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Abstract
The design of new host–guest complexes represents a fundamental challenge in supramolecular chemistry. At the same time, 
it opens new opportunities in material sciences or biotechnological applications. A computational tool capable of automati-
cally predicting the binding free energy of any host–guest complex would be a great aid in the design of new host systems, 
or to identify new guest molecules for a given host. We aim to build such a platform and have used the SAMPL7 challenge 
to test several methods and design a specific computational pipeline. Predictions will be based on machine learning (when 
previous knowledge is available) or a physics-based method (otherwise). The formerly delivered predictions with an RMSE 
of 1.67 kcal/mol but will require further work to identify when a specific system is outside of the scope of the model. The 
latter is combines the semiempirical GFN2B functional, with docking, molecular mechanics, and molecular dynamics. 
Correct predictions (RMSE of 1.45 kcal/mol) are contingent on the identification of the correct binding mode, which can 
be very challenging for host–guest systems with a large number of degrees of freedom. Participation in the blind SAMPL7 
challenge provided fundamental direction to the project. More advanced versions of the pipeline will be tested against future 
SAMPL challenges.

Keywords  Molecular dynamics · Molecular mechanics · Semi-empirical methods · Machine learning · Computational drug 
design · Binding free energy calculations · Xtb GFN2B

Introduction

Supramolecular chemistry has experienced enormous 
growth in recent years. Supramolecular processes, and 
host–guest systems in particular, are studied both from a 
fundamental perspective and for their possible applications 

[1–4]. By improving the stability or modifying the proper-
ties of an encapsulated compound, or even by enhancing 
binding selectivity, we foresee a wide range of opportunities 
that span from industrial processes [5] to the medical field 
[6], such as drug delivery targeting cancer cells [7]. At the 
moment, breakthrough discoveries in supramolecular chem-
istry are hampered by the complexity of the thermodynamic 
and kinetic characterization of the inclusion/release pro-
cesses, which make it difficult to generate useful predictions 
about molecular encapsulation [8]. Quantitative predictions 
of binding free energies are particularly difficult, but essen-
tial to guide the synthetic efforts, leading to more efficient 
design and discovery of host–guest systems with the desired 
activities. In this context, some of the tools currently used in 
computer-aided drug design (CADD) could be as useful for 
this endeavor, in the same way as they are for drug discovery 
[9–12]. At the same time, host–guest systems are orders of 
magnitude simpler (in terms of degrees of freedom) than 
biomolecular complexes and, because they are chemically 
stable, can be studied in a variety of well-controlled envi-
ronmental conditions. This offers an opportunity to test and 
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validate computational methods before they become part of 
the CADD arsenal.

Several years of SAMPL (Statistical Assessment of the 
Modeling of Proteins and Ligands) challenge have shown 
interesting approaches to compute the binding free energy of 
host–guest complexes, with a relatively large range of meth-
ods and performances [3–8]. In the context of the NOAH 
European Network, our interest is to develop automated 
methods for the prediction of arbitrary host–guest systems 
under different solvation and other environmental condi-
tions. To fulfill this task, our focus is on automation (to ena-
ble users without a computational chemistry background), 
throughput (to deliver fast predictions and enable multiple 
concurrent users), and accuracy (to deliver useful predic-
tions). We are not tied to any particular method, but must 
be able to generate predictions for a wide range of systems, 
including both novel and previously-described host systems.

In any computational strategy for structure-based design, 
an important step is the prediction of probable conforma-
tions of the receptor-ligand complex [13–15]. As a compro-
mise between performance and accuracy, here we explore 
molecular docking (optionally refined with molecular 
mechanics) and molecular dynamics to solve the docking 
problem. Then, the complex can be scored with a variety 
of methods [16–19]. We explore the use of machine learn-
ing, which can be accurate and very efficient, but is limited 
by the amount of pre-existing data. As a complementary 
tool that can be applied to any arbitrary host–guest system, 
we also implement a physics-based method. In particu-
lar, recent progress in semi-empirical methods lead us to 
build MMGBSA-like methodology [19], but using the xtb 
software and GFN2B basis set [20] instead of a molecular 
mechanics forcefield.

At this stage, more important than the actual predic-
tions, participation in the SAMPL7 was extremely useful 
to test several ideas in blind mode, resulting in the design 
of an automatic pipeline that will be evaluated in subse-
quent SAMPL challenges and eventually become publicly 
available.

Methods

Docking

Docking is used to generating a first guess of the Host–Guest 
structure. We chose ADV for our assessment for several 
reasons. It (i) is faster and generally performs better than 
AutoDock itself, (ii) is freely available and competitive with 
commercial tools [21, 22].

