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Abstract—A large-signal averaged model is obtained to analyze
the startup response of a boost converter loaded with a Constant
Power Load (CPL) and peak Current Mode Control (CMC). An
analytical methodology is developed for stability analysis during
both startup and steady-state. The proposed model corresponds
to two operating modes: 1) a reduced-order saturated model
during startup mode and 2) an unsaturated full-order model
taking place when the system reaches the vicinity of the steady-
state. The duration of the starup period is also determined using
the same model. To verify the validity of the derived large-signal
model and the theoretical results derived from it, numerical sim-
ulation results from this model are compared with those obtained
from a detailed switched model and experimental measurements
demonstrating that the model can faithfully predict both the
large-signal dynamic response during startup as as well as the
steady-state regime of the system.

Index Terms—large-signal model, switching converters, non-
linear load, constant power load, stability analysis,

I. INTRODUCTION

PEAK Current Mode Control (CMC) is a control scheme
that is commonly used for dc-dc switching converters

due to several advantages such as inherent current limiting,
easier outer voltage loop control design and inherent current
sharing capability [1]. Since its introduction in the 70’s, it
has been widely used in many industrial applications and has
increasingly motivated the scientific and engineering commu-
nities around the world. Namely, averaged models of switching
converters peak under CMC have been the research topic of
many researchers during a long period [2]–[11]. The modeling,
small-signal analysis and design of switching converters with
linear loads have undergone fundamental changes in their
approach starting with the averaged framework and finishing
with discrete-time formulation advocated decades later. In
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the existing literature about modeling of switching converters
under CMC, most of the focus is on obtaining models for
accurately predicting the converter behavior within a wide
frequency range hence they all take into account the switch-
ing details. The simulation time using the resulting models
significantly increases. Furthermore, the switching details are
not significant for output voltage control design. Therefore, for
large-signal simulation or for the outer loop controller design,
the previous switching details are not necessary and obtaining
a computationally efficient large-signal model becomes impor-
tant.

Nonlinear large-signal averaged models of dc-dc converters
under CMC have been widely considered in the literature
[12]–[18]. These models are used to large-signal simulations
under larger parametric variations. After their linearization in
the vicinity of an operating point, the corresponding small-
signal linear model is obtained and this can be used for
controller design. In [12], [13] these nonlinear models were
derived specifically for performing circuit simulations using
commercial software. In [18], a large-signal averaged model
was derived for switching converters and a general nonlinear
continuous formulation procedure for large-signal simulation
is presented.

All previous models were developed for power converters
with linear resistive loads. Furthermore, the aforementioned
models focus on accurate modeling under parametric change
and rarely deals with the analysis of system behavior un-
der operating regimes corresponding to the startup and the
regulation phases. The derived models are merely used for
numerical simulation purposes not for mathematical analysis.
Therefore, they are based on numerical analysis and no
symbolic expression can be extracted for stability boundary
and very little insight is provided for the system response
during startup. Moreover, a part from the widely considered
resistive or constant impedance load in switching converters,
the load could also be capacitive impedance [11], constant
voltage (battery), constant current or an inductive impedance
[19]. When the output voltage of a power converter is tightly
regulated, it behaves like a constant power load (CPL) for
its feeder converter in a cascade connection of two switching
converters.

CPL behavior is very common in multi-converter cascading
energy systems used in many industrial applications [20]–
[32]. Due to the nonlinearity of the CPL, the large-signal
response of a switching converter with CPL is different from
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that of the same converter with a resistive load. Large-signal
averaged models for a dc-dc buck switching converter with
CPL have been obtained in the past [31]. The analysis of
the large-signal model has been addressed in [33] where
the startup process and step response of an average current
mode controlled buck converter with CPL were graphically
analyzed based on the phase portrait method. Some design
rules have also been proposed to achieve system stability
during startup and in front of load change. The current limit
value is determined accordingly to avoid the instability for the
considered converter.

