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Ginestra Bianconi
School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom

and The Alan Turing Institute, 96 Euston Rd., London NW1 2DB, United Kingdom

Hanlin Sun
School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom

Giacomo Rapisardi
Barcelona Supercomputing Center (BSC) and Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili,

43007 Tarragona, Spain

Alex Arenas
Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, 43007 Tarragona, Spain

(Received 10 July 2020; revised 15 November 2020; accepted 24 December 2020; published 8 February 2021)

With the hit of new pandemic threats, scientific frameworks are needed to understand the unfolding of the
epidemic. The use of mobile apps that are able to trace contacts is of utmost importance in order to control new
infected cases and contain further propagation. Here we present a theoretical approach using both percolation
and message-passing techniques, to the role of contact tracing, in mitigating an epidemic wave. We show how
the increase of the app adoption level raises the value of the epidemic threshold, which is eventually maximized
when high-degree nodes are preferentially targeted. Analytical results are compared with extensive Monte Carlo
simulations showing good agreement for both homogeneous and heterogeneous networks. These results are
important to quantify the level of adoption needed for contact-tracing apps to be effective in mitigating an
epidemic.
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Percolation theory [1–5] constitutes a subject of major
relevance in the field of complex networks. It provides a sim-
ple mathematical framework which naturally applies to both
networks’ structural properties (such as resilience under ran-
dom damage) [6–8], and critical diffusion (such as epidemic
spreading in heterogeneous structures) [9,10]. As a matter of
fact, even though there exist several epidemiological models
with different flavors of complexity, the arguably most popu-
lar one, i.e., the Susceptible-Infected-Recovered (SIR) model,
was found [9,10] to be mappable to a static link-percolation
problem, which allowed one to find analytical expressions for
the epidemic threshold depending on the underlying network
topology. These results, even if they might be only an approx-
imation of observed features in real epidemics, still constitute
a fundamental theoretical cornerstone in the field of epidemic
processes. Recently there has been an increasing interest in
studying the effectiveness of track and tracing policies as a
measure to contain epidemic spreading [11–14]: for instance,
in [14] the authors show how an effective contact tracing
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strategy in scale-free networks can reduce the probability of
superspreading events, while in [11] it is claimed that a widely
used contact-tracing app, combined with additional measures
such as social distancing might be sufficient to stop an epi-
demic diffusion.

There are several mathematical arguments proposed in
the contemporary literature to justify the above-mentioned
effects; for instance in [14] a simple generating function ar-
gument is proposed in order to compute the probability that
contact tracing stops the epidemic propagation; however, a
solid percolation approach able to capture analytically the
impact of a diffused tracing app on the nonlinear aspect of
epidemic spreading has not been proposed so far. In this work,
we take a step forward in filling this gap by proposing a
stylized model for epidemic spreading with contact-tracing
and testing policies based on link percolation.

In particular, we first consider each individual i, of a given
contact network, to be assigned a binary variable Ti repre-
senting whether or not the individual has the tracing app.
Then, we propose a modified version of the popular message-
passing (MP) equations [15–22] which takes into account the
following rationale. Every infected individual with probability
p, called the transmissibility of the epidemic, transmits the
disease to a susceptible neighbor. An individual who has the
app, will know almost instantaneously (this is a hypothesis far
from reality, but simplifies the analysis) if she/he has been
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FIG. 1. Sketch of the infection pathways that lead to epidemic
spreading in a population in which there are individuals that have
adopted the app and individuals that have not adopted the app.

