electronics. The localization system is made up of several
LoRa receivers distributed in the different rooms, a LoRa
transmitter located at a central point, and the backscatter
device, which is carried or worn by an individual. Commer-
cial low-cost LoRa modules were used in the experiments
to validate the system. A simple algorithm based on the
reception of the highest signal strength was used to deter-
mine the position (the room where the user is). In order to
improve accuracy, we compared different machine learning
algorithms. In these cases, algorithm training was accom-
plished by acquiring a set of samples while the user moves
randomly within each of the rooms. The random point acqui-
sition greatly accelerates the training procedure. It is only
necessary to knowwhich room the samples were taken in, and
not the coordinates of the receivers or the transmitter. Param-
eters such as transmitter power and propagation model are
also not necessary to program the algorithms. This simplifies
the training procedure and practical implementation in real
environments.

This paper is organized as follows. Section II describes
the system, including the proof of concept prototype for the
LoRa backscatter. A propagation model is proposed to check
the algorithm based on simulated data. The simulated results
are described in Section III. Our experimental results are
presented in section IV. Section V compares the features of
the proposed room-level localization technique with other
localization technologies. Finally, section VI summarizes our
conclusions.

II. SYSTEM ARCHITECTURE OVERVIEW
This paper proposes the use of a backscatter device that
reflects the data signal from a LoRa transmitter but with the
frequency shifted to a different LoRa channel. A set of LoRa
receivers tuned to this shifted channel receives the data pack-
ets andmeasures the received signal strength indicator (RSSI)
and signal-to-noise ratio (SNR) for each one. The LoRa
receivers are placed in different rooms, so each room can be
identified by comparing the RSSI collected by the receivers.
The receiver with the highest RSSI level will determine the
location of the backscatter. Advanced fingerprint algorithms
can be employed to improve the decision. A diagram of a
possible scenario is shown in Fig. 1. The LoRa backscatter
system can be easily miniaturized, so it can be worn on the
wrist (see Fig. 2). Furthermore, it stands out for its low power
consumption compared to other beacons because it does not
have to generate RF signals or process the incoming LoRa
packets. An important consideration is that the power of the
backscattered signal is significantly reduced due to the two-
way propagation, but this drawback is compensated by the
high sensitivity of the LoRa modulation which, compared
with other modulations, is capable of demodulating signals of
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FIGURE 1. Example of typical Tx and Rx placement in a house.

up to 20 dB under the noise floor [6]. LoRa receivers exhibit
an impressive sensitivity down to −148 dBm depending on
the spread factor employed (Semtech SX1276 [6]).

We used low cost LoRa transceivers (ESP32 TTGO with
Semtech SX1276) in our experiments. Each of them has a
built-in ESP32 microcontroller from Espressif, with a Wi-Fi
and Bluetooth connection, and a Semtech SX1276 LoRa
module set at the 868 MHz ISM band with a default trans-
mission power of 17 dBm. Semtech SX1276 allows the user
to configure, among many others LoRa and radio parameters,
the transmission power from 2 dBm up to 20 dBm. The cost
of this LoRa transceiver is less than $10 and no hardware
modification is needed. A Wi-Fi link is used to send the data
to a cloud database. Alternatively, the data can be transmitted
to the LoRa transmitter by a conventional LoRa link, which
works as a gateway to upload the data to a cloud database.
This second method can be used in industrial environments
or in buildings without coverage in some areas or without
any coverage at all. Data are transferred to the cloud by
means of the MQTT (Message Queue Telemetry Transport)
protocol. Each receiver publishes the RSSI and SNR mea-
surements in a MQTT topic. To avoid errors arising from
lost packets or uploading delays, the transceiver sends each
packet with an identifier, which might be just a counter. This
makes it possible to synchronize receivers. Upon reception,
the receivers publish a message to the MQTT broker with the
packet identifier, the room identifier, and the measured RSSI
and SNR.

FIGURE 2. Block diagram of the backscattering system (top) and
photograph of a prototype (bottom).