Therefore, although the modeling method used in this work
is well known, to best of the authors’ knowledge, it has
not previously been used to model the large-signal behavior
of dc-dc boost converter with a CPL neither to obtain an-
alytically the expression of the system response during the
startup regime nor to analytically obtain the duration of this
regime. Therefore, more research effort is still required for a
thorough understanding of the system behavior during startup
and the transition from the saturated startup regime to the
non saturated regulation regime under constant power loading
conditions.

The research goal, hence, is to provide a large-signal
modeling under the previous conditions and its validation by
both detailed numerical simulation using the switched model
and by experimental measurements. The derived nonlinear
large-signal averaged model can be used for fast numerical
simulation of energy systems while taking into account all
the possible dynamics under different saturation regimes that
could take place during startup phase. During this phase an
estimate value of the startup duration and the expression of
the state variables are also provided. The results from the
derived model about stability and dynamical behavior will be
compared to those obtained from the switched large-signal
model and experimental measurements using a laboratory
prototype showing a good accuracy when compared to the
detailed switched model and and experimental measurements.

The rest of this paper is organized as follows. After this
introduction, Section II presents the description of the system
under study which consists of a dc-dc boost converter under
CMC and with a CPL. Section III addresses the detailed
modeling of the converter using the switched model. In Section
IV, the large-signal averaged model is derived and then used
to analyze the startup response. The evolution of the inductor
current and the output capacitor voltage as well as the duration
of the startup period are derived analytically. Large-signal
simulation results from the derived model will be compared
to the ones obtained from a detailed switched model of the
system demonstrating that the model can be used to faithfully
predict the large-signal behavior of the system. The stability
domain of the desired equilibrium point in terms of the system
parameters is determined in Section V. Section VI deals with
the validation of the model and the derived theoretical results
using numerical simulations. Experimental validation of the
results is provided in Section VII. Finally concluding remarks
are given in Section VIII.
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Fig. 1. Schematic circuit diagram of a boost converter under current mode
control with a PWM strategy and loaded by a CPL.

II. THE BOOST CONVERTER LOADED BY A CPL

A. System description

The system under study is presented in Fig. 1. The power
processing unit is a dc-dc boost converter with a constant input
voltage and loaded by a CPL.

The power converter stage is controlled using CMC and
a two-loop strategy where the outer voltage loop provides
the reference signal for the inner current loop using fixed
frequency PWM strategy. The ON/OFF binary driving signal
u for the switch S is generated by a comparator and a set-
reset (SR) latch as shown in Fig. 1. Its duty cycle d is
generated by comparing the sensed signal RsiL and the signal
Rsiref − vramp, where Rsiref is the desired current reference
and vramp is ramp compensating signal whose amplitude is
VM and period is T . If RsiL reaches Rsiref − vramp, the
switch S is turned OFF.

The reference signal Rsiref is provided by the outer voltage
loop regulating the CPL voltage vo to a desired voltage vref .
The voltage controller is used to compensate for the error
vref − vo detected between a fixed reference voltage level vref
and the output voltage vo with the aim to regulate vo to vref .
In this work, the voltage controller is a PI compensator with
a pole at the origin, a time constant τ and a proportional gain
κp.

During start-up, a dc-dc converter may exhibit an unaccept-
able inrush current. To avoid inrush current during startup, a
limiter is placed at the output of the PI compensator. However
even with this limiter block at the output of the voltage
controller, the inductor current during startup can overpass
the established current limit if the initial voltage of the output
capacitor is less than the input voltage [34]. To overcome this
problem in the boost converter, its output voltage must start-
up at an initial voltage different from zero which requires an
amount of energy to be stored in the output capacitor before
the converter starts operating. In the particular case of a CPL,
the situation is worse because a zero capacitor voltage will
imply, theoretically, an infinite current flowing through the
load. In dc-dc boost converters, it is possible to provide the
initial condition for the output capacitor voltage by connecting
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an additional diode Da between the input and the output ports
as shown in Fig. 1.