Docking was performed using AutoDockVina v. 1.1.2 
[23]. Input comprises the host system, guest, and docking 
box, while the output is a list of poses ranked by ΔGbind, the 

predicted binding energy in kcal/mol (‘score’ =  − ΔGbind). 
To obtain the maximum number of poses, we set num_
modes to 20. Three different box sizes are used, all of them 
cubic and centered in the host cavity: one big box (edge 
length 10 Å) that allows completely blind docking, and two 
small boxes (7 Å and 5 Å, respectively) restricted to the 
expected binding site. For each box, the top-scored solution 
is extracted. Additionally, for the smallest box, the extrac-
tion is followed by a steepest descent [24] and conjugated 
gradient [25] minimization to correct any ligand distortion 
caused by the small size box.

Molecular modeling/molecular dynamic

All molecular dynamic (MD) simulations were set up in two 
steps:

(1)	 Host and guest preparation The antechamber and tleap 
programs from the AMBER 18 package [26] are used 
to parameterize and solvate the system, respectively. 
Charges are derived with the AM1-BCC method [27]. 
For the spontaneous association simulations (SaMD), 
the host and the guest are placed in the same box, but 
not in direct contact, to observe their interaction prefer-
ences over time. Each system was solvated with ~ 2000 
TIP3P water [28] in a cubic box whose dimensions 
were defined by a distance of 12 Å between the com-
plex and the edges.

(2)	 Minimization The system is minimized with 
GROMACS [29–34] using the steepest descent algo-
rithm, then equilibrated for 100 ps with the leapfrog 
integrator.

Production simulations were run also with GROMACS in 
the NPT ensemble with temperature control using V-rescale 
thermostat [35] at 300 K and with tau_t = 0.1 and pressure 
control provided by Berendsen barostat [36]. Note that the 
Nosé-Hoover or Parrinello-Rahman barostats [37] are con-
sidered a better option for simulations at equilibrium, but as 
the MD is used to sample conformations (rather than extract-
ing thermodynamic properties) this choice does not hamper 
the quality of the results. The Verlet-cutoff-scheme [38] is 
used and the frequency to update the neighbor list is initially 
set at 10, whereas long-range electrostatics were handled 
with the PME [39] method with PME order set at 4.0. 500 ns 
of simulation are realized for the systems, saving a snapshot 
every 0.1 ns for a total of 5000 frames for each simulation.

Semi‑empirical calculations

We used the xtb program package (version 6.1) [20] to cal-
culate both the energy and the enthalpic and entropic cor-
rections. It uses the GFN2B parametrization on an extended 
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semiempirical tight-binding model, which has shown to be 
efficient for determining structures and noncovalent interac-
tion energies for large molecular systems (in the order of 
1000 atoms) [40–43]. Water solvent effects were included 
through a Generalized Born (GBSA) model. The conver-
gence criteria thresholds were set as extreme. Optimization, 
followed by hessian calculations were performed. The result-
ing geometries were verified as true minima by checking 
that no imaginary vibrational frequencies remained. The 
temperature was set to 298.15 K for assessing the thermo-
statistical corrections.

Machine learning

For the GDCC-7 dataset in SAMPL7, we decided to test a 
machine learning approach, taking advantage of pre-existing 
data. All OA or TEMOA host–guest systems from previ-
ous SAMPL challenges (SAMPL4 to SAMPL6) were col-
lected, reconstructed from 2D to 3D, and optimized with the 
GFN2B method. Then, we used the CORINA web-platform 
[44] to compute 200 2D and 3D molecular descriptors for 
each system.

The descriptors of the dataset are reduced using the R 
software [45] with different approaches: (a) deleting the 
descriptors that have a near-zero variance; (b) deleting the 
most correlated descriptors using Caret package [46]; (c) 
using principal component analysis (PCA) [47] to combine 
descriptors that explain the most the variability.

In order to predict the binding free energy, several 
machine learning models using regression are used: neural 
network [48], knn [48], polynomial SVM [49], and random 
forest [50]. By modifying the parameters on those ML mod-
els, hundreds of different models are generated. In all cases 
we use a data partition of 30/70, resulting in a set of 26 cases 
for training and 8 cases for the test set. Our best model used 
to make predictions on SAMPL7 is a neural network using 
the "nnet" function, which provided an RMSE of 0.92 kcal/
mol and with MAE about 0.85 kcal/mol, suggesting that the 
prediction is not excessively biased by overtraining.

Results and discussion

Thermodynamic‑based approach

The Gibbs free energies of the optimized geometries were 
calculated as the sum of the Electronic Energy (E), which 
includes the D4 dispersion correction, thermostatistical cor-
rections (GRRHOT) calculated following a coupled rigid-rotor-
harmonic-oscillator approach, and the solvation contribution 
(Gsolv) calculated by the implicit solvation model GBSA.

with

The association Gibbs free energy is calculated from the 
difference of the free energies from the complex, host, and 
guest molecules, each on their respective conformational 
minimum.