A. BACKSCATTER PROTOTYPE
A block diagram of the backscatter is shown in Fig. 2. The
backscatter consists of an antenna connected to an RF switch
that loads the antenna and switches between two states with
a high reflection coefficient (e.g. open and short circuit).
The antenna is tuned to the ISM band (865–869 MHz). In a
proof of concept prototype, we used the ADG902 CMOS
switch from Analog Devices and the low-power microcon-
troller ATTiny402 from Atmel. The square-wave oscillator
controls the switch at the oscillation frequency fosc and is
implemented with the microcontroller. The waveform is gen-
erated using the pulse-width modulation (PWM) output of
the microcontroller. The Semtech SX1276 LoRa transceiver,
which can work from 137 MHz to 1020 MHz, was used in
these experiments. This made it possible to cover European,
North American, and Asian ISM bands. Due to the high
tolerance to frequency deviations of this module, the Semtech
transceiver is capable of demodulating packets, despite the
possible oscillator drifts during the backscatter communica-
tion. Even in the rare case of not being able to demodulate the
data due to a considerable frequency shift, the SX1276 has
an automatic frequency correction functionality (AFC) to
readjust the reception frequency. The low–power microcon-
troller (ATTiny402) was used as a proof of concept prototype
to generate the data identification and connect to potential
sensors.

The total current consumption when the microcontroller
wakes up, working at a 1 MHz clock speed with an operating
voltage of 3.3 V, is 890 µA. The power consumption of the
switch, at less than 1 µA, is negligible. This total value is
considerably lower than that of Bluetooth LE modules that
typically require 7 to 15 mA when they are in the reception
or transmission states. One interesting aspect to mention is
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that the backscatter device has no transmission or reception
mode, since it is not capable of processing or generating
RF signals. Therefore, the backscatter device just bounces or
stops reflecting the LoRa signal.

The analysis of the modulated backscatter can be found
in [46]. The backscattered power is proportional to the differ-
ential radar cross-section RCSdif [47]:

RCSdif =
λ2

4π
G2
tag |0ON − 0OFF |

2 m (1)

where λ is the wavelength, Gtag is the backscatter antenna
gain, andm is themodulating factor, which, assuming an ideal
50% duty cycle, will have a value of 1/π2.0 is the power
reflection coefficient given by [47]:

0 =
ZL − Z∗a
ZL + Za

(2)

where ZL and Za are the load impedance for each state (ON
or OFF) and the antenna impedance, respectively. A high
reflection coefficient with a difference of 180◦ is needed to
maximize the backscattered power. This situation can occur
if the antenna resonates in the band (Im Za =0) and each
of the two impedance states is out of phase (e.g. close to
short circuit and open circuit). Fig. 3 shows the measured
reflecting coefficients at the antenna port for the two switch
states. The modulation gain relative to the ideal backscatter
|0ON − 0OFF|

2/4 is 0.62 at 868 MHz (or −2 dB).

FIGURE 3. Measured reflection coefficients of the ADG902 switch
(S11 state OFF, S22 state ON) as a function of the frequency between
100 − 1000 MHz.

Figure 4 shows a screenshot of the measured spectrogram
using a software-defined radio (SDR) receiver (RTL-SDR
dongle). In this measurement, the RTL-SDR was used as
a low-cost spectrum analyzer. The spectrogram is obtained
from the phase and quadrature (IQ) samples measured by
the SDR module. Both the transmitted LoRa channel and the
shifted signal to fTX ± fosc can be seen when the backscat-
ter is enabled. In this example, a spread factor (SF) of 12,
a bandwidth (BW) of 125 KHz, and a backscatter oscillation
frequency (fosc) of 300 kHzwas employed. Therefore, a LoRa
receiver tuned to this shifted channel can detect the presence

FIGURE 4. Spectrogram of a transmitted channel and backscatter signals
when the backscatter is enabled and disabled.

of the backscatter and demodulate the packets as long as the
backscatter modulator is on.

B. PROPAGATION MODEL
The method proposed is based on the measurement of the
RSSI from different receivers tuned to the frequency channel
shifted by the backscatter. In this section, we propose an
empirical model to perform simulations of coverage area and
localization rates.

The received power (PR) can be expressed as in an RFID
system using the radar equation [47]:

PR =
PTGT
4πd2T

RCSdif
1

4πd2R

λ2

4π
GR (3)

wherePT is the transmitted power,GT the transmitter antenna
gain,GR is the receiver antenna gain,RCSdif is the differential
radar cross-section of the backscatter, and dT and dR are the
distance from the transmitter to the backscatter and from the
backscatter to the receiver, respectively. The receiver power
increases when the backscatter is close to the transmitter or
the receiver. The locus of points with constant received power
approximately describe an ellipse.