in contact with an infected individual also having the app,
and she/he immediately self-isolates stopping propagation.
However, if infected from an individual still not having the
app, she/he will not know until symptoms appear. This can
be formulated as follows: individuals with the app (Ti = 1)
can infect only if previously infected by individuals without
the app (Ti = 0), while individuals without the app can infect
regardless of the Ti value of their infector. By doing so we are
able to derive a modified nonbacktracking matrix [16,23–26]
whose largest eigenvalue determines the epidemic threshold
pc. Furthermore, for the case of uncorrelated networks, we are
also able to derive an analytical expression for pc as a function
of the average distribution of the tracing app, namely, T (k).
Our results show that in general the more the app is diffused
among the population the higher is the value of pc, meaning
that the endemic state is less likely to be achieved. Moreover,
we show that given a fixed app coverage on a random network
ensemble, the optimal T (k) which maximizes pc corresponds
to a hub-targeting strategy. By applying the message-passing
algorithm to real networks, we also show that this strategy
gives excellent results compared with other state-of-the-art
ranking algorithms for the centrality of nodes in epidemic
spreading.

Basic model of spreading with app. Let us assume a
contact network G(V, E ) formed by |V | = N individuals i =
1, 2, . . . , N ; each individual i ∈ V is assigned a variable Ti

indicating whether the individual has the app Ti = 1 or not
Ti = 0. Assuming the contact-tracing app has an immediate
effect on quarantining suspicious cases, a person with the
app can infect only if she/he is infected by a person without
the app, while a person without the app can infect regard-
less if she/he has gotten the infection from a person with
the app or without the app (see Fig. 1). Now, we propose
a stochastic infection model as follows: for every link (i, j)
we draw a random variable xi j ∈ {0, 1} indicating whether
the eventual contact between one infected and one susceptible
node, found at the two ends of the link, leads to the infection.
We parametrize this dynamic by taking 〈xi j〉 = p, where p
indicates the transmissibility of the epidemic.

We can simulate the stationary state of this spreading pro-
cess on networks of arbitrary topology, i.e., including spatial
networks with high clustering coefficient, by implementing
the following Monte Carlo algorithm which takes advantage
of the mapping between epidemic spreading and percolation.
We name T -T the links connecting two individuals adopting
the app. These links do not contribute to the propagation of the

infection to nodes other than the two connected nodes. In other
words, the causal chains of infection stop when they involve
a T -T link. Therefore we first consider the giant component
of the link percolation process in which all the T -T links are
removed and all the other links are retained only if xi j = 1. To
calculate the total fraction of infected individuals in addition
to the nodes in this giant component we include also the nodes
with the app infected by nodes with the app [see Supplemental
Material (SM) [27] for details].

Message-passing approach. To analytically predict the
propagation of the epidemic on a network we use the pow-
erful MP approach [16–18,28,29]. Although this approach is
proven to give exact results only on locally treelike networks,
it is also well known to be very robust in the case of networks
with loops, when the underlying MP algorithm converges
[30]. In this work we adopt the MP approach and we use it to
predict the phase diagram of the spreading process on network
ensembles as a function of the level of adoption of the app in
the population.

The considered spreading model is stochastic and has dif-
ferent sources of randomness that can be taken into account
by different MP algorithms in which we average different
levels of information [17]. The simplest message MP can
be derived assuming to know everything about the spreading
dynamics. This would entail first to know the contact network,
secondly to know which individuals have the app, i.e., the
configuration {Ti}i∈V , and finally to know which links have
led to an actual infection, i.e., {xi j}(i, j)∈E (see SM [27] for de-
tails). One can then relax the hypothesis of perfect knowledge
about the epidemic process and we can consider the message
passing processes in which we average over the distribution
of {xi j}(i, j)∈E . In this situation the outcome of the epidemic
spreading is dictated by the following MP equations. A node i
spread the virus to node j only with probability σi→ j ∈ [0, 1]
where this message is found by the MP equation

σi→ j = pTi

[
1 −

∏
�∈N (i)\ j

[1 − (1 − T�)σ�→i]

]

+p(1 − Ti )

[
1 −

∏
�∈N (i)\ j

(1 − σ�→i)

]
, (1)

where N (i) indicates the neighbors of node i. These equations
directly implement the model as described in Fig. 1. More-
over, a node i is infected with probability σi ∈ [0, 1] with