III. MATHEMATICAL CONTINUOUS-TIME NONLINEAR
SWITCHED MODEL

By applying Kirchhoff’s voltage and current laws to the
power stage of the circuit depicted in Fig. 1, the following
set of differential equations describing the power stage is
obtained:

dvo
dt

= − P

Cvo
+
iL
C

(1− u), (1a)

diL
dt

= −vo
L

(1− u) +
vg
L
, (1b)

vo(0) = vg, iL(0) = 0. (1c)

The initial condition of the output voltage is due to the
direct path between the input and the output imposed by the
auxiliary diode Da. The sensing resistance rs as well as many
other parasitic parameters were neglected in the modeling
for simplicity. The state equations corresponding to the PI
compensator of the outer voltage loop can be expressed as
follows:

dvi
dt

= ε, (2a)

vi(0) = 0, (2b)

where vi :=
∫
ε(t)dt is the integral state variable and

ε = vref − vo is the voltage error. To avoid the windup
phenomenon, the integral variable vi is also limited to an
upper bound RsIlim and the expression of the integral variable
becomes as follows

vi =


1

τ

∫
ε(t)dt if

1

τ

∫
ε(t)dt < RsIlim

RsIlim if
1

τ

∫
ε(t)dt ≥ RsIlim.

(3)

With both inner current and outer voltage loops closed, the
current reference Rsiref for the inner loop is provided by the
output of the voltage controller according to the following
expression:

Rsiref = κpε+Wivi, (4)

where Wi = κp/τ is the integral gain of the PI compensator,
τ being its time constant. The set of equations (1a)-(1b)
together with (2a) establish the nonlinear switched model of
the system. The closed loop model can be obtained by taking
into account the switching condition which dictates the duty
cycle cyclically. This condition is imposed by the intersection
of the control voltage vcon with the ramp signal vramp and can
be written as follows:

RsiL = Rsiref − vramp, (5)

where vramp = matmod T , where ma = VM/T is the slope
of the ramp compensator, VM being its amplitude and T its
period. In order to complete the model, the limiter at the output
of the voltage controller must be taken into account and the
current reference must be limited according to the following
expression

iref =


1

Rs
(κpε+Wivi) if

1

Rs
(κpε+Wivi) < Ilim

Ilim if
1

Rs
(κpε+Wivi) ≥ Ilim.

(6)

The previous model can be used for performing accurate
numerical simulations. However, it cannot be used for a
mathematical analysis of the transient response during startup.
Moroever, since the switching action is taken into account,
large-signal simulations will be very time consuming. In order
to overcome these problems a large-signal averaged model is
derived and then used to analyze the large-signal behavior of
the system during the start-up phase.

IV. LARGE-SIGNAL AVERAGE MODEL AND ANALYSIS OF
THE START-UP RESPONSE

A. Large-signal average model

The mathematical model developed here can be used for
predicting the system start-up and transient behavior at the
low frequency or slow scale. The averaged model of the boost
converter under current mode control with voltage loop closed
and with a CPL can be written as follows

dvo
dt

= − P

Cvo
+
iL
C

(1− d), (7a)

diL
dt

= −vo
L

(1− d) +
vg
L
, (7b)

dvi
dt

= ε (7c)

vo(0) = vg, iL(0) = 0, vi(0) = 0. (7d)

where the overline stands for averaging within a switching
period. The large-signal closed-loop model can be obtained
by replacing the duty cycle d by its expression corresponding
to CMC. It is possible to determine the duty cycle expression
under peak CMC with ramp compensation in terms of the
sensed current RsiL, the reference current Rsiref and the
following constraint due to the switching decision [1]

iL(t) = Rsiref(t)− (ma +
m1

2
)dT, (8)

where m1 = Rsvg/L is the slope of the signal RsiL during the
ON subinterval. In terms of the averaged current, and taking
into account possible saturation of the duty cycle d, this can
be expressed as follows

d =



Rs(iref(t)− iL(t))

(ma +
m1

2
)T

if 0 <
Rs(iref(t)− iL(t))

(ma +
m1

2
)T

< 1,

1 if
Rs(iref(t)− iL(t))

(ma +
m1

2
)T

≥ 1,

0 if
Rs(iref(t)− iL(t))

(ma +
m1

2
)T

≤ 0.