However, the Friis model (3) is only valid in free space or
in situations where the antennas have high directivity, which
avoids multipath interference. In order to include multipath
propagation, an empirical model is often considered. The
RSSI is the received power expressed in dBm [19]:

PR (dBm) (dT , dR) = PR (dBm) (d0, d0)− 10n1 log
(
dT
d0

)
−10n2 log

(
dR
d0

)
− Lwall + X (4)

Eqn. (4) is split into two parts considering the two exist-
ing propagation paths: transmitting to the backscatter and
backscattering to the receiver. In (4), d0 is the reference
distance (i.e. the midpoint between transmitter and receiver

VOLUME 9, 2021 16007



A. Lazaro et al.: Room-Level Localization System Based on LoRa Backscatters

d0 = (dTx−Rx/2)),PR(d0, d0) is the average received power
at d0, n1 and n2 are the path loss exponents, whose values
depend on the environment and the height of the anten-
nas. Typical values for indoor environments vary between
2.5 and 3. Lwall are the losses due to the diffraction and
attenuation of the walls and X is a random variable that takes
into account the attenuation due to multipath propagation.
PR(d0, d0) can be found experimentally from the regression
of measured data. PR(d0, d0) is a function of the transmitted
power and the gain of the antennas. However, it is also a
function of the height of the antennas and depends on the
diffraction. However, in this section, to perform our simula-
tions, we consider the following expression derived from the
Friis transmission equation.

FIGURE 5. Diagram used for the description of the propagation analysis.

A typical deployment scenario is shown in the diagram
in Figure 5. The attenuation due to path loss between the
transmitter and backscatter is equal from all the receivers,
but the power of the received signals depends on the distance
between each receiver and the backscatter dRi and the number
of walls that each signal goes through. It is expected that the
maximum received power will be that of the receiver that is
in the same room as the backscatter device because it will be
closer to it and attenuation due to the walls will not be an
issue.

Typical wall attenuation at 900 MHz for a brick wall
is 5 dB and 15–18 dB for a double reinforced concrete
wall [48]. In the model, the distribution presented by the
random variable X can be considered of the log-normal type
X (dB)∼N(0,σ ), where σ [dB] is the standard deviation and
experimental results yield values between 2 and 4 dB for
a single path [49] (in this case a double path due to the
backscatter channel is expected).

The coverage probability (Prob) is that in which the aver-
age received power or RSSI, PR (dBm), is higher than the
receiver sensitivity S (in dBm). For a log-normal distributed
channel this is given by [50]:

Prob (PR > S) =
1
2
erfc

(
S − PR
√
2σ

)
(5)

where erfc is the complementary Gauss error function. For a
σ = 8 dB and a received power of 10 dB above the sensitivity
(fading margin), the coverage probability is about 90%.

LoRa receiver sensitivity depends too on the noise figure of
the receiver and the bandwidth (BW). It is computed from the
noise floor plus the required signal to noise ratio (SNR) [12]:

S (dBm) = −174+ 10 log (BW )NF(dB)+ SNR(dB) (6)

where BW is the bandwidth of the LoRa signal and NF is
the LoRa receiver noise figure. The SNR is negative and can
be approximated by a function of the spreading factor (SF),
which can be selected in LoRA transceivers from 7 to 12 [12]:

SNR (dB) = −7.5− 2.5(SF − 7) (7)

One of the reasons why the LoRa transceiver is used in this
system is its high sensitivity, which allows the detection of the
backscatter in indoor environments in spite of the attenuation
typically experienced in such spaces. From (6), for a spread
factor of 12, a bandwidth of 125 kHz, and assuming a typical
noise figure of 6 dB, the receiver sensitivity is −137 dBm.

FIGURE 6. Block diagram of the classification procedure.

