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Abstract: Many organizations devote significant resources to building high-fidelity deep learning
(DL) models. Therefore, they have a great interest in making sure the models they have trained are
not appropriated by others. Embedding watermarks (WMs) in DL models is a useful means to protect
the intellectual property (IP) of their owners. In this paper, we propose KeyNet, a novel watermarking
framework that satisfies the main requirements for an effective and robust watermarking. In KeyNet,
any sample in a WM carrier set can take more than one label based on where the owner signs it.
The signature is the hashed value of the owner’s information and her model. We leverage multi-
task learning (MTL) to learn the original classification task and the watermarking task together.
Another model (called the private model) is added to the original one, so that it acts as a private key.
The two models are trained together to embed the WM while preserving the accuracy of the original
task. To extract a WM from a marked model, we pass the predictions of the marked model on a
signed sample to the private model. Then, the private model can provide the position of the signature.
We perform an extensive evaluation of KeyNet’s performance on the CIFAR10 and FMNIST5 data
sets and prove its effectiveness and robustness. Empirical results show that KeyNet preserves the
utility of the original task and embeds a robust WM.

Keywords: deep learning models; ownership; intellectual property; watermarking; security and
privacy; private model

1. Introduction

Deep learning (DL) models are used to solve many complex tasks, including computer
vision, speech recognition, natural language processing, or stock market analysis [1–3].
However, building representative and highly accurate DL models is a costly endeavor.
Model owners, such as technology companies, devote significant computational resources
to process vast amounts of proprietary training data, whose collection also implies a signif-
icant effort. For example, a conversational model from Google Brain contains 2.6 billion
parameters and takes about one month to train on 2048 TPU cores [4]. Besides, designing
the architecture of a DL model and choosing its hyperparameters require substantial ML
experience and many preliminary tests. Thus, it is not surprising that the owners of DL
models seek compensation for the incurred costs by reaping profits from commercial ex-
ploitation. They may monetize their models in Machine Learning as a Service (MLaaS)
platforms [5] or license them for a financial return to their customers for a specific period
of time [6].

Unfortunately, the high value of pretrained DL models is attractive for attackers who
would like to steal those models and use them illegally. For example, a user may leak a
pretrained model to an unauthorized party or continue to use it after the license period
has expired. Furthermore, if a model is offered as MLaaS, many model theft techniques
are available to steal it based on its predictions [7,8]. Due to the competitive nature of the
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technology market, a stolen or misused model is clearly detrimental to its owner on both
economic and competitive terms.

As model theft cannot be prevented in advance, legitimate owners need a robust and
reliable way to prove their ownership of DL models in order to protect their intellectual
property (IP).

Digital watermarking techniques have been widely used in the past two decades as a
means to protect the ownership of multimedia contents like photos, videos and audios [9–12].
The general idea of watermarking is to embed secret information into a data item (without
degrading its quality) and then use the embedded secret to claim ownership of the item.

This concept of watermarking can also be extended to DL models. Several authors
have proposed to use digital WMs to prove the ownership of models and address IP
infringement issues [13–21]. The proposed methods fall into two main classes: (i) white-box
methods, which directly embed the WM information into the model parameters and then
extract it by accessing those parameters, and (ii) black-box methods, which embed WMs
in the output predictions of DL models. The latter type of methods employ so-called
trigger (or carrier) data samples that trigger an unusual prediction behavior: these unusual
trigger-label pairs constitute the model watermark and they can be used by the model
owner to claim her ownership.

As shown in Table 1, watermarking should fulfill a set of requirements to ensure its
effectiveness and robustness [13,15,18,19,22]. Nonetheless, simultaneously satisfying all of
these requirements is difficult to achieve [22].

Table 1. Requirements for watermarking of deep learning models.

Requirement Description

Fidelity The accuracy of the marked model on the original task shall not be degraded as a result of watermark
embedding.

Robustness The watermark shall be robust against model modifications such as model fine-tuning, model compression or
WM overwriting.

Reliability Watermark extraction shall exhibit a minimal false negative rate to allow legitimate owners to detect the WM
with high probability.

Integrity Watermark extraction shall result in a minimal amount of false positives; unmarked models must not be falsely
claimed.

Capacity It must be possible to include a large amount of watermark information in the target model.

Security The watermark must not leave a detectable footprint on the marked model; an unauthorized party must not be
able to detect the existence of a WM.

Unforgeability An attacker must not be able to claim ownership of another party’s watermark, or to embed additional
watermarks into a marked model.

Authentication A strong link between the owner and her watermark must be provided; reliable verification of the legitimate
owner’s identity shall be guaranteed.

Generality The watermarking methodology must be applicable to different DL architectures and data sets.

Efficiency Embedding and extracting WMs shall not entail a large overhead.

Uniqueness The watermarking methodology must be able to embed a unique watermark for each user in order to
distinguish each distributed marked model individually.

Scalability Unique watermarking must scale to many users.

Contributions and Plan of This Article

We propose KeyNet, a novel watermarking framework that meets a wide range of
desirable requirements for effective watermarking. In particular it offers fidelity, robustness,
reliability, integrity, capacity, security, authentication, uniqueness, and scalability.

KeyNet depends on three components: the WM carrier set distribution, the signature,
and the marked model and its corresponding private model. The private model is trained
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together with the original model to decode the WM information from the marked model’s
predictions. The WM information is only triggered by passing a sample from the WM
carrier set signed by the legitimate owner to the corresponding marked model. The
predictions of the marked model represent the encoded WM information that can be
decoded only by the corresponding private model. The private model takes the predictions
as input and decodes the WM information.

Unlike in previous works (discussed in Section 2), a watermarked input can take more
than one label, which corresponds to the position of the owner’s signature. Besides, the
number of WM classes can be greater than the original task classes.

To successfully embed the WM and preserve the original task accuracy, the owner
leverages multi-task learning (MTL) to learn both the original and the watermarking tasks
together. After that, the owner distributes the marked original model, and keeps the private
model secret. The owner uses the private model as a private key to decode the original
model’s outputs on the WM carrier set.

The main contributions of our work can be summarized as follows:

• KeyNet provides a strong link between the owner and her marked model by inte-
grating two reliable authentication methods: a cryptographic hashing algorithm and
a verification protocol. Furthermore, the use of a cryptographic hash improves the
capacity of embedding WM information. Besides being robust against DL model
modifications such as compression and fine-tuning, KeyNet does not allow the WM to
be overwritten by attackers without losing the accuracy of the original task.

• We demonstrate the ability of our framework to scale and fingerprint different unique
copies of a DL model for different users in the system. The information of a user is
combined with the owner’s information, the carrier is signed with the combined infor-
mation, and then a unique pair of a pretrained model along with its corresponding
private model is fine-tuned before being delivered to the user. After that, the owner
can identify the point of leakage with a small number of queries.

• We conduct extensive experiments and evaluate the proposed framework on different
DL model architectures. The results show that KeyNet can successfully embed WMs
with reliable detection accuracy while preserving the accuracy of the original task.
Moreover, it yields a small number of false positives when tested with unmarked
models.

The remainder of the paper is organized as follows. Section 2 discusses related work.
Section 3 describes the attack model to watermarking systems. Section 4 presents our
framework in detail. Section 5 describes the experimental setup and reports the results on
a variety of data sets. Finally, Section 6 gathers conclusions and proposes several lines of
future research.