Considering the complexity of the conformational energy 
landscape of the complex and host molecule, we used multi-
ple geometries of the unbound host system as starting points 
for minimization, thus increasing the probability of finding 
the absolute minimum. To do so, we extract approximately 
15 structures from the classical molecular dynamics simu-
lations and carry out a geometric optimization at a semi-
empirical level, followed up by calculation of the hessian 
to confirm that the final energy is a true minimum (i.e. all 
vibrational frequencies are positive). The variation in free 
energy was as large as 10 kcal/mol for the different geom-
etries, which confirmed the importance of conformational 
sampling. The overall lowest energy structure was defined as 
a reference for free energy calculation. Though the degrees 
of freedom of the guests are much reduced, we use a similar 
protocol for consistency (Fig. 1).

Retrospective analysis of trimertrip

As a proof of concept for our methodology, we used the data 
from the trimertrip set in the SAMPL3 challenge. This host 
is similar but simpler than the one in SAMPL7. Docking 
with a large box (15 Å3) produced complexes with negative 
binding energy (scoring), but the guest only formed surface 
interactions with the host. This led us to test two additional 
docking conditions where the docking space is progressively 
reduced. The resulting docking geometries have positive 
scores, indicative of conformational clashes, but in this case, 
the guest inserts into the host cavity. Three to five differ-
ent binding modes were selected for each docking protocol. 
Minimization with Chimera (see “Methods”) allowed the 
system to relax before minimization and free energy cal-
culation with xtb-GFN2B. Interestingly, the lowest-energy 
binding mode originated from the most restrictive docking 
protocol.

As shown in Fig. 2, the predicted binding free ener-
gies are in excellent agreement with the experiment 
[RMSE = 1.16 kcal/mol; MAE = 0.87 kcal/mol; Pearson’s 
correlation [51] (r) = 0.90; Spearman’s rank [52] correla-
tion (ρ) = 0.75, Kendall’s tau correlation [53] = 0.62(τ)]. 
In fact, in four out of the seven test cases we obtain 

ΔG = E + GRRHOT + Gsolv

ΔGsolv = ΔGborn + ΔGsasa + ΔGhb + ΔGshift

ΔGbind = ΔGcomplex − ΔGhost − ΔGguest
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quantitative agreement. In one case the error is below 
1 kcal/mol and in the two remaining cases, the errors are 
1.6 kcal/mol and 2.2 kcal/mol. This led us to believe that, 
given the correct binding mode, the GFN2B semiempirical 
method could provide QM-level results at a small fraction 
of the computational cost (minimization plus calculation 
of the vibrational frequencies takes 1 to 2 h per geometry 
on a desktop computer).

For that specific SAMPL3 dataset, retrospective analysis 
of the results shows very accurate results compared to the 
ones that have been published initially [54].

SAMPL7 trimer‑trip binding mode generation

As in the test systems above, host–guest interactions were 
predicted by molecular docking considering different 

Fig. 1   Protocol used to generate 
low-energy conformations of 
the apo host, the guest, and 
the host–guest systems. Three 
methods have been tested to 
generate initial models of the 
host–guest complex: SaMD, 
MD-Docking, and Docking. 
MD with explicit aqueous 
solvation is used to sample the 
conformational space. Then, 
for representative conforma-
tions, water is deleted and the 
geometry is minimized with 
the GFN2B basis set in GBSA 
implicit water solvation

Fig. 2   Results on the retrospective analysis of SAMPL3 Host–Guest complexes. Free energy predictions (blue bars) and experimental values 
(red bars) are in excellent agreement
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docking volumes in order to obtain a variety of binding 
modes, including somewhere the guest is fully inserted into 
the host. In the most restrained volume (which forces the 
guest to be located inside the host but yields positive score 
values), a molecular mechanics (MM) minimization of the 
docking solution is performed with MOE and CHIMERA, 
thus removing any potential clash between host and guest. 
For some particular systems (G08 and G10) the MM mini-
mization was deemed insufficient to attain a relaxed com-
plex. In those cases, docking was followed by 200 ns of 
MD simulations. Even then, it failed to generate any binding 
mode where the guest is embedded into the cavity of the 
cyclic host. Further adding to our problems, the sulfonate 
groups tended to form unrealistic interactions after mini-
mization with xtb. In some cases, the sulfonates were even 
inserted into the host pocket, which is largely hydropho-
bic, instead of remaining solvent-exposed, as expected for 
a negatively charged group (Fig. 3). This indicated that the 
implicit solvation model in xtb underestimates the desolva-
tion cost of ionic groups.