C. ROOM-LEVEL CLASSIFICATION
The classification process is schematically described
in Fig. 6. The LoRa transmitter regularly transmits packets
using a counter for packet identification. The transmission
time interval (packets transmitted per second) can be config-
ured depending on the desired tracking frequency or appli-
cation. When it strikes the device, the signal coming from
the LoRa transmitter is backscattered towards the receivers
located in each room to identify the signal. Each receiver has
been tuned to the shifted frequency channel. The received
RSSI and SNR measured by the LoRa transceiver and the
packet identification number are sent to the MQTT bro-
ker. In this case, a Wi-Fi transmission was used because
the ESP32 has a built-in Wi-Fi transceiver. However, in
the absence of Wi-Fi coverage, the receiving node can be
configured to transfer the message via LoRa to a gateway
with an internet connection, which will upload the data to
the MQTT broker. A custom Mosquitto broker was used in
the experiment but other MQTT brokers can also be used.
There are two modes of operation: training mode and the
normal operation mode. In the former, the data are stored
in a database for later use in the training of the classifiers.
Then, to train the system, data are provided together with
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the room where the backscatter is, allowing the system to
learn the footprint of each backscatter location. To indicate
the room where the backscatter is located during the training
stage, a message is sent to an MQTT configuration topic
using a mobile app. After that, the training data collected are
used for training the machine learning model. The MQTT
client is implemented in Python using the Eclipse MQTT
Paho module. The scikit-learn module was used for machine
learning. In the normal operation mode, the room number
is determined by the measured RSSI and SNR data, which
are obtained from the subscription to the respective MQTT
topics of the receivers. If any of the receivers do not receive
the backscattered packet because they are outside its coverage
area, the minimum value of RSSI (sensitivity) and SNR
will be assigned. The simplest classification method consists
of assigning the room to the index of the receiver with
the highest SNR or RSSI. As the resolution in the RSSI
measurement is only 1 dBm for the LoRa transceiver used
in this work, the use of the SNR measurements seems to be
the most appropriate option due to their higher resolution,
which tends to yield better results. In any case, the room
can be determined with both the RSSI and the SNR mea-
surements, providing the system a double-check calculation.
If advanced machine learning algorithms are used for the
room classification, the room index is obtained by running
the trained classifier. The simulated and experimental results
with different classifiers will be described in the coming
sections.

III. SIMULATIONS
Figure 7 shows the received power in dBm computed using
the model (3)-(4) as a function of the backscatter location at
868MHz.We considered a 50m distance between transmitter
and receiver. Fig. 7a shows the ideal free space case, whereas
Fig. 7b shows a scenario with decay factors (n1 and n2)
of 2.5. The EIRP transmitter power was 20 dBm, and the
receiver antenna gain was 2.2 dBi. The gain of the backscatter
antennawas−1 dBi (the typical surface-mount antenna gain).
In the simulations, the measured backscatter gain and the
ideal square wave waveform were used. An indoor scenario
resulted in a considerable reduction in receiver power. How-
ever, these simulation results show that a LoRa backscatter
can be detected within an area of about 100 m2, although
the attenuation of walls or other objects would decrease this
coverage area. We present measured results in a house in the
next section.

A series of simulations were performed to validate the
proposed method. Six rooms of different sizes covering an
area of 40 m × 40 m were considered. The received power
obtained from the model (4) are shown in Fig. 8. A value
of 10 dB was taken for wall attenuation with a standard
deviation of 8 dB. The transmitter was located approximately
in the center of room one.

Several classifiers can be used to determine the room num-
ber associated with the RSSI measured at each one of the
receivers. The simplest method consists of determining the

FIGURE 7. Contour map of the received power as a function of the
backscatter location (a) in free space and (b) considering a propagation
decay factor of 2.5.

FIGURE 8. Contour map of the received power as a function of
backscatter location for each receiver location.

room number through the receiver with the best power recep-
tion. Fig. 9 shows the classified rooms for the last simulated
scenario using the simplest RSSI classifier, where the room
is assigned to the receiver that collects the strongest RSSI
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FIGURE 9. Color map that shows the classified room using an RSSI level
classifier. Each room is represented by a different color. The position of
the receiver is indicated with the room number. The position of the
transmitter is also shown.