2. Related Work

The use of digital watermarking techniques has recently been extended from tradi-
tional domains such as multimedia contents to deep learning models. Related works can
be categorized based on their application scenario as follows.

2.1. White-Box Watermarking

In this scenario, the model internal weights are publicly accessible. In [13], the authors
embed an N-bit string WM into specific parameters of a target model via regularization.
To this end, they add a regularizer term to the original task loss function that causes a
statistical bias on those parameters and use this bias to represent the WM. To project the
parameters carrying the WM information, they use an embedding parameter X for WM
embedding and verification. Based on the same idea, the authors of [23] use an additional
neural network instead of the embedding parameter to project the WM. The additional
network is kept secret and serves for WM verification. Other works [24,25] also adopt the
same approach for embedding the WM information in the internal weights of DL models.
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2.2. Black-Box Watermarking

Assuming direct access to the weights of a DL model to extract the WM is often
unrealistic, particularly when someone wishes to extract the WM to claim legitimate
ownership of a seemingly stolen model in someone else’s power. To overcome this problem,
several black-box watermarking methods have been proposed. These methods assume
access to the predictions of the model and, thus, embed the WM information into the
model’s outputs. The idea of these methods is to use some samples and assign each sample
a specific label within the original task classes [14,15,17,19,26]. The trigger–label pairs form
what is called a trigger set or a carrier set. The carrier set is then used to embed the WM into
the target model by training the target model to memorize its trigger–label pairs along with
learning the original task. As DL models are overparameterized, it is possible to make them
memorize the trigger–label samples through overfitting [27]. Such embedding methods are
known as backdooring methods [15]. The triggers are used later to query a remote model
and compare its predictions with the corresponding labels. A high proportion of matches
between the predictions and the labels is used to prove the ownership of the model.

Trigger set methods can be classified into several types. A first type of methods
is based on assigning a random label to each trigger. The trigger samples themselves
may be random samples from different distributions [15] or adversarial samples [17].
This approach has many drawbacks. Beyond its limited capacity regarding the number
of triggers that can be used for verification, it does not establish a strong link between
the owner and her WM. Thus, it is easy for an attacker to insert his WM by using a set of
trigger–label pairs, giving them random labels, and then claim ownership of the owner’s
model. This type of attack is called the ambiguity attack [24].

A second type of methods relies on inserting the WM information into the original
data. The inserted information may be a graphical logo [28], the owner’s signature [26],
a specific text string (which could be the company name) [14], or some pattern of noise [14].
These methods may affect the accuracy of the model in the original task. Besides, the WM
may be vulnerable to model fine-tuning aimed at destroying the WM. That is possible
because the WM samples will be close to their counterparts in the same class in the feature
space. Therefore, fine-tuning may cause the WM pattern to be ignored and those samples
to be classified into their original classes again [29].

Another type of black-box methods proposes to exploit the discarded capacity in
the intermediate distribution of DL models’ output to embed the WM information [21].
They use non-classification images as triggers and assign each trigger a serial number (SN)
as label. SN is a vector that contains n decimal units where n is the number of neurons in
the output layer. The value of SN serves as an identity bracelet that proves ownership of a
marked model. To embed the WM information in the softmax layer predictions, they train
the target model to perform two tasks simultaneously: the original task, which is a multi-
class classification task, and the watermarking task, which is a regression task. They use
the mean square error (MSE) as a loss function for the watermarking task to minimize the
difference between the predicted value of a trigger and its corresponding SN. To link the
owner with her marked model, they create an endorsement by a certification authority on
the generated SNs. Ownership verification is performed by sending some trigger inputs,
extracting their corresponding SNs, and having them verified by the authority. This method
preserves the original task accuracy and also creates a link between the owner and her
WM model. However, it has several drawbacks. The length of the SN depends on the size
of the output layer in the model. This may prevent the owner from embedding a large
WM. Moreover, by relying on values after the decimal point to express a specific symbol
in the SN, if some decimal values are slightly changed, the entire SN will be corrupted.
A modification like model fine-tuning would lead to destroying the WM information.
In this respect, the authors do not evaluate two important types of modifications that could
affect the WM: model fine-tuning and WM overwriting.

A recent paper [30] proposes to watermark DL models that output images. They force
the marked model to embed a certain WM (e.g., logo) in any image output by that model.
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They train two models together: the marked model and the extractor model. The latter
extracts the WM from the output of the former. The marked model is distributed while
the extractor is kept secret by the owner. The paper does not evaluate the robustness of the
method against the basic attacks that may target the marked model, such as model fine-tuning,
model compression, and WM overwriting. Besides, there is a high probability that the WM
extractor has memorized the WM in its weights; as a result, when it receives images from
models different from the marked one, it might generate the same WM each time.

A shortcoming of most of the aforementioned WM methods is that the WM is the
same in all copies of the model [22]. Therefore, if the owner distributes more than one copy
of a model, it is impossible for the legitimate owner to determine which of the authorized
users has leaked it.

3. Attack Model

To ensure the robustness of a watermarking methodology, it should effectively over-
come (at least) three potential attacks:

• Model fine-tuning. In this attack, an attacker who has a small amount of the original
data retrains the WM model with the aim of removing the WM while preserving the
accuracy in the original task.

• Model compression. The compression of a DL model’s weights minimizes its size
and speeds up its performance. Model compression may compromise the WM within
the marked model, thereby affecting its detection and extraction.

• Watermark overwriting. This type of attack is a major threat to the WM because it
might result in the attacker being able to overwrite the owner’s WM, or also to embed
another WM of his own and thus seize ownership of the WM model. We make the
following assumptions about the attacker. First, the attacker is assumed to have a
small amount of training data when compared to the owner. Otherwise, he can use
his data to train a new model from scratch, or use the predictions of the WM model to
create an unmarked copy of it by predictive model-theft techniques [7]. Second, the
attacker is assumed to be aware of the methodology used to embed the WM but to
be unaware of the carrier set distribution, the owner’s signature, or the topology of
the owner’s private model. An attack is considered to be successful if the attacker
manages to overwrite the WM without losing much accuracy in the original task.
The goal is to prevent the attacker from overwriting the WM without significantly
impairing the original task accuracy, proportional to the amount of data he knows. To
make a realistic trade-off, the relationship between the size of the data known by the
attacker and the loss in original task accuracy should be inversely proportional: the
smaller the attacker data, the greater the accuracy loss is.

4. The KeyNet Framework

Instead of having the model memorize the WM through overfitting, in our approach
we design the watermarking task as a standalone ML task with its logical context and rules.
First, this task performs a one-vs.-all classification so that it can distinguish WMs from
original samples with different distributions. Second, the watermarking task learns the
features that enable it to identify the spatial information of the legitimate owner’s signature.
Third, it learns to distinguish the pattern of the owner’s signature from the patterns of fake
signatures. The purpose of designing the watermarking task in this way is (i) to increase
the difficulty of the task so that an attacker with little training data cannot add his WM
without losing the accuracy of the original task, (ii) to provide a reliable verification method
that strengthens the owner’s association with her marked model, (iii) to achieve greater
security by keeping the private model in the hands of the owner, (iv) to embed a robust
WM without affecting the accuracy of the original task, (v) to produce different unique
copies of a DL model for different users of the system based on the same carrier by signing
the carrier with the joint signature of the user/owner and (vi) to scale for a large number
of users and identify the leakage point with high confidence and little effort.
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KeyNet consists of two main phases: watermark embedding and watermark extraction
and verification. Figure 1 shows the global workflow of KeyNet. The marked DL model
is used as a remote service, so that the user can only obtain its final predictions. KeyNet
passes the final predictions of the remote DL model to its corresponding private model,
which uses them to decode the WM information. In the ownership verification protocol we
exploit the fact that each sample in the owner’s WM carrier set can take different labels
based on the position of the owner’s signature in it. We next briefly explain the workflow
of each phase.