(9)
The saturation of the duty cycle will not take place whenever
the following condition is satisfied:

iref < iL +
1

Rs
(ma +

m1

2
)T. (10)
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According to (3) and (6), the averaged value iref of the
current reference iref and the averaged value vi of the
state variable vi are also limited according to the following
expressions

iref =


1

Rs
(κpε+Wivi) if

1

Rs
(κpε+Wivi) < Ilim,

Ilim if
1

Rs
(κpε+Wivi) ≥ Ilim

(11a)

vi(t) =


1

τ

∫
ε(t)dt if

1

τ

∫
ε(t)dt < RsIlim,

RsIlim if
1

τ

∫
ε(t)dt ≥ RsIlim.

(11b)

The expression of the duty cycle as given by (9) together
with the expressions of vi and iref given in (11a)-(11b) can
then be used in (7d) of the system to obtain the closed large-
signal model.

B. Order-reduction during startup with current reference sat-
urated

The full-order average model given by (7a)-(7c) and (9)-
(11b) describes the large-signal dynamical behavior of the
converter at the slow scale. It is worth to note that the
system is designed in such a way that saturation do not
take place under stable steady-state regime. However, during
startup, saturation of the current reference provided by the
PI compensator could take place to avoid unacceptable high
inrush current. In particular, in the presence of the auxiliary
diode Da, according to (11a) the saturation of the reference
current iref and consequently its averaged value iref will take
place from the initial starting time if the following condition
is fulfilled

1

Rs
(κp(vref − vg)) ≥ Ilim. (12)

This condition is usually satisfied under normal operating
conditions of the converter. Therefore with (12) fulfilled, an
order reduction takes place and the integral variable vi will be
constrained according to vi = RsIlim. It is worth to note that
the reduced-order model is only valid under saturation regime
and cannot be used for predicting the overall dynamics of the
system.

C. Asymptotic behavior of the reduced-order model

During startup, if (12) is satisfied, the converter will start
operating under CMC with voltage loop open and with a
current limit Ilim and the equation describing the integral
variable can be omitted. Under this operating mode, the
coordinates of the supposed equilibrium point of the average
model of the system are as follows

IL =
P

vg
, (13a)

Vo =
vg

1−D, (13b)

D =
Rs(Ilim − IL)

(ma +
m1

2
)T

. (13c)

But, depending on the values of Ilim, T , L, P , ma and vg ,
the resulting steady-state duty cycle D could be saturated to
its maximum value 1 and therefore the previous equilibrium
point could be virtual and the system will not present a real
equilibrium point since the voltage coordinate is at infinity1.
Note that saturation of D at 0 requires that Ilim < IL which
does not make sense. Saturation of D at 1 takes place if the
following condition holds

P

vg
+

1

Rs
(ma +

m1

2
)T < Ilim. (14)

This condition is also usually satisfied under normal operating
conditions of the converter. The reduced-order averaged model
with iref saturated will exhibit a real equilibrium point if the
following condition is satisfied

P

vg
< Ilim <

P

vg
+

1

Rs
(ma +

m1

2
)T (15)

The stability of this equilibrium point can be investigated by
linearizing the previous averaged model with iref saturated in
the vicinity of an operating point. If the duty cycle is not
saturated, the large-signal model can be expressed as follows

ẋ = f(x, d) (16)

d = Rs
Ilim − iL(t)

(ma +
m1

2
)T
, (17)

where x = (vo iL)ᵀ and f is as follows

f(x) =

 dvo
dt

,

diL
dt

.

 (18)

Let v̂o = vo − Vo, îL = iL − IL and d̂ = d − D the
small deviations of the average output voltage vo, the average
inductor current iL and the average duty cycle d with respect to
their steady-state values Vo, IL and D respectively. Therefore,
the small-signal model of the system under CMC with current
reference saturated can be written as follows

˙̂x = Jx̂, (19)

where J is the Jacobian matrix of the system that can be
computed from the following expression

J =
∂f

∂x
+
∂f

∂d

∂d

∂x
. (20)

The calculation of the different partial derivatives leads to the
following expression of J

J =

 P

V 2
o C

αIL
C

+
1−D
C

−1−D
L

−αVo
L

 , (21)

where α is given by

α =
Rs

(ma +
m1

2
)T
. (22)