TABLE 1. Accuracy (%) as a function of classifier.

signal. This method has the advantage of not requiring a train-
ing step. Although this method worked reasonably well in the
presence of noise, other classifiers were also analyzed. Clas-
sifiers implemented in Python scikit-learn machine learning
module [51] were used for comparison. The classifiers were
trained with 20% of the samples (simulated reception powers
for several backscatter locations). The samples were chosen
at random and the other 80% were used to test the trained
classifier. Table 1 compares the accuracy obtained for each
classifier. The best classifier found was linear discriminant
analysis (LDA), which achieved an accuracy of up to 91.5%.

Table 2 shows the confusion matrix C for the linear dis-
criminant analysis (LDA) classifier. Each element of this
matrix Cij is equal to the number of observations known to be
in the room i and predicted to be in the room j. For example,
in the first row, the first column indicates the room where
the backscatter is, in this case room one. The algorithm was
correct in its predictions in 93.84% of cases, but in 3.07%
of cases, it determined that the backscatter was in room two,
in 1.54% it predicted room three and in 1.54% room four.
The results shown in Table 2 have been normalized by the

TABLE 2. Normalized confusion matrix in % using linear discriminant
analysis (LDA).

total number of samples. Note that to improve readability
the values equal to zero have been left blank. As the table
shows, there was a small degree of confusion with neighbor-
ing rooms.

IV. EXPERIMENTAL RESULTS
The proposed room-level localization system was tested in a
complex scenario like a house. Several experiments were con-
ducted to determine the coverage of the LoRa backscattering
system. Fig. 10 shows a heatmap of the received RSSI for
the different rooms equipped with receivers. The backscatter
was placed on the wrist of a volunteer moving along different
points on a grid that was used to plot the heatmap. The trans-
mitter was located approximately in the center of the house (in
the hallway) and a receiver was located in another room sep-
arated by walls. The receiving power strength on the receiver
increased when the backscatter was near the transmitter or
receiver. But reasonable coverage (exceeding −122 dBm)
was achieved in all situations. In addition, the backscatter
signal could also be received by the nearest receivers. In this
test, the transmitted channel frequency was 868 MHz and the
receiver was tuned to the shifted channels spaced at 300 kHz.
The bandwidth was 125 kHz and the spread factor was 12.

TABLE 3. Accuracy (%) as a function of classifier.

The system was applied to the scenario shown in Fig. 10,
where the transmitter was located in the center of the hall
and four receivers were installed in the adjacent rooms. The
training procedure was performed as described in section II.
A comparison of the accuracy achieved in each room is
summarized in Table 3. Considering the method based on the
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FIGURE 10. Measured heatmap of the received power as a function of
the backscatter location for: (a) receiver RX1 located in room number one
(b) receiver RX2 located in room number two, (c) receiver RX3 located in
room number three and (d) receiver RX4 located in room number four (d).

highest SNR level, the degree of accuracy was very good for
rooms one and two because the received strength levels were
high, whereas in rooms three and four, except for some points,
the degree of coverage was much lower, or even non-existent.
Applying the same analysis, the accuracy for rooms three and
fourwasworse compared to rooms one and two. This explains

TABLE 4. Normalized confusion matrix in % using linear discriminant
analysis (LDA).

the low degree of accuracy for these rooms using the simplest
method. However, the other classifiers were able to achieve
high degrees of accuracy in all four rooms, regardless of the
room’s potential coverage. Our experimental results showed
that the best average accuracy was obtained with the LDA
classifier although the accuracy for room two was worse than
that obtained with the other classifiers. In any case, the differ-
ences in the average accuracy among classifiers were slight,
excluding the highest SNR level classifier. The Gaussian
Naïve Bayes classifier (NB) was not analyzed because the
measured data in the rooms did not meet the gaussianity
conditions for the method that would allow it to be applied.
The normalized confusion matrix for the KNN classifier is
shown as an example in Table 4. The elements of the principal
diagonal that present the highest percentages correspond,
as expected, to the neighboring rooms. There were a signif-
icant number of cases (10%) that increased the confusion
in the classification process between rooms four and one.
This is because the coverage area of Rx1 and Rx4 partially
overlapped with similar received levels.

V. DISCUSSION
This section examines existing indoor localization technolo-
gies described in the literature. Although several surveys
(e.g [20], [52]) on localization are available, this section
aims to compare the advantages and limitations of the system
proposed here in relation to other similar systems. Table 5
summarizes some of the properties, advantages and disadvan-
tages of the technologies studied. The different technologies
analyzed are described below.