Marked DL Model
Original
Data Set

U Signed
Carrier

Set

Carrier
Set

Joint Training by Fine-
tuning or from Scratch

Loss
Watermark

Unmarked DL
Model

Private Model

Loss
Original

Private Model

Owner

Watermark Embedding Phase

Private Model

ML Service Provider

Black-box Access

Authority

Model
Prediction 

Watermark
Detected

Verification Proof

Owner

Owner's Carrier
Set + Signature

Remote
Query

Watermark Extraction and Verification Phase

                       
   

  +Information
String

Figure 1. KeyNet global workflow.

Watermark embedding. KeyNet takes four main inputs in the WM embedding phase:
the target model (pretrained or from scratch), the original data set, the owner’s WM carrier
set, and the owner’s information string. The output is the marked model, its corresponding
private model, and the owner’s signature. The WM carrier set samples are signed using
the owner’s signature. After that, the signed WM carrier set is combined with the original
data set and they are used to fine-tune (or train) the targeted model. The private model
takes the final predictions of the original model as inputs and outputs the position of the
owner’s signature on the WM sample. To embed the WM information and preserve the
main task accuracy at the same time, WM embedding leverages multi-task learning (MTL)
to train the two models jointly.

MTL is an ML approach that allows learning multiple tasks in parallel by sharing
the feature representation among them [31,32]. Many MTL methods [33–35] show that
different tasks can share several early layers, and then have task-specific parameters in
the later layers. MTL also helps the involved tasks to generalize better by adding a small
amount of noise that helps them reduce overfitting [36,37].

In our framework, the original model parameters are shared among the original task
and the watermarking task. When the marked model receives unmarked data samples,
its predictions represent the classification decision on those samples. However, when it
receives a watermarked sample, its output represents the features that the private model
needs to distinguish the signature position on that sample. For this to be possible, the
private model forces the shared layer (the original model parameters) to produce a different
representation of the WM samples. We can see the private model as a private key held only
by the owner that decodes the WM information from the original model predictions. More
details about this phase are given in Sections 4.2 and 4.3.

Watermark extraction and verification. The owner can extract the WM information
from a suspicious remote DL by taking a random sample from her WM carrier set, putting
her signature on one of the predefined positions, and querying the remote model. After
that, he/she passes the remote model’s predictions to the private model. If the private
model decodes the WM information and provides the position of the signature with high
accuracy, then the owner can claim her ownership.
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To verify the ownership of a remote black-box DL model, the owner first delivers the
WM carrier set and her signature to the authority. He/she also tells the authority about
the methodology used to sign the WM samples along with the predefined positions where
the WM may be placed. The authority (i.e., the verifier) randomly chooses a sample from
the carrier set, puts the signature in a random position, queries the remote DL model, and
sends the model’s predictions to the owner. The owner (i.e., the prover) takes the predictions,
passes them to her private model, and tells the authority the position of her signature on
the image. The authority repeats the proof as many times as he/she desires. After that, the
owner’s answer accuracy is evaluated according to a minimum threshold. If the owner
surpasses the threshold, his/her ownership is regarded as proven by the authority. More
details about this phase are given in Section 4.4.

The following subsections describe each phase in detail. First, we formalize the problem.
Then, we describe the methodology for signing and labeling the WM carrier set using the
hashed value of the owner’s information. After that, we describe the WM embedding phase
by training the original model and the private model on the original and the watermarking
tasks jointly. Finally, we explain the WM extraction and verification phase.

4.1. Problem Formulation

The key idea of our framework is to perform two tasks at the same time: the original
classification task Torg and the watermarking task Twm. To do so, KeyNet leverages the
multi-task learning (MTL) approach to achieve high accuracy in both tasks by sharing the
parameters of the original model between the two tasks. KeyNet adds a private model
to the original model. The original model’s objective is to correctly classify the original
data samples into their corresponding labels, while the private model’s objective is to
correctly predict the position of the owner’s signature in a sample of the WM carrier set
using the original model predictions. We can formally represent as follows the problem
being tackled:

• Representation of the original, private, and combined models. Let Dorg =
{(xi, yi)}n

i=1 be the original task data and Dwm = {cj}m
j=1 be the WM carrier set

data. Let h be the function of the original model and f be the function of the private
model. Let θ1 the parameters of h and θ2 be the parameters of f . Let signature be the
owner’s signature and PL = {(pk, lk)}z

k=1 be the set of predefined position–label pairs
(e.g., position: top left, label: 1 and position: bottom right, label: 4) where z is the total
number of positions at which the signature can be located on a WM carrier set sample.
Let sign be the function that puts a signature on a carrier set sample c and returns the
signed sample cpk and its corresponding label lk as:

(cpk , lk) = sign(signature, c, pk).

Let Dsigned
wm be the signed carrier set samples that contain all the (cp, l) pairs. We use

Dorg and Dsigned
wm to train both h and f to perform Torg and Twm.

Typically, the function h tries to map each xi ∈ Dorg to its corresponding yi, that is,
h(xi) = yi.
Let f (h) be the composite function that aims at mapping each cpk

j to its corresponding
lk, that is, f (h(cpk )) = lk.

• Embedding phase. We formulate the embedding phase as an MTL problem where we
jointly learn two tasks that share some parameters in the early layers and then have
task-specific parameters in the later layers. The shared parameters in our case are θ1,
while θ2 are the WM task-specific parameters. We compute the weighted combined
loss L as

L = αLoss(h(x), y) + (1− α)Loss( f (h(cp)), l),

where h(x) represents the predictions on the original task samples, f (h(cp) represents
the predictions on Dsigned

wm samples, Loss(h(x), y)) is the loss function that penalizes
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the difference between the original model outputs h(x) and the original data targets
y, Loss( f (h(cp)), l) is the loss function that penalizes the difference between the
composite model outputs f (h(cp)) and the signed WM carrier set’s target l, and α is
the combined weighted loss parameter. Then, we seek θ1 and θ2 that make L small
enough to get acceptable accuracy on both Torg and Twm. Once this is done, the WM
has been successfully embedded while preserving the accuracy of the original task Torg.

• Verification phase. The verification function V checks whether a claimer (also known
as the prover), who has delivered her signature and WM carrier set Dwm to the authority
(also known as the verifier), is the legitimate owner of a remote model h

′
. If the prover

is the legitimate owner of h
′
, he/she will be able to pass the verification process and

thus prove her ownership of h
′
. That is, because he/she possesses the private model

f , which was trained to decode h
′

predictions on her signed Dwm.
Here, r represents the number of the required rounds in the verification process and T
denotes the threshold needed to prove the ownership of h

′
. Note that the authority

also knows the signing function sign used to sign Dwm samples in order to obtain
(cpk , lk) pairs.
The function V can be expressed as V({( f (h

′
(cpk )), lk, pk)}r

k=1, T) = {True, False}.