σi =
[

1 −
∏

�∈N (i)

(1 − σ�→i)

]
. (2)

Therefore the expected fraction S of infected individuals is
given by

S = 1

N

N∑
i=1

σi. (3)

This process has an epidemic threshold achieved when the
maximum eigenvalue �(B) of the modified nonbacktracking
matrix B is equal to 1, i.e.,

�(B) = 1. (4)
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The modified nonbacktracking matrix B for this algorithm
is defined in terms of the nonbacktracking matrix A of the
network as

B�i→i j = p(1 − TiT�)A�i→i j . (5)

Here A [16] has elements

A�i→i j = a�iai j (1 − δ� j ), (6)

where a is the adjacency matrix of the network and δrs is
the Kronecker delta. Equations (4) and (5) clearly show that
the epidemic threshold is dictated essentially by the nonback-
tracking matrix of the network where we have removed all the
T -T links.

We can also average over the probability distribution of
{Ti}i∈V . Specifically we can assume that Ti (the . . . indicates
the average over the probability distribution of {Ti}i∈V ) is
only a function of the node degree, i.e., Ti = T (ki ). This is
a minimal assumption that allows one to derive analytical
calculations; however, we note that the adoption of the app
might depend on an additional social contagion process of
awareness behavior in a scenario close to the one proposed in
Ref. [31]. In order to mimic these alternative scenarios in the
SM [27] we have considered the cases in which the adoption
of the app depends on either the eigenvector centrality or the
nonbacktracking centrality of the nodes.

For formulating the MP algorithm in the case in which we
assume to know only the function T (k), the transmissibility p,
and the actual contact network, we consider for every ordered
pair of linked nodes (i, j) the two messages indicating the
probability that node i infects node j given that node i has
adopted (σ̂ T

i→ j) or not adopted (σ̂ N
i→ j) the app. These two

messages are given by

σ̂ T
i→ j = Tiσi→ j,

σ̂ N
i→ j = (1 − Ti )σi→ j . (7)

The MP equations for these messages can be obtained by av-
eraging the MP equations(1) over all the configuration {Ti}i∈V

and read

σ̂ N
i→ j = p [1 − T (ki )]

[
1 −

∏
�∈N (i)\ j

(
1 − σ̂ N

�→i − σ̂ T
�→i

)]
,

σ̂ T
i→ j = pT (ki )

[
1 −

∏
�∈N (i)\ j

(
1 − σ̂ N

�→i

)]
. (8)

The probability that node i is infected σi is given by

σi =
[

1 −
∏

�∈N (i)

(
1 − σ̂ N

�→i − σ̂ T
�→i

)]
, (9)

while the expected fraction S of infected nodes is given by
Eq. (3). In this case the relevant matrix B determining the epi-
demic threshold given by Eq. (4) is (see SM [27] for details)

B�′�→i j = p[1 − T (ki )]δ�iA�′i→i j

+p2[1 − T (ki )]T (k�)A�′�→�iA�i→i j . (10)

Finally we consider the case in which we do not have per-
fect knowledge about the network itself and can perform the
average over an uncorrelated network ensemble. In this case

we have two equations: one for S′
N and one for S′

T , indicating
the probability that by following a link we reach an infected
individual without the app or with the app, respectively. These
equations (see SM [27] for details of the derivation) read

S′
N = p

∑
k

kP(k)

〈k〉 [1 − T (k)][1 − (1 − S′
N − S′

T )k−1],

S′
T = p

∑
k

kP(k)

〈k〉 [T (k)][1 − (1 − S′
N )k−1]. (11)

Here T (k) indicates the probability that a node of degree k
gets the app. The probability that a random node gets the
infection is given by

S =
∑

k

P(k)[1 − (1 − S′
T − S′

N )k]. (12)