A. WI-FI
Wi-Fi networks (based on IEEE 802.1 standards) operate on
ISM bands and are used to provide internet access to com-
puters and smartphones, especially in indoor environments.
Therefore, Wi-Fi is an ideal system for indoor localization
and has been widely examined in the literature. Existing
access points deployed for communication can be used as
reference (anchor) nodes for localization without the need for
additional infrastructure. However, it is sometimes necessary
to install more anchors to improve accuracy, which increases
the cost. Localization techniques based on RSSI measure-
ments are the most common [53], [54]. However other tech-
niques use the measurement of channel state information
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TABLE 5. Summary of different technologies for indoor localization.
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TABLE 5. (Continued.) Summary of different technologies for indoor localization.

(CSI) [55] provided by someWi-Fi boards. ToA has also been
proposed, although it requires hardware modifications [56].
Angle-of-arrival (AoA) localization techniques were recently
investigated in [57], [58]. Fingerprinting is a widely used
indoor positioning method used with several wireless access
technologies including Wi-Fi, BLE, and Zigbee [52]. This
method can improve accuracy in NLOS environments, but
it requires the creation of a database from training measure-
ments and the results depend on the density of reference
points.

B. ZIGBEE
Zigbee (IEEE 802.15.4 standard) based localization tech-
niques [59], [60] share the primary drawback of Wi-Fi-based
techniques. But the use of Zigbee networks (mainly used
for wireless sensor networks) is not as widespread in indoor
environments as Wi-Fi networks, and require an additional
deployment that increases the cost of the localization system.

C. UWB
Ultra-wideband (UWB) is one of the wireless solutions that
has been the focus of much attention for indoor localiza-
tion. This interest arises from the fact that the use of large
bandwidth yields high time resolution because it is possible
to separate multiple reflections from the pulse. As a conse-
quence, UWB systems can obtain centimeter-level ranging
accuracy under LOS conditions, even in indoor environ-
ments with multipath interferences [61]. The position is often

determined by trilateration from the measured ToA from
different anchors distributed in the coverage area. Local-
ization accuracy depends on the number of anchors, their
location and the LOS coverage. To address the problem of
cost-effective UWB-based localization in complex indoor
environments, hybrid trilateration and fingerprint algorithms
have been developed [62]. The cost of the system depends
on the number of anchors. UWB technology is not as exten-
sive as other wireless technologies and the cost of UWB
transceivers is still expensive compared with other wireless
systems (e.g. Wi-Fi or Bluetooth).

D. BLUETOOTH
The latest version of Bluetooth (IEEE 802.15.1) is known
as Bluetooth Low Energy (BLE), which achieves a cov-
erage range of 10–20 meters indoors with better energy
efficiency compared to previous versions. The RSSI mea-
surement provided by BLE devices can be used for local-
ization [63]. However, two BLE based protocols, iBeacons
(by Apple Inc.) and Eddystone (by Google, Inc.), have been
designed for context-aware proximity services. From the
messages received from the beacon and from the RSSI,
users are classified into three range regions (immediate,
near, far, or unknown) [64]. Based on the user’s proxim-
ity to any beacon, the mobile application triggers an action
(e.g. sends a notification or a discount coupon) [65]. Finger-
print approaches based on iBeacon have been proposed in the
literature [66], [67].
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E. RFID
RFID systems can be classified into active and passive. Active
RFID is often used to track assets outdoors, where great
position accuracy (order of meters) is not required and when
measurements are taken over long periods of time that require
long-lasting batteries. They are based on UHF (ISM 433 or
868 MHz bands) and ISM 2.45 GHz. Essentially, two dif-
ferent types of active RFID tags are available: transponders
and beacons. With transponders, communication works by
means of backscattering, but using battery-assisted (BAP)
devices. Active RFID transponders are commonly used in
secure access control and payment systems at toll booths.
Battery-assisted UHF tags that comply with Gen 2 stan-
dards [68] (and therefore, can be read with standard UHF
readers) have recently been released which can extend the
range of passive RFID systems up to 20 m. In these BAP
tags, the uplink read range is limited by the sensitivity of
the reader as in passive UHF tags. However, some active
RFID tags use beacons tags. These tags use a transmitter
that sends out messages every few seconds. The use of trans-
mitters extends the read range but can noticeably reduce
the battery life depending on the transmission duty-cycle
used. Active tag beacons are very common in the oil and
gas industry, and for cargo tracking systems. For example,
commercial Tagsense tags use a modified Zigbee transmitter,
and Omni-ID integrates BLE and LoRaWAN transceivers.
The read range in the open field is about 80 m depending
on the antennas used [69]. This read range is notably reduced
in indoor environments to 20 m))[70] due to multipath prop-
agation. The sensitivity of a typical reader is on the order
of −100 dBm. The price of active RFID tags is between
$20 and $100 depending on their functionality and whether
they must withstand harsh conditions. Although active RFID
is designed for outdoor applications, it has been explored for
indoor localization applications as well. LANDMARC is one
of the most popular indoor localization technologies used in
active RFID tags [71]–[73].