4.2. Watermark Carrier Set Signing and Labeling

The methodology we use for labeling the WM carrier set is key in our approach.
In contrast to related works, which assign a unique label to each of the WM carrier set
samples, our labeling method allows for a single sample to carry more than one label. More
precisely, any sample c ∈ Dwm can take one of z labels {lk}z

k=1, where z is the number of
predefined positions {pk}z

k=1 at which the signature of the owner can be placed. Besides
the z positions, if a sample is not signed by the legitimate owner, it uses label 0 by default.
Moreover, if the sample is not in Dwm, it uses label 0 by default even if it is signed by the
owner. Algorithm 1 formalizes the method used to sign and label the Dwm samples.

First and foremost, the owner’s information and the metadata of her model are
endorsed by the authority. This information is a string of arbitrary length. After that,
Algorithm 1 returns the signed Dsigned

wm WM carrier set consisting of pairs (signed Dwm

sample, label), a signed Dsigned
di f consisting of pairs (signed sample from a set Ddi f of different

distribution, 0), and the owner’s signature signature used to sign the samples. The inputs
to Algorithm 1 are:

1. The owner’s information string in f Str that has been endorsed by the authority.
2. The size of the signature s to be placed on the WM carrier set samples.
3. The owner’s WM carrier set Dwm.
4. The set of position–label pairs PL = {pk, lk}z

k=1 that defines the signature positions
and their corresponding labels.

5. A small set of samples Ddi f from other distributions than Dwm.

Algorithm 1 starts its work by taking the hash value for in f Str and then converting it
to a squared array of size s, as follows. In our implementation we use SHA256, which yields
256 bits that are converted to 64 characters by digesting them to hexadecimal. The last s
(with s ≤ 64) among the digested characters are converted to a decimal vector of length
s. The decimal vector values are normalized between 0 and 1 by dividing them by the
maximum value in the vector. The normalized vector is then reshaped into a squared array.
The resulting array represents the owner’s signature. Note that it is also possible to use
any hashing function different from SHA256.



Appl. Sci. 2021, 11, 999 9 of 22

Algorithm 1 Signing a WM carrier Set
Input: Owner’s information in f Str, owner’s signature size s, owner’s WM carrier set

Dwm, signature positions/labels set PL, other distributions’ samples Ddi f

Output: signed labeled WM samples Dsigned
wm , signed samples from different distribu-

tions Dsigned
di f , owner’s signature signature

1: signature← hashAndReshape(in f Str, s) //The owner signature.
2: f akeStr ← modi f y(in f Str) //Fake information string.
3: signature f ake ← hashAndReshape( f akeStr, s), signature f ake 6= signature//A fake

signature.
4: Dsigned

wm , Dsigned
di f = [ ], [ ]

5: for each sample c in Dwm do
6: for each position, label (pk, lk) in PL do
7: cpk ← sign(signature, c, pk)

8: Add((cpk , lk), Dsigned
wm )

9: end for
10: pk ← selectRandomPosition()
11: cpk ← sign(signature f ake, c, pk)

12: Add((cpk , 0), Dsigned
wm )

13: Add((c, 0), Dsigned
wm )

14: f akeStr ← modi f y(in f Str) //New fake information string.
15: signature f ake ← hashAndReshape( f akeStr, s), signature f ake 6= signature
16: end for
17: for each sample d in Ddi f do
18: for each position, label (pk, lk) in PL do
19: dpk ← sign(signature, d, pk)

20: Add((dpk , 0), Dsigned
di f )

21: end for
22: end for
return Dsigned

wm , Dsigned
di f , signature

Once we obtain signature, we start the labeling step of the WM carrier set Dwm.
For each c ∈ Dwm, we replicate c for z times where z is the total number of possible
positions {pk}z

k=1 of the signature. Then, we use the sign function to place signature in the
position pk to obtain the (cpk , lk) pair.

We also leave one copy of each sample without signing and assign it the label 0. That is,
if a carrier set sample c is not signed with signature, it will be represented by the (c, 0) pair.

We then do two steps:

1. We generate a fake information string f akeStr by making a slight modification to
in f Str. Then, we generate signature f ake following steps similar to those above fol-
lowed to generate the real owner’s signature signature. After that, we sign the Dwm
samples each with a different fake signature and a randomly chosen position pk and,
instead of assigning to the signed sample the corresponding label lk, we assign it the
label 0. To obtain a new fake signature, we again make a slight random modification
in in f Str and generate the fake signature in the same way as above.

2. We take samples from other distributions Ddi f and sign them with the real owner’s
signature as we did with the Dwm samples. We assign them the label 0. We use
samples from different distributions to avoid triggering the WM just with the owner’s
real signature. In other words, we make the triggering of the WM from a marked
model dependent on the carrier set distribution in addition to the pattern of the
owner’s signature.

The goal of the above two steps is to make the marked model h∗ output the information
that tells the position of a signature only if we pass to it a sample that belongs to Dwm and is
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signed with the real signature. Otherwise, h∗ ignores the presence of any different signature
from signature on Dwm samples. This also avoids h∗ responding to samples from different
distributions than the Dwm distribution.

Finally, Algorithm 1 returns the signed WM samples Dsigned
wm , the signed samples from

different distributions Dsigned
di f , and the signature signature that will be used to trigger the

marked model h∗. Note that this process is performed only once, before the WM is embedded.

4.3. Watermark Embedding

To successfully embed the WM in the original model h without compromising the
accuracy of the original task, we jointly train both h and the private models f simultane-
ously. As a large amount of the carrier set samples have been signed, we first randomly
select one-fifth of Dsigned

wm for training. The random selection allows for the representation
of all the possible states while reducing the carrier set size. The signed samples from
other distributions Dsigned

di f are combined with those randomly selected and assigned to
D2. In the end, we add D2 to the original task data Dorg. The resulting combined data set
D = Dorg ∪ D2 are used in the training step as specified next.

During joint training, a batch b is taken from D. Then, b is separated into two sub-
batches: {x, y} ∈ Dorg, {c, l} ∈ D2. {x} is passed to the original model h and the loss
L f (h(x), y) is calculated. On the other hand, {c} is first passed to h, and then the predictions
of the original model h(c) are passed to the private model f ; the loss L f ( f (h(c)), l) is
afterwards calculated. As we deal with two classification tasks, the cross-entropy loss
function is used to calculate the loss for both tasks.

We use the parameter α to balance the weight of L f (h(x), y) and L f ( f (h(c)), l) before
we add them up in the joint loss L. Parameter α allows us to choose the best combination
of the weighted loss that preserves the accuracy of Torg while embedding WM successfully.
Then, the parameters of h, f are optimized to minimize L.

Reducing L f (h(x), y) forces h to predict the correct class for x, while reducing the wa-
termarking task loss L f ( f (h(c)), l) forces the private model to distinguish the distribution
of the WM carrier set Dwm, and predict the location of the owner’s signature in its samples.
The original model, in addition to performing the original task, also executes the first part
of the watermarking task by outputting the features needed to find the position of the
signature. By using these features as input, the private model performs the second part of
the watermarking task, which consists in identifying the signature position.

Regarding the architecture of the private model f , the number of inputs corresponds
to the size of h predictions, whereas the number of outputs corresponds to the number
of classes of the WM task z + 1. We also add at least one hidden layer in between. The
hidden layer enriches the information coming from the original model before passing it to
the output layer of the private model.