1The voltage will increase starting from its initial condition vg and as soon
as the voltage error ε changes its sign, the PI compensator comes into play
and under stability conditions of the closed loop system to be derived later,
the output voltage vo will be regulated to its desired value.
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The characteristic polynomial of the system under this oper-
ating mode can be expressed as follows

p(µ) = µ2 +

(
αVo
L
− P

CV 2
o

)
µ+

1

LC
. (23)

Therefore the equilibrium point will be stable with iref satu-
rated whenever the following condition holds

αVo
L
− P

CV 2
o

> 0. (24)

If (24) is not satisfied, the equilibrium point will be unstable
and the system will exhibit low frequency oscillation under
saturated regime. Therefore, it can be concluded that the slow
scale dynamic properties of the boost converter with a CPL
under CMC differs from those of the same converter loaded
by resistive load. In particular, the averaged model of a peak
current mode controlled boost converter is always stable with
a resistive load. It is not the case for the boost converter with
CMC and CPL. In fact, the useful case is the unstable one
with iref = Ilim during the start-up phase because with closed
voltage loop, once vo reaches vref the voltage controller will
come into play and the dynamics will be governed by the
full-order model that can be obtained by replacing Ilim by
iref , making this current reference the unsaturated output of
the PI voltage controller and augmenting the previous model
by taking into account the integral variable.

D. Analysis of the start-up response

Under a tight current mode control leading to an order
reduction like in sliding mode control [35], the large-signal
model will be of first order duding startup. In this case an
expression for the output voltage during the startup period
can be obtained in closed form [35]. Unfortunately, this is
not the case with fixed frequency peak current mode control
and ramp compensation since this order reduction do not take
place. Although in this case it cannot be exactly obtained,
the expression of the output voltage during the startup period
in this case can be modified from [35] and approximated as
follows

vo(t) ≈


vg if t < tr,√
v2g + 2

vg(Ilim − maT
Rs

)− P
C

(t− tr) if t > tr.

(25)
where tr is the time instant at which the signal RsiL reaches
the value Ilim −madT for the first time.

E. Calculation of the current reaching time tr
During the start-up phase, the inductor current is limited

to its maximum permitted value Ilim and the duty cycle is
saturated to 1. Therefore, the inductor current iL and its
averaged value iL will increase linearly according to the
equation iL(t) = m1t. Under these conditions, the reaching
time tr when the signal RsiL reaches the RsIlim−maT for the
first time can be obtained by solving the following equation

Rsm1tr = RsIlim −maT (26)

which results in

tr =
RsIlim −maT

Rsm1
(27)

Depending on the values of Ilim, T , L, Rs, ma and vg ,
the duty cycle will be saturated during a number of switching
cycles Nsat given by the following expression

Nsat =

⌊
RsIlim −maT

Rsm1T

⌋
, (28)

where b·c stands for the floor function.

F. Voltage reaching time tc and the theoretical evolution of
the inductor current ripple during start-up

The time instant at which the voltage vo reaches the desired
voltage Vref can be obtained by solving the equation vo = Vref
using (25) which leads to

tc = tr +
RsC

2((RsIlim −maT )vg −RsP )
(V 2

ref − v2g). (29)

At t = tc, the averaged load voltage vo reaches the reference
voltage Vref . For t > tc, the system will evolve according to
the performances imposed by the voltage loop controller.

The time evolution of the switching ripple amplitude ∆iL(t)
in a boost converter with CPL and under saturated startup
regime can be expressed as follows [35]

∆iL(t) =
Tvg(

√
v2g + 2

vgIlim − P
C

(t− tr)− vg)

2L

√
v2g + 2

vgIlim − P
C

(t− tr)

. (30)

The derived expression for the time evolution of the inductor
current ripple will be validated in Section VI by detailed
numerical simulations using the switched model.