Passive tags, on the other hand, have shorter transmission
ranges because they do not use a battery. They therefore have
a lower read range than active RFID tags. UHFRFID can read
up to a few meters, but HF RFID and NFC can read up to a
few centimeters. Although they have the advantage of low
cost, UHF readers are more expensive than the NFC readers
available in modern smartphones. A navigation system based
on NFC has recently been proposed in [74]. The limita-
tions on coverage make passive RFID suitable for proximity
applications [75].

F. ACOUSTIC
Radiofrequency (RF) signals share many characteristics with
acoustic signals. Compared to more common RF signals
like Wi-Fi, acoustic localization has been gaining strength
because its main requirements are microphones and speakers,
which are widely equipped on many smart devices [76], [77].

Another advantage of the acoustic signal is that the speed of
sound is much lower than the speed of a RF signal, which
is a positive factor in achieving higher accuracy. Different
localization techniques are being used that combine mul-
tiple microphone signals, such as those based on time of
arrival (ToA), time difference of arrival (TDoA), Doppler
effect, direction of arrival (DOA), and steered response power
(SRP) [53]. One advantage of these devices is that they can
use the microphones built into smartphones [78].

G. ULTRASOUND
Ultrasound-based localization technology uses ultrasound
waves (typically at 44 kHz) to measure the ToA between
a transmitter and a receiver [79], [80]. Due to the lower
velocity of sound compared to that of an electromag-
netic wave, accuracies of less than centimeters can be
achieved in range measurements. For node synchronization,
the ultrasound localization system requires a secondary RF
link. One disadvantage of these systems is the dependence
of sound velocity on temperature and humidity and the
high levels of environmental noise, which reduce accuracy
and coverage.

H. VISUAL SYSTEMS
Visual localization systems are commercially available on the
market (e.g. Kinect [81]or Wii [82] for games). They do not
have interferences from RF devices, but they are affected by
environmental lighting conditions and pose privacy issues.
Another disadvantage of this technology is the high compu-
tational requirements that make it difficult to integrate into
smartphones or wearables. These systems also require LOS,
limiting their coverage to only a few meters [83].

I. VISIBLE LIGHT
Visible light-based localization techniques use light sensors
to measure the position and direction of LED emitters that
work something like iBeacons. The localization is based on
AoA methods[84]. The advantage of this technology is its
low cost, which makes it possible to install the LEDs over
large areas. However, the biggest drawback with this tech-
nology, as with other techniques based on light, is the need
for LOS.

J. LIDAR
LIDARs and infrared cameras are becoming more popular in
robotics [85] as their accuracy is in the order of millimeters.
LIDAR is fast and accurate and it is gaining popularity with
car makers due its use in the development of autonomous
cars [86]. Although LIDAR systems are becoming increas-
ingly common, such systems are still expensive.

K. INFRARED (IR)
The low cost of IR positioning systems makes them a
potential candidate at the room level, though their coverage
range and accuracy are limited [87]. Technical limitations
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such as the required LOS between the transmitter and
the receiver and the interference of IR waves with fluo-
rescent light and sunlight reduce the widespread usabil-
ity of these systems. These issues have led researchers
to explore alternative approaches to infrared-based indoor
positioning.