Algorithm 2 summarizes the process of embedding the WM. It takes an unmarked
model h that might be pretrained or be trained from scratch, the private model f , the
original data set Dorg, the signed WM carrier set Dsigned

wm , signed samples from other dis-

tributions Dsigned
di f , and the joint loss balancing parameter α. The output of the embedding

phase is a marked model h∗ along with its corresponding private model f .
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Algorithm 2 Watermark Embedding
Input: Unmarked DL model h, private model f , original data set Dorg, signed WM

carrier set Dsigned
wm , signed samples from other distributions Dsigned

di f , batch size BS, weighted

loss parameter α.

Output: Marked model h∗, corresponding private model f .

1: s = size(Dsigned
wm )/5

2: D2 ← randomSample(D2, s)

3: D2 ← D2 ∪ Dsigned
di f

4: D ← Dorg ∪ D2

5: L f = crossEntropy() //Loss function

6: for each batch b of size BS in D do

7: {x, y}, {c, l} ← split(b), with {x, y} ∈ Dorg and {c, l} ∈ D2

8: L← αL f (h(x), y) + (1− α)L f ( f (h(c)), l)

9: optimize(L)

10: end for

return h∗, f

4.4. Watermark Extraction and Verification

The verification process of ownership involves a would-be owner in the role of prover
and the authority in the role of verifier. The would-be owner claims that a remote model h

′

is part of his/her IP. The authority is given the WM carrier set Dwm, the would-be owner’s
signature, the signing function sign, and remote access to h

′
. The authority sets an accuracy

threshold T and a number of required verification rounds r to decide whether h
′

is the IP of
the would-be owner. In each round, the authority randomly selects a sample c from Dwm,
signs it using signature in a random position pk, and sends the signed sample cpk to the
remote model h

′
. The predictions h

′
(cpk ) (which contain the encoded WM information)

are forwarded to the would-be owner. The latter passes them to her private model f to
obtain lk = f (h

′
(cpk ). As the relationship between positions and labels is one-to-one, the

would-be owner can use lk to tell the authority the position pk of her signature in c. After r
rounds, the accuracy acc of the would-be owner at detecting the positions is the number of
correct answers divided by r. If acc ≥ T, then authority certifies that h

′
is owned by the

would-be owner.
Note that the authority can also send the samples without signing them or sign them

using fake signatures different from signature. In this case, the would-be owner should tell
the authority that this sample does not contain her signature. That is possible because in
these cases the private model gives them the label 0. Algorithm 3 formalizes the verification
process.
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Algorithm 3 Watermark Verification

Input: Remote access to h
′
, threshold T, number of rounds r

Output: Boolean decision d (True or False) on h
′
’s ownership.

1: correct = 0

2: d = False //Decision on the ownership of h
′
.

3: for each round i = 1, 2, . . . r do

4: c← randomSample(Dwm)

5: pk ← randomPosition(), k ∈ 1, 2, . . . z

6: cpk ← sign(signature, c, pk)

7: predictions← h
′
(cpk )

8: lk ← f (predictions)

9: answer ← Position corresponding to lk

10: if answer = pk then

11: correct← correct + 1

12: end if

13: end for

14:

15: acc = correct/r

16: if acc ≥ T then

17: d← True

18: end if

return d

5. Experimental Results

In this section, we evaluate the performance of KeyNet on two image classification data
sets and with two different DL model architectures. First, we present the experimental setup.
After that, we evaluate the proposed framework performance against the requirements
stated in Table 1. We focus on robustness, authentication, scalability, capacity, integrity,
and fidelity, but, as our framework partly fulfills the rest of requirements, we also assess its
performance on each of them.

The code and the models used in this section are available at https://github.com/
NajeebJebreel/KeyNet.

5.1. Experimental Setup

Original task data sets and DL models. We used two image classification data sets:
CIFAR10 [38] and FMNIST5. CIFAR10 has 10 classes, while FMNIST5 is a subset of the
public data set Fashion-MNIST [39]; FMNIST5 contains the samples that belong to the first
five classes in Fashion-MNIST (classes from 0 to 4). Table 2 summarizes the original task
data sets, the carrier set, and the DL models and their corresponding private models.

https://github.com/NajeebJebreel/KeyNet
https://github.com/NajeebJebreel/KeyNet
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Table 2. Data sets and deep learning model architectures. C(3, 32, 5, 1, 2) denotes a convolutional layer with 3 input channels,
32 output channels, a kernel of size 5× 5, a stride of 1, and a padding of 2, MP(2, 1) denotes a max-pooling layer with a
kernel of size 2× 2 and a stride of 1, and FC(10, 20) indicates a fully connected layer with 10 inputs and 20 output neurons.
We used ReLU as an activation function in the hidden layers. We used LogSoftmax as an activation function in the output
layers for all DL models. The rightmost column contains the architecture of the corresponding private models.

Data Set WM Carrier Set DL Model DL Model Architecture Private Model Architecture

CIFAR10 STL10 ResNet18 See [40]. FC(10,20), FC(20,10), FC(10, 6)
VGG16 See [41]. (496 learnable parameters)

FMNIST5 MNIST CNN C(3,32,5,1,2), MP(2,1), C(32,64,3,1,2), MP(2,1),
FC(4096,4096), FC(4096,5) FC(5, 10), FC(10,20), FC(20,6)

LeNet See [42]. (411 learnable parameters)

Watermark carrier sets. We employed three different data sets as WM carrier sets:
STL10 [43], MNIST [44], and Fashion-MNIST (the latter was used only in attacks). We
applied Algorithm 1 to label the carrier set’s images. Then, we passed the carrier set, the
owner’s information, the signature size, a fake signature, some samples from different
distributions, and a list containing the labeling order of the positions of the owner’s
signature in the carrier set. We used the following labeling order: 1: Top left, 2: Top right, 3:
Bottom left, 4: Bottom right, and 5: Image center. Algorithm 1 assigns label 0 to an image
if (i) the image belongs to the carrier set but does not carry any signature, (ii) the image
belongs to the carrier set but carries a signature different from the owner’s signature, or
(iii) the image does not belong to the carrier set distribution (even if it is signed with the
owner’s real signature). For WM accuracy evaluation, we randomly sampled 15% of the
WM carrier set. After that, we signed them in different random positions and assigned
them the corresponding labels. Figure 2 shows some examples of signed carrier set images
and their corresponding labels.

Figure 2. Examples of signed STL10 carrier set images employed with the CIFAR10 data set. Each
image shows the signature position and its corresponding label.

Attacker configurations. We assumed the attacker has varying percentages of the
training data, ranging from 1% to 30% of the original training data. The attacker’s training
data were randomly sampled from the original training data. We also assumed that the WM
carrier set distribution is a secret between the owner and the authority, so we assigned the
attacker different WM carrier sets from those of the owner. The attacker’s private model was
slightly different as well, because the owner’s private model and its architecture are secret.
The rest of the attacker’s configurations and hyper-parameters were the same as the owner’s.
Table 3 summarizes the attacker’s WM carrier sets and private model architectures.
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Table 3. Attacker’s WM carrier sets and private models. The attacker’s WM carrier set and private
model differ from the owner’s.

Data Set Owner’s WM
Carrier Set

Attacker’s WM
Carrier Set

Attacker’s Private Model
Architecture

CIFAR10 STL10 Fashion-MNIST FC(10,20),FC(20,30), FC(30, 6)
(980 learnable parameters)

FMNIST5 MNIST STL10 FC(5, 20), FC(20,10), FC(10,6)
(360 learnable parameters)

Performance metric. We used accuracy as performance metric to evaluate all the
original and WM tasks. Accuracy is the number of correct predictions divided by the total
number of predictions.