The transition is achieved for

pc = min

(
1,

1

2κT

[
−1 +

√
1 + 4

κT

κN

])
, (13)

where

κN = 〈k(k − 1)[1 − T (k)]〉
〈k〉 ,

(14)

κT = 〈k(k − 1)T (k)〉
〈k〉 ,

Optimization. The formula for pc, provided by Eq. (13), is an
increasing function of κT so in order to maximize pc we need
to maximize κT . Under the L1 norm∑

k

P(k)T (k) = T . (15)

This optimization problem gives the discrete Heaviside step
function

T̃ (k) = θ (k − kc, α) (16)

taking the value 0 � α = T − ∑
k>kc

P(k) < 1 at k = kc.
Therefore the optimal solution is to have all nodes of degree
k > kc with 100% app adoption and the node with exactly
k = kc with the maximal adoption allowed by the constraint
in Eq. (15). For this choice of T (k) we have checked the
validity of the proposed message passing theory by comparing
the results obtained by a direct implementation of the Monte
Carlo algorithm predicting the fraction of nodes affected by
the epidemics with the results of the MP algorithm defined in
Eqs. (8), (9) finding an excellent agreement between the two,
for both real and synthetic networks (see Fig. 2).

Improvement on pc. Equation (16) tells us that in an un-
correlated random network, given a fixed app coverage T ,
the best strategy in order to maximally delay the percolation
transition is given by targeting the hubs. In order to verify the
optimality of Eq. (16) when compared to different strategies,
we considered the more general form of T (k) given by

T (k) = ρ + (1 − ρ)θ (k − kc, α), (17)

where θ (k − kc) is the discrete Heaviside step function tak-
ing the value α at k = kc, and ρ ∈ [0, 1] denotes a uniform
fraction of individuals adopting the app. Thanks to Eq. (17)
we are able to interpolate between a purely random strategy
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FIG. 2. The fraction of infected nodes S is plotted versus p for several networks. The results obtained by averaging the Monte Carlo
simulations of the configurations {Ti}i∈V and {xi j}(i, j)∈E are compared with the results of the MP algorithm defined by Eqs. (8) and (9), where
T (k) is given by Eq. (16) with α = 0 and kc as indicated in the legend of each panel. The value K in all panels corresponds to the largest degree
of the network and therefore corresponds to the case of no app coverage. (a) Poisson network with N = 5 × 104 nodes and average degree
λ = 4. (b)–(d) Friendship networks from the music streaming site Deezer in the countries of Romania (N = 41 773), Hungary (N = 47 538),
and Croatia (N = 54 573), respectively [32].

obtained by taking the limit kc → ∞ and the optimal strategy
given in the limit ρ → 0. It is straightforward to check that
under the constraint defined in Eq. (15) we have, respectively,
limkc→∞ T (k) = T and limρ→0 T (k) = T̃ (k).

We have used Eq. (13) to investigate the phase diagram
(characterized by the epidemic threshold pc) of a Poisson
network as a function of ρ and kc (see Fig. 3). We observe
that a diffused adoption of the app can significantly increase
pc, which happens when ρ increases or when kc decreases.

To show, in a particular example, the increase of pc due
to the adoption of the app, we consider the real dataset Live-
mocha social network [33]. As we can see from Fig. 4, the
random adoption strategy, achieved when kc = kmax, yields
a very small increase in the value of pc compared to the
optimal distribution, corresponding to ρ = 0. Therefore in a
scenario of limited resources, represented by the constraint
defined in Eq. (15), the optimal strategy corresponds to dis-
tributing the app from higher-degree nodes to lower-degree
ones until the resources are exhausted. The resulting increase
in pc computed according to Eq. (13) is quite dramatic and
nontrivial; for instance from Fig. 4 we read that if the app
is optimally distributed among ∼40% of the population the