V. LOCAL SLOW SCALE STABILITY DOMAIN OF THE
CLOSED-LOOP FULL-ORDER MODEL

Performing a similar small-signal analysis like in subsection
IV-C taking the integral variable as an additional state variable,
hence the state vector being x = (vo iL vi)

ᵀ, the Jacobian
matrix of the system with voltage loop closed becomes as
follows

J =


P

V 2
o C

+
κpIL
C

αIL
C

+
1−D
C

κpIL
C

−1−D
L
− κpVo

L
−αVo

L
−κpVo

C
−1 0 0

 .

(31)
Now, the characteristic polynomial depends on the propor-

tional gain κp and the time constant τ of the PI controller.
But it is a third order equation making it difficult to obtain a
clear analytical expression for stability boundary. Ignoring the
effect of the integral variable, it is obtained that the boundary
of the slow scale instability is the manifold {µss = 0} in the
parameter space, where µss is given by

µss = κp −
RsCv

2
g

LP (1−D)
+

(1−D)2T (m2 + 2ma)

2vg
. (32)
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For instance, in terms of the proportional gain κp of the PI
compensator, the system will be stable at the slow scale if this
parameter is selected lower than the critical value κcri given
by the following expression

κp,cri ≈
RsCv

2
g

LP (1−D)
− (1−D)2T (m2 + 2ma)

2vg
. (33)

This stability limit will be validated later by numerical
simulations and experimental measurements from a laboratory
prototype.

It is worth to note that since the previous stability limit was
obtained by using an averaged model that ignores the real
switching behavior of the system, a discrepancy is expected
to exist between the results obtained from the closed-form
expression (33) and those obtained numerically from the
detailed switched model.

VI. LARGE-SIGNAL SIMULATION PERFORMANCE AND
MODEL VALIDATION

The simulated and measured large-signal waveforms for the
output voltage and the inductor current were used to validate
the previously derived model. Time-domain waveforms during
startup and steady-state operation are useful in illustrating the
large-signal characteristics of the system. The parameters used
are the ones listed in Table I. The rest of parameters to be
varied to get different large-signal behaviors are shown in the
captions of the figures.

TABLE I
THE FIXED PARAMETER VALUES

Vref L C P VM T τ
48 V 200 µH 130 µF 48 W 1 V 25 µs 1 ms

Fig. 2 shows the time-domain response of the inductor
current and the output capacitor voltage for different values
of input voltage vg = 16 V and vg = 32 V. For vg = 16 V,
the critical value of the proportional gain κ for slow scale
instability to take place is κcri ≈ 10.4 and for vg = 32 V,
one has κcri ≈ 20.77. The used value of the proportional
gain is κp = 3 which is less than κcri in both cases. The
corresponding values of the left hand side of (12) are equal
to 96 A and 48 A respectively. The current is limited to
Ilim = 6.5 A. Therefore (12) is fulfilled in both cases and the
system current reference is saturated from at the initial starting
time instant. The peak iL + ∆iL/2 and valley iL − ∆iL/2
values of the inductor current, where ∆iL is predicted from
(30), are also depicted in dashed lines together with the
average current iL in Fig. 2-a and Fig. 2-b. It can be observed
that similar responses are obtained from both the detailed
switched model and the derived large-signal model during
startup and in steady-state regimes. During startup, condition
(24) is fulfilled and the system is stable but the equilibrium
point is virtual and will not be reached in steady-state. In
fact, as soon as the output voltage is in the vicinity of its
desired value, the PI compensator comes into play and because
κp < κcri, the system is stable hence the desired equilibrium
point is reached.

The results were obtained from the exact switched model
implemented in PSIM c© and from the full-order large-signal
model derived in the previous section. The analytical expres-
sion of the output voltage given in (25) is also plotted during
the startup interval (0, tr). The curves cannot be distinguished
from each other during this interval hence confirming the
accuracy of the derived expressions. The calculated values of
the reaching times tr and tc as predicted by (27) and (29) agree
very well with those obtained by numerical simulations from
the switched model and the large-signal model. For vg = 32 V,
tc ≈ 38 µs and tr ≈ 654.6 µs and for vg = 16 V, the voltage
reaching time is tc ≈ 71 µs and the current reaching time is
tr ≈ 2.5 ms. In both cases, one has that tc � tr.