Training hyperparameters. We used the cross-entropy loss function and the stochastic
gradient descent (SGD) optimizer with learning rate = 0.001, momentum = 0.9, weight
decay = 0.0005, and batch size = 128. We trained all the original unmarked models for 250
epochs. To embed the WM from scratch, we trained the combined model for 250 epochs.
To embed the WM in a pretrained model, we combined the private model and fine-tuned
the combination for 30 epochs.

To jointly train the original and private models, we used parameter α to weight the
original task loss and the WM task loss before optimization. For CIFAR10 we used α = 0.9
when embedding the WM in a pretrained model, while we used α = 0.95 when embedding
the WM into a DL model from scratch. For FMNIST5 we used α = 0.85 to embed the
WM in a pretrained model, while we used α = 0.9 to embed the WM from scratch. The
experiments were implemented using Pytorch 1.6 and Python 3.6.

5.2. Experiments and Results

First, we made sure that an accurate private model could not be obtained (and there-
fore the ownership of a DL model could not be claimed) by using only the predictions
of a black-box DL model. To do so, we queried different unmarked DL models with all
the signed samples in the owner’s WM carrier set, and we used the predictions as input
features to train the private model. Table 4 shows the performance of the private models
obtained in this way after 250 epochs.

Table 4. Accuracy of the private models at detecting the position of the owner’s signature in the WM
carrier set when trained for 250 epochs with the predictions of black-box models.

Data Set Black-Box DL Model Watermark Detection Accuracy %

CIFAR10 ResNet18 31.25
VGG16 30.14

FMNIST5 CNN 34.42
LeNet 33.26

It can be seen that the average accuracy of the private model at detecting the signature
position inside the WM carrier set is as low as 32.27%. This accuracy was obtained by
granting unconditional query access to the black-box model and by using its predictions
as input to train the private model. Based on that, we decided to set threshold T = 0.9,
which is nearly three times greater than the above average accuracy. Therefore, to prove her
ownership of a black-box DL model, the owner’s private model must detect the signature
positions in the WM carrier set with an accuracy greater than or equal to 90%.

In the following, we report the results of KeyNet on several experiments that test its
fulfillment of the requirements depicted in Table 1.
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Table 5. Fidelity results. Column 3 shows the accuracy of the unmarked models in the original tasks (baseline accuracy)
before embedding the WM. Columns 4 and 5 show the accuracy of the marked model in the original task after embedding
WM by fine-tuning a pretrained model or by training the combined model from scratch. Columns 6 and 7 show the accuracy
of the private model in detecting the WM using the predictions of the corresponding marked model. To embed the WM in a
pretrained model, we fine-tuned it for 30 epochs while we trained models from scratch for 250 epochs.

Data Set DL Model Unmarked Model
Accuracy %

Marked Model
Accuracy %

Watermark Detection
Accuracy %

By Fine-Tuning
(30 Epochs)

From Scratch
(250 Epochs)

By Fine-Tuning From Scratch

CIFAR10 ResNet18 91.96 92.07 92.53 99.96 99.97
VGG16 90.59 90.52 91.74 99.68 99.89

FMNIST5 CNN 92.08 92.42 92.32 99.98 99.90
LeNet 90.68 89.94 89.94 99.55 99.79

Fidelity. Embedding the WM should not decrease the accuracy of the marked model
on the original task. As shown in Table 5, the marked model’s accuracy is very similar to
that of the unmarked model. This is thanks to the joint training, which simultaneously
minimizes the loss for the original task and the WM task. Furthermore, KeyNet did not only
preserve the accuracy in the original task, but sometimes it even led to improved accuracy.
That is not surprising, because the watermarking task added a small amount of noise to
the marked model, and this helped reduce overfitting and thus generalize better.
KeyNet therefore fulfills the fidelity requirement by reconciling accuracy preservation for
the original task and successfully embedding of the WM in the target models.

Reliability and robustness. KeyNet guarantees a robust DL watermarking and allows
legitimate owners to prove their ownership with accuracy greater that the required thresh-
old T = 90%. Table 5 shows that WM detection accuracy was almost 100%, and thus our
framework was able to reliably detect the WM.

We assess the robustness of our framework against three types of attacks: fine-
tuning [45], model compression [46,47], and WM overwriting [13,48]:

• Model fine-tuning. Fine-tuning involves retraining a DL model with some amount of
training data. It may remove or corrupt the WM information from a marked model
because it causes the model to converge to another local minimum. In our experiments,
we sampled 30% of the original data and used them to fine-tune the marked model
by optimizing its parameters based only the loss of the original task. Table 6 outlines
the impact of fine-tuning on the WM detection accuracy with all benchmarks. We
can notice that KeyNet is robust against fine-tuning and was able to preserve a WM
detection accuracy of about 97% after 200 epochs. The explanation for this strong
persistence against fine-tuning is that KeyNet does not embed the WM information
within the decision boundaries of the original task classes. Therefore, the effect of
fine-tuning on the WM is very small.

• Model compression. We used the compression approach proposed in [47] to prune the
weight parameters in the marked DL models. To prune a particular layer, we first
sorted the weights in the specified layer by their magnitudes. Then, we masked to zero
the smallest magnitude weights until the desired pruning level was reached. Figure 3
shows the impact of model compression on both WM detection accuracy and original
task accuracy with different pruning rates. We see that KeyNet is robust against model
compression, and the accuracy of the WM remains above the threshold T = 90% as
long as the marked model is still useful for the original task. This is consistent because
when the marked model becomes useless due to excessive compression, the owner
will not be interested in claiming its ownership.

• Watermark overwriting. Assuming that the attacker is aware of the methodology used
to embed the WM, he may embed a new WM that may damage the original one. In our
experiments, we assumed that the attacker knows the methodology but knows neither
the owner’s carrier set nor the owner’s private model architecture. We studied the
effect on the WM of the attacker’s knowing various fractions of the original training
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data, ranging from 1% to 30%. We chose the lower bound 1% based on the work
in [49]; the authors of that paper demonstrate that an attacker with less than 1% of the
original data is able to remove the watermark with a slight loss in the accuracy of the
original task.

Table 6. Fine-tuning results. In the fine-tuning attack, the marked models were retrained based on the original task loss
only.

Data Set CIFAR10 FMNIST5

DL model ResNet18 VGG16 CNN LeNet

Number of epochs 50 100 200 50 100 200 50 100 200 50 100 200

Marked model
Accuracy % 92.40 92.33 92.47 91.31 91.64 91.69 92.30 92.52 92.40 89.84 90.06 90.12

Watermark detection
Accuracy % 98.19 98.05 99.12 97.20 94.72 96.67 97.35 97.02 96.92 98.23 97.42 96.4

Figure 3. Robustness against model compression. The X-axis indicates the pruning levels we used for each marked model.
The blue bars indicate the marked model accuracy in the original task, while the orange bars indicate the accuracy of WM
detection. The horizontal dotted line indicates the threshold T = 90% used to verify the ownership of the model.

To overwrite the WM, the attacker selected his/her own carrier set and signed it using
Algorithm 1 with his/her signature. Then, he/she trained her private model along with the
marked model in the same way as in Algorithm 2. Tables 7 and 8 summarize the results of
WM overwriting experiments. The attacker was able to successfully overwrite the original
WM and successfully embed her new WM, but this was done at the cost of a substantial
accuracy loss in the original task when using a fraction of the training data up to 10%. Thus,
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our watermark easily survives the attacks in the conditions described in [49]. For fractions
above 10%, the accuracy of the marked model became competitive, but an attacker holding
such a large amount of training data can easily train her own model and has no need to
pirate the owner’s model [18].