FIG. 3. The phase diagram of the epidemic model mitigated by
the adoption of the app is shown for a Poisson network of N = 104

nodes with average degree λ = 4. Here T (k) is given by Eq. (17)
with α = 0. The epidemic threshold pc is plotted as a function of ρ

for different values of the cutoff kc.
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FIG. 4. Relative increase of pc computed from Eq. (13) on
the Livemocha social network (N ∼ 104 × 103 nodes, E ∼ 2 × 106

edges) [33], where T (k) is given by Eq. (17) under the constraint
(15), and p0

c = 〈k〉/〈k(k − 1)〉 represents the value of the percolation
threshold in the absence of app coverage [which can be obtained
from Eq. (13) in the limit κT → 0]. Here p0

c = 0.003 06, while the
app coverage is fixed at T = 0.391 75, corresponding to an optimal
T̃ (k) with kc = 20 and α = 1. The plot shows that for this particular
value of T , corresponding to ∼40% of the nodes having the app,
the optimal distribution is reached at ρ = 0 and corresponds to an
∼17-fold increase of pc, whereas in the case of a purely random
strategy, obtained at ρ = T , the increase of pc is ∼1.2-fold.

increase of pc is ∼17-fold, while if the same percentage is
covered randomly the increase is ∼1.2-fold. This optimization
principle is obtained under the assumption that the adoption
of the app is dictated by the degree of the nodes. However,
in a real scenario this hypothesis might appear too restric-
tive. Devising an ad hoc optimization algorithm similar to
the ones proposed in [28,29,34] is beyond the scope of this
Letter. However, in order to check how the obtained optimal
strategy compares with other possible mechanisms driving the
adoption of the app in the SM we show that targeting the hubs
remains a very good strategy also if compared to targeting the
high eigenvector centrality nodes or the high nonbacktracking
centrality nodes [25,26] in a number of real datasets.

Conclusions. In this work we provide a message-passing
theory able to predict the epidemic threshold of disease
spreading among a population which has the option of adopt-
ing a tracing app. The simplicity of our model allows us to
derive a simple analytical estimate for the epidemic threshold

and leaves plenty of room for taking into account more com-
plex and realistic factors. For instance, we assumed that the
tracing app is perfect; however, we can relax this assumption
in order to allow also for imperfect tracing and isolation.
Another interesting followup for the model could be the in-
troduction of a time dimension similar to the one proposed
in [25], in order to assess how the modified nonbacktracking
matrix presented in Eq. (5) affects not only the percolation
threshold itself, but also the speed of the epidemic.

The proposed stylized mathematical framework can overall
be useful to assess the expected impact of contact-tracing
apps in the course of an epidemic if adopted correctly. The
compartmental epidemic model used is the classical SIR, and
does not pretend to be a model fitted for the current pandemic
of COVID-19; however, the physical intuition we grasp from
the presented analysis may prove fundamental to prescribe the
best targeting strategy for app adoption, as well as it captures
the highly nonlinear effect on the reduction of the incidence
provided by a certain fraction of adoption. Our preliminary
results show both numerically and theoretically that the adop-
tion of the app by a large fraction of the population increases
the value of the epidemic threshold. In the case of uncorrelated
networks we are able to derive a closed analytic expression
for pc which depends on both the network degree distribution
P(k) and the average app distribution T (k). Thanks to this ex-
pression we finally prove in a constrained-resources scenario
that the value of pc is maximized when high-degree nodes
are preferentially targeted. Our results show that an optimal
targeting gives rise to a dramatic increase in the value of pc

when compared to a strategy in which the same amount of
resources is uniformly distributed. The more randomly the
app is diffused among the population the less is the increase
in the percolation threshold, or equivalently, the less the app
has the power of mitigating the epidemics. Overall our results
show that even if the adoption of a tracing app has the effect
of preventing an epidemic wave, the same level of adoption
can be optimally distributed by taking into account the hetero-
geneity of the population contact network in order to obtain a
mitigation effect which is significantly higher.
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