The number of the initial saturated switching cycles pre-
dicted from (28) also agree well with the one obtained from
numerical simulation from the detailed switched model. For
vg = 32 V, Nsat = 1 and for vg = 16 V, Nsat = 2.

It can be seen that for the case of vg = 32 V, the duration
of the transient time is short as predicted by (29). In this
case, state variables respond quickly during startup. Similar
responses of the inductor current and output voltage take place
for vg = 16. However, the transient time is larger in this case
as predicted by (29). In both cases, the inductor current iL is
controlled to its desired value and the output voltage evolves
approximately according to (25) during the startup period. In
steady-state operation, the output voltage is well regulated to
vref = 48 V and the inductor current average value is settled
down on its theoretical value IL = P/vg = 3 A for vg = 16 V
and IL = P/vg = 1.5 A for vg = 32 V. It is worth to note
that a small discrepancy can be observed between the voltage
reaching time obtained from the switched model and the large-
signal model. This discrepancy is mainly due to switching
ripple not taken into account in the large-signal average model.

Fig. 3 shows the time-domain evolutions of the inductor
current and the output capacitor voltage for input voltage vg =
16 V and for κp = 11 > κcri. Now, since κp > κcri ≈ 10.4
and the system is unstable when it reaches the regulation
phase, exhibiting low frequency oscillations. In Fig. 3-b, the
peak and valley values of the inductor current predicted from
(30) and the evolution of the output voltage from (25) are
also shown. The corresponding value of the left hand side of
(12) is equal to 176 A. The current is limited to Ilim =6.5 A
as before. Therefore (12) is fulfilled and the system current
reference is also saturated from the initial starting instant.
During startup, the equilibrium point is also virtual in this case
and will not be reached in steady-state. These oscillations can
interact with the saturation limit leading to large-signal limit
cycles. Typical corresponding waveforms are shown in Fig. 3.
It can be observed that the matching between the results from
the detailed switched model and from the derived large-signal
model is again remarkable.

VII. EXPERIMENTAL VALIDATION

A comparison between the responses from numerical sim-
ulation using the proposed large-signal model and the ones
obtained from prototype measurements was also conducted.
The experimental setup used for validating the theoretical
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(a) κp = 3, vg = 32 V
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(b) κp = 3, vg = 16 V
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(c) κp = 3, vg = 32 V
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(d) κp = 3, vg = 16 V

Fig. 2. Simulated time-domain waveforms showing the inductor current iL and the output capacitor voltage vo during startup for two different values of
vg . Top: from the derived large-signal averaged model. The predicted peak iL + ∆iL/2 and valley iL − ∆iL/2 values of the inductor current, where ∆iL
is given in (30), are also depicted in dashed lines together with the average current iL. The analytical expression of the output voltage given in (25) is also
plotted during the startup interval (0, tr). The curves cannot be distinguished from each other during this interval hence confirming the accuracy of the derived
expressions. Bottom: from the detailed full order switched model.

predictions and the numerical simulations is depicted in Fig. 4
where the boost converter, its control board, the constant
power sink, the power sources and signal generators can
be identified. The parameters values are the same as those
used in numerical simulations (Table I). The corresponding
schematics diagram is shown Fig. 5. In order to emulate an
ideal constant power load at the converter output, an electronic
load (ELEKTRO-AUTOMATIK EL3400-25) was used. The
inductor was built using toroidal Magnetics Kool-mu c© core.
The output capacitor is the parallel connection of 5 metallized
polyester (MKT) capacitors each has a capacitance of 10 µF
and 36 ceramic (X7R) capacitors each has a capacitance of
2.2 µF. The total capacitance is about 129 µF. The switch
used is an IRFP4110PBF Silicon MOSFET and the diode is
an MBR30H100CTG Silicon Schottky diode. The steady-state
duty cycle was varied by adjusting the input voltage while
maintaining constant reference voltage for all the experiments.

The voltage error is processed by a PI controller implemented
using standard OA devices. The proportional gain of the PI
controller can be adjusted using a potentiometer. A 40 kHz
sawtooth ramp signal provided from the signal generator
Tektronix AFG2021 is subtracted from the output of PI voltage
controller and the result is compared to the signal RsiL. The
current is sensed using the hall effect current sensor LEM
LA25NP with total conversion ratio 1 volt per ampere and an
equivalent resistance rs = 6.3 mΩ (Gsrs = Rs).