Table 7. Overwriting attack results with CIFAR10 marked models. The table shows the accuracy before and after overwriting
each marked model and its corresponding private model depending on the fraction of training data known by the attacker
(from 1% to 30%).

Dataset CIFAR10

DL Model ResNet18 VGG16

Data fraction % 1 3 6 10 20 30 1 3 6 10 20 30

Marked model
Accuracy before % 92.53 92.53 92.53 92.53 92.53 92.53 91.74 91.74 91.74 91.74 91.74 91.74

Marked model
Accuracy after % 39.05 63.75 83.31 86.35 89.91 90.9 34.61 71.86 81.2 83.9 88.07 89.67

Owner’s WM detection
Accuracy after % 24.53 20.35 22.27 28.3 37.33 41.15 32.32 30.88 28.61 32.48 30.32 44.4

Attacker’s WM detection
Accuracy % 99.97 99.89 99.95 99.9 99.94 99.97 99.69 99.68 99.89 99.87 99.9 99.96

Table 8. Overwriting attack results with FMNIST5 marked models. The table shows the accuracy before and after
overwriting each marked model and its corresponding private model depending on the fraction of training data known by
the attacker (from 1% to 30%).

Dataset FMNIST5

DL Model CNN LeNet

Data fraction % 1 3 6 10 20 30 1 3 6 10 20 30

Marked model
Accuracy before % 92.32 92.32 92.32 92.32 92.32 92.32 89.94 89.94 89.94 89.94 89.94 89.94

Marked model
Accuracy after % 76.18 81.88 87.86 89.1 91.38 91.84 74.64 79.44 86.36 88.86 89.58 89.52

Owner’s WM detection
Accuracy after % 26.97 28.53 38.52 46.83 70 68.03 26.32 18.71 43.99 57.4 75.83 65.66

Attacker’s WM detection
Accuracy % 100 100 100 100 100 100 99.25 99.65 99.84 99.92 99.89 99.92

Integrity. KeyNet meets the integrity requirement by yielding low WM accuracy
detection with unmarked models, and thus it does not falsely claim ownership of models
owned by a third party. In our experiments, there were 6 classes for the watermarking task.
Looking at Table 9, the accuracy of falsely claimed ownership of unmarked models is not
far from guessing 1 out of 6 numbers randomly, which equals approximately 16.6%.

Authentication. KeyNet fulfills the authentication requirement by design. Using a
cryptographic hash function such as SHA256 to generate the owners’ signatures establishes
a strong link between owners and their WMs. Furthermore, the verification protocol of
KeyNet provides strong evidence of ownership. When the authority uses a fake signa-
ture, the marked model does not respond. This dual authentication method provides
unquestionable confidence in the identity of the legitimate owner.

Security. As KeyNet embeds the WM in the dynamic content of DL models through
joint training, and as modern deep learning models contain a huge number of parameters,
detecting the presence of the WM in such models is infeasible. In case the attacker knows
that a model contains WM information and wants to destroy it, he/she will only be able
to do so by also impairing the accuracy of the model in the original task. Regarding the
security of the owner’s signature, the use of a strong cryptographic hash function, such
as SHA256, provides high security, as we next justify. On the one hand, if the signature
size s is taken long enough, it is virtually impossible for two different parties to have the
same signature: the probability of collision for s hexadecimal digits is 1/16s, so s = 25
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should be more than enough. On the other hand, even if the owner’s signature is known
by an attacker, the cryptographic hash function makes it impossible to deduce the owner’s
information from her signature.

Unforgeability. To prove ownership of a DL model that is not his/hers, an attacker
needs to pass the verification protocol (Algorithm 3). However, the private model allowing
watermark extraction is kept secret by the legitimate owner. Without the private model,
even if the attacker knows both the WM carrier set and the owner’s signature, the attacker
can only try a random strategy. Yet, the probability of randomly guessing the right position
at least a proportion T of r rounds is at most 1/zbTrc. This probability can be made negligibly
small by increasing the number r of verification rounds.

Thus, KeyNet partially meets the unforgeability requirement: an attacker can embed
additional WMs into a marked model, but cannot claim ownership of another party’s WM.

Capacity. Capacity can be viewed from two perspectives: (i) the framework allows the
inclusion of a large amount of WM information, and (ii) triggers available in the verification
process are large enough. Given that hashes are one-way functions with fixed length, the
information that can be embedded in them is virtually unlimited. In our experiments, we
used a medium-sized signature of s = 25 characters. Nevertheless, KeyNet allows flexibility
in specifying various signature sizes and in using hash functions other than SHA256. On
the other hand, KeyNet can use a large number of samples in WM verification. In addition
to using all samples belonging to a certain distribution (the WM carrier set), it allows using
samples from other distributions due to the method of labeling and training used. The
marked model gives the signature information if the signature is placed on top of a WM
carrier set’s sample, while samples from different distributions are given the label 0 (even
if they are signed with the signature of the legitimate owner).

Uniqueness and scalability. KeyNet can be easily extended to produce unique copies
of a DL model for each user, as well as scale to cover a large number of users in the system.
Furthermore, it can link a remote copy of a DL model with its user with minimal effort and
high reliability.

Table 9. Integrity results with unmarked models. Each private model was tested with two different unmarked models:
one model has the same topology as its corresponding marked model, the other one has a different topology. The last four
columns show the accuracy detection obtained with the unmarked models.

Dataset DL Model Watermark Detection Accuracy
with Marked Models%

Watermark Detection Accuracy
with Unmarked Models %

Same Topology Accuracy Different Topology Accuracy

CIFAR10 ResNet18 99.97% ResNet18 18.92% VGG16 19.80%
CIFAR10 VGG16 99.89% VGG16 7.92% ResNet18 12.32%
FMNIST5 CNN 99.98% CNN 12.96% LeNet 10.97%
FMNIST5 LeNet 99.55% LeNet 17.93% CNN 17.75%

In our experiments, we distributed two unique copies of the FMNIST5-CNN model:
one for User1 and another for User2, each copy having its corresponding private model.
We took a pretrained FMNIST5-CNN model and fine-tuned it for 30 epochs to embed
the WM linked to a specific user. To do so, we signed two copies of the WM carrier set,
where each copy was signed using different joint signatures. Once we got two unique carrier
sets, we trained two unique marked models, each one with its corresponding private model
using Algorithm 2. In the end, we got two unique marked copies of the model with their
corresponding private models and users. We distributed each copy to its corresponding user.

We then assumed that User 1, respectively, User 2, leaked their model, and we tried to
find the leaker as follows.

1. We took a small set (say 6 samples) of the WM carrier set.
2. We signed a copy of these samples in random places with User1’s joint signature;

another copy was also signed in the same way for User2.
3. We queried h

′
(the allegedly leaked model) with the samples signed by User1 to obtain

their predictions. We did the same with User2 samples.
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4. We passed the predictions from samples signed with User1’s signature to her private
model and calculated the accuracy at detecting the WM. We did the same with User2’s
predictions and his private model.