L. PROPOSED SOLUTION BASED ON LoRa BACKSCATTER
The main novelty of the proposed system is the utilization
of a LoRa backscatter. With the exception of RFID systems,
which also rely on backscattering communication, other wire-
less systems use communication between a transmitter and
receiver. Consequently, the power consumption of the pro-
posed system is lower than even BLE and Zigbee devices.
We have presented a low-cost (< $5) proof-of-concept of
a wearable device. The prototype can run continuously for
24 days or for more than two years if the refresh rate is
reduced to 1/10 seconds with a 500 mAh Lite-on battery. The
proposed system has been designed for room-level localiza-
tion; however, other techniques based onRSSI, such asWi-Fi,
Zigbee or BLE can also be applied. The computational cost
of the algorithm is low, and it is implemented on a server.
Low power consumption is a key advantage as it eliminates
the need for frequent battery replacement, which can be an
issue in ADL applications for use with the elderly. This
long battery life also means that the system can be used to
track assets in indoor environments. The high sensitivity of
LoRa receivers and their great immunity to interferences [88]
due to the robustness of the CSS-modulation scheme allow
a higher coverage range than other backscatters, including
active RFID based on proprietary protocols. The use of
lower frequencies reduces the undesirable effects associated
with the attenuation and diffraction by the body compared
with systems operating in 2.45 GHz bands. In addition,
in some countries, the ISM 433 MHz band can be used
for LoRa (e.g. based on Semtech SX1278 [19]) allowing
the coverage range to be expanded. The result is better for
indoor coverage, reducing the number of anchors or reference
nodes and improving performance in wearable applications.
LoRa is also a low-cost, low-power standardized wireless
system that is continuously growing. Therefore, the cost of
LoRa transceivers is lower than active UHF RFID readers.
Low-cost Wi-Fi nodes with LoRa transceivers are used as
receivers, therefore the use of expensive multichannel gate-
ways or routers is not required. For example, in this work,
a low-cost ESP32 shield with a Semtech SX1276 transceiver
was used in the experiments. Therefore, the overall cost of
the system is lower than UWB and comparable to Wi-Fi or
Zigbee based systems.

Device-free localization (DFL) techniques have been pro-
posed using the variation of the RSSI received from different
signals in a wireless network to detect and count the presence
of human activity [89]. Although DFL has several interest-
ing applications, the results are likely to be more sensitive
to environmental changes. Fingerprint-based algorithms are

often used in DFL. However, the training data requires several
measurements with a person standing at different positions
to avoid the influence of measurement noise. Also, training
environments with multiple people who backscatter the sig-
nals is challenging [89]. In the proposed system, the multiple
signals backscattered on different objects in the scene are
filtered from those produced by the LoRa backscatter because
they change the frequency to another channel.

VI. CONCLUSION
Techniques for estimating the absolute positions of users in a
coordinate system have beenwidely researched. Today, appli-
cations can locate a person or an object within a building by
merely monitoring the room in which that individual or item
is located. This paper presents an indoor localization system
with room-level accuracy and a focus on easy setup and a
low-cost network. The system is based on the analysis of the
backscattered signal strength received by LoRa transceivers
deployed in an indoor environment. The backscatter device
stands out for its low power consumption and long range.
This paper has explored different methods, ranging from a
simple technique that assigns the room to the receiver with
the highest measurement value to other more sophisticated
techniques based on machine learning. The method based on
the highest level detected exhibits great accuracy as long as
the coverage is good in all rooms. Otherwise, to obtain better
accuracy, methods based on machine learning are required.
In these cases, a process to train the classification algorithms
is necessary. This is a quick and straightforward process that
only requires taking random samples in each room, without
the need to determine the absolute coordinates at the sampling
points. The proposed method also does not require establish-
ing a propagation model, unlike other existing methods in
the literature. The use of a low-cost, low-consumption LoRa
backscatter device eliminates the need for frequent battery
recharging, unlike in devices with higher consumption. Our
experimental results show that the LoRa backscatter can be
detected through the walls in indoor environments. The LoRa
backscatter can be easily integrated into a comfortable wrist
band. Due to the high sensitivity of the LoRa system, a large
number of anchors are not required. Simulated and experi-
mental results show that only one receiver in each room and
a transmitter for every three to four receivers are needed to
locate a person at the floor level in a standard home. The
wireless network required can be implemented using low-cost
modules available on the market without any modification.
The backend system can be implemented in any computer
without the need for expensive servers usingMQTT protocol.
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