The comparator used is LM319N. The output of the SR
latch CD4027BE is the switch driving signal using the driver
MCP1407-E/P. The results, shown below, were measured by
using the oscilloscope Tektronix TDS 754C and the probes
TEKTRONIX TCP202 for illustrating the current waveforms.

Fig. 6 illustrates the startup response from the experimental
prototype for the same values of parameters used in simula-
tions illustraed in Fig. 2. It can be observed from these figures
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(a) Switched model
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(b) Large-signal averaged model

Fig. 3. Simulated time-domain waveforms showing the inductor current iL and the output capacitor voltage vo during startup. (a) from the detailed full order
switched model. (b) from the large-signal averaged model. The predicted peak iL + ∆iL/2 and valley iL − ∆iL/2 values of the inductor current, where
∆iL is given in (30), are also depicted in dashed lines together with the average current iL. The analytical expression of the output voltage given in (25) is
also plotted during the startup interval (0, tr). The curves cannot be distinguished from each other during this interval hence confirming the accuracy of the
derived expressions. .

Fig. 4. The experimental setup used to validate the theoretical and the
simulation results.

that the transient waveforms obtained from the simulation
and experimental results match quite well with each other
although some discrepancies between the experimental results
and those from the switched model can still be appreciated.
These discrepancies are mainly due to parasitic parameters
such as the losses in the reactive and the switching devices that
were not taken into account in the analysis. This demonstrates
that the proposed large-signal model and the derived analytical
expressions for the startup period duration and the expression
of the state variables can faithfully predict the response of the
boost converter with peak current mode control and loaded by
a CPL with voltage loop closed.

Fig. 7 shows the startup response from the experimental
prototype when the system exhibits low frequency oscillation

in the regulation phase corresponding to Fig. 3. A good
matching can again be observed between the experimental
response and the two simulated responses from both models
which demonstrate the validity of the approximate stability
condition given in (33).

VIII. CONCLUSIONS

A large-signal averaged model for a dc-dc boost converter
operating under peak current-mode control and loaded with a
constant power load is presented in this paper. The developed
model is nonlinear and can be used either in the voltage
loop controller design after linearization or for large-signal
simulations. Expressions for the state variables during startup
time interval as well as the duration of this interval are derived
analytically. Although the modeling method used in this work
is well known, according to the authors’ knowledge, it has
not previously been used to model the large-signal behavior
of power converters with constant power load neither to
obtain analytically the expression of the state variables during
the startup regime nor to analytically obtain the duration of
this regime. The theoretical results have been validated by
means of numerical simulations from the detailed circuit-based
switched model implemented in PSIM c© software and also
by measurements from a boost converter prototype. It has
been shown that the derived model accurately predicts the
slow scale low frequency behavior in large-signal transients
during startup as well as the stability boundary in terms of
the system parameters if it is linearized in the vicinity of
the desired equilibrium point. Therefore, under continuous
conduction mode operation, the model predicts the converter
dynamic behavior with great accuracy in different operating
points. Like many other conventional averaged models, one
of the limitation of the derived large-signal model is its
inability to predict the fast scale behavior of the converter. A

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JESTPE.2019.2960696

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS VOL. XX, NO. Y, MONTH., YEAR. 9

Fig. 5. Schematic diagram of the imlemented control scheme for the converter with CPL.

(a) κp = 3, vg = 32 V (D < 0.5) (b) κp = 3, vg = 16 V (D < 0.5)

Fig. 6. Experimental time-domain waveforms showing the inductor current iL and the output voltage for two different values of input voltage vg .
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Fig. 7. Experimental time-domain waveforms showing the inductor current
iL and the output voltage for κp = 8.6.

separate paper submitted to the same special issue is dedicated
to a methodology to accurately predict fast scale instability
in switching converters with constant power load. Further
research will be dedicated to extending the presented work
to other converter topologies.
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