Figure 4a shows the results of model owner detection if User1 leaked her model. We
see that we were able to determine that the model copy was most likely leaked by User1.
Figure 4(a1) shows the normalized confusion matrix of User1’s private model in detecting
the WM information using the predictions of User1’s remote model. It shows that the
accuracy at detecting signature positions was almost 100% when we sent the samples
signed by User1. Figure 4(a2) shows the normalized confusion matrix of User2’s private
model in detecting the WM information by using the predictions of User1’s remote model
when the samples were signed with User2’ signature. As User1’s model was trained to
distinguish only User1’s signature position, it output features that led User2’s private model
to provide label 0 for samples signed by User2.

Figure 4b provides similar results when User2 leaked his model. The same conclusions
hold. Note that the private models were unable to distinguish the signature positions and
output the label 0 when they were fed with predictions of non-corresponding marked
models and non-corresponding signatures. This is an interesting feature of KeyNet, as all
the remote models and their private models learned a common representation of label 0.

Regarding scalability, if we want to query a remote model in case we have u users
and we decide to use m signed samples for verification, then the number of remote model
queries will be u×m, and thus linear in u.

(a1)

(a2)

(a) With predictions of User1’s copy

(b1)

(b2)

(b) With predictions of User2’s copy

Figure 4. Normalized confusion matrices of the accuracy in detecting the individual copies of the FMNIST5-CNN model
distributed among two users. Subfigure (a) shows the detection accuracy of the predictions of User1’ copy. Subfigure (a1)
shows the confusion matrix of User1’s private model when User1’s copy was queried by samples signed by User1. Subfigure
(a2) shows the confusion matrix of User2’s private model when User1’s copy was queried by samples signed by User2.
Subfigure (b) shows the same results for User2’s model.

Efficiency and generality. The efficiency of KeyNet is related to the size of the output
of the model to be marked. The smaller the number of output neurons, the fewer the
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parameters of the private model. On the other hand, our framework allows embedding
the WM from scratch or by fine-tuning; the latter contributes to efficiency. Regarding
generality, even though in our work we use image classification tasks that output softmax
layer probabilities (confidence) for the input image with each class, KeyNet can be extended
to cover a variety of ML tasks that take images as input and output multiple values such as
multi-labeling tasks, semantic segmentation tasks, image transformation tasks, etc.

6. Conclusions and Future Work

We have presented KeyNet, a novel watermarking framework to protect the IP of DL
models. We use the final output distribution of deep learning models to include a robust
WM that does not fall in the same decision boundaries of original task classes. To make the
most of this advantage, we design the watermarking task in an innovative way that makes
it possible (i) to embed a large amount of WM information, (ii) to establish a strong link
between the owner and her marked model, (iii) to thwart the attacker from overwriting
the WM information without losing accuracy in the original task, and (iv) to uniquely
fingerprint several copies of a pretrained model for a large number of users in the system.

The results we obtained empirically prove that KeyNet is effective and can be general-
ized to various data sets and DL model architectures. Besides, it is robust against a variety
of attacks, it offers a very strong authentication linking the owners and their WMs, and it
can be easily used to fingerprint different copies of a DL model for different users.

As a future work, we plan to extend the framework to cover computer vision tasks
that take images as input and output images as well. We also intend to study ways to
estimate the watermark capacity of a deep neural network depending on its topology, the
complexity of the learning task, and the watermark to be embedded.
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33. Mrkšić, N.; Séaghdha, D.; Thomson, B.; Gašić, M.; Su, P.; Vandyke, D.; Wen, T.; Young, S. Multi-domain dialog state tracking using

recurrent neural networks. In Proceedings of the ACL-IJCNLP 2015-53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural
Language Processing, Beijing, China, 26–31 July 2015; Volume 2, pp. 794–799.

34. Li, S.; Liu, Z.Q.; Chan, A.B. Heterogeneous multi-task learning for human pose estimation with deep convolutional neural
network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, OH, USA,
23–28 June 2014; pp. 482–489.

35. Zhang, W.; Li, R.; Zeng, T.; Sun, Q.; Kumar, S.; Ye, J.; Ji, S. Deep model based transfer and multi-task learning for biological image
analysis. IEEE Trans. Big Data 2016, 6, 322–333. [CrossRef]

36. Neelakantan, A.; Vilnis, L.; Le, Q.V.; Sutskever, I.; Kaiser, L.; Kurach, K.; Martens, J. Adding gradient noise improves learning for
very deep networks. arXiv 2015, arXiv:1511.06807.

37. Ndirango, A.; Lee, T. Generalization in multitask deep neural classifiers: A statistical physics approach. In Proceedings of the
Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; pp. 15862–15871.

38. Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images. 2009. Available online: https://www.cs.toronto.edu/
~kriz/learning-features-2009-TR.pdf (accessed on 22 January 2021).

39. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-mnist: A novel image dataset for benchmarking machine learning algorithms. arXiv 2017,
arXiv:1708.07747.

40. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

41. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
42. LeCun, Y. LeNet-5, Convolutional Neural Networks. Available online: http://yann.lecun.com/exdb/lenet (accessed on 22

January 2021).
43. Coates, A.; Ng, A.; Lee, H. An Analysis of Single Layer Networks in Unsupervised Feature Learning. In Proceedings of the

AISTATS 2011, Fort Lauderdale, FL, USA, 11–13 April 2011; pp. 215–223.
44. LeCun, Y.; Cortes, C.; Burges, C.J.C. MNIST Handwritten Digit Database. 2010. Available online: http://yann.lecun.com/exdb/

mnist/ (accessed on 22 January 2021).
45. Tajbakhsh, N.; Shin, J.Y.; Gurudu, S.R.; Hurst, R.T.; Kendall, C.B.; Gotway, M.B.; Liang, J. Convolutional neural networks for

medical image analysis: Full training or fine tuning? IEEE Trans. Med. Imaging 2016, 35, 1299–1312. [CrossRef] [PubMed]
46. Han, S.; Mao, H.; Dally, W.J. Deep compression: Compressing deep neural networks with pruning, trained quantization and

huffman coding. arXiv 2015, arXiv:1510.00149.
47. Han, S.; Pool, J.; Tran, J.; Dally, W. Learning both weights and connections for efficient neural network. In Proceedings of the

Advances in Neural Information Processing Systems, Montréal, QC, Canada, 7–11 December 2015; pp. 1135–1143.
48. Shafieinejad, M.; Wang, J.; Lukas, N.; Li, X.; Kerschbaum, F. On the robustness of the backdoor-based watermarking in deep

neural networks. arXiv 2019, arXiv:1906.07745.
49. Aiken, W.; Kim, H.; Woo, S. Neural Network Laundering: Removing Black-Box Backdoor Watermarks from Deep Neural

Networks. arXiv 2020, arXiv:2004.11368.

http://dx.doi.org/10.1109/TCSVT.2020.3030671
http://dx.doi.org/10.1023/A:1007379606734
http://dx.doi.org/10.1109/TBDATA.2016.2573280
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
http://yann. lecun. com/exdb/lenet
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://dx.doi.org/10.1109/TMI.2016.2535302
http://www.ncbi.nlm.nih.gov/pubmed/26978662

	Introduction
	Related Work
	White-Box Watermarking
	Black-Box Watermarking

	Attack Model
	The KeyNet Framework
	Problem Formulation
	Watermark Carrier Set Signing and Labeling
	Watermark Embedding
	Watermark Extraction and Verification

	Experimental Results
	Experimental Setup
	Experiments and Results

	Conclusions and Future Work
	References