Contrary to what was observed with the trimer-trip 
host–guest systems of previous editions, we had to conclude 
that a better method was necessary to generate correct bind-
ing modes for the SAMPL7 test set. Our method should 
allow for host flexibility in order to allow guest embedding 
with reasonable geometries. On the other hand, it was clear 
that the implicit solvation model implemented in xtb was 
falling short for ionic systems, and explicit solvation would 
be necessary for the conformational sampling stage. Both 
requisites pointed to MD simulations as an optimal solution, 
which we proceeded to implement and test.

In what we refer as Spontaneous association MD 
(SaMD), the host and the guest are simulated in a TIP3P 
water box, starting from a dissociated configuration (dis-
tance ≥ 8  Å), extending the simulation until binding is 
observed. For the linear guests G01, G02, and G05, SaMD 

successfully completed the inclusion process, which pro-
ceeded in two steps: (i) rapid formation of surface contact 
between host and guest, leading to stable interactions; and 
(ii) a small opening of the host system, enabling the entry 
of the guest into the host cavity and formation of a stable 
complex (Fig. 4). The second step is the bottleneck in the 
process. It occurs in a simulation time of 50 ns to 500 ns 
for the G01 compound, but for systems with longer alkyl 
chains (more degrees of freedom) takes a much longer time. 
In G05, for instance, the simulation had to be extended to 
1 µs to observe a single association event (ca. 700 ns). The 
application of the same methodology to the cyclic guest 
(i.e. G06, G07, G08, G09, G10, G11, G18, G19) failed to 
produce correct binding modes. While the compounds form 
stable surface interactions, they do not enter the host. This 
is in line with the above observation that the host opening 
to admit the guest is the bottleneck in the association pro-
cess. The bulkier nature of the cyclic guests implies that 
the host must (transitorily) adopt a wide-open conforma-
tion that is energetically unfavorable and cannot be sampled 
in the relatively short timescale of the MD simulations. To 
confirm this hypothesis, for the cyclic guest G07 we carried 
out an MD simulation starting from a fully open host sys-
tem (generated by geometrical optimization in vacuum). The 
guest rapidly proceeds to interact with the (now exposed) 
interior of the host, forming a stable but dynamic binding 
mode. After approximately 100 ns, the host folds, trapping 
the guest in its interior (Fig. 4).

This result indicates that starting from metastable host 
conformations may be a general strategy to accelerate SaMD 
and generate valid host–guest geometries.

Notably, the binding mode of the guests inside the host is 
very dynamic, with fast rotations and frequent sliding move-
ments that are only limited by the resistance of the charged 
group of the guest to enter the hydrophobic core of the host. 
As expected, the ionic groups rarely form direct contacts. 
Instead, they preserve their solvation shells. Overall, these 
results suggest that SaMD is an optimal and feasible strategy 
not only to obtain a bound conformation of the host–guest 
complex but also to capture the rich conformational diver-
sity of the bound state. Unfortunately, between the setting 
up and testing of this protocol and the computational cost 
of the MD simulations, it was impossible to complete all 
these calculations by the challenge deadline. Posterior analy-
sis confirms that correct identification of the binding mode 
through SaMD improves the quality of the binding free 
energy predictions (see next section).

SAMPL7 trimer‑trip free energy prediction

For each complex, we extract 5 to 10 different binding modes 
generated with the above-described protocols. These geom-
etries are then individually minimized at the xtb-GFN2B 

Fig. 3   Binding mode of guest molecule G06 generated with docking 
and xtb. A sulfonate group enters the host pocket during geometric 
optimization, revealing an inadequate balance of solvation terms
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semi-empirical level, and only those yielding a true mini-
mum (i.e. all vibrational frequencies are positive) are con-
sidered. The lowest energy complex is considered as the true 
minimum, except for a few cases where visual inspection 
identified issues with the corresponding geometry, always 
related to inadequate screening of charges by the implicit 
solvation method, such as those shown in Fig. 3. Predictions 
for each system are shown in Table 1.

For guest G18 and G19 we could not find a correct bind-
ing mode SaMD, and the docking results gave positive bind-
ing energy. As both protocols failed for these two cyclic 
guests (presumably due to their large volumes) we desisted 
from making predictions for them.

We can see in Fig. 5a, three different zones in the graph-
ics: The first zone corresponds to the five host–guest sys-
tems that have been predicted well. Concerning these sys-
tems G01, G02, and G07 are extracted from the SaMD 
protocol. While G08 and G10 are the two cyclic host from 
where interaction outside the cavity have been extracted 
from MD-docking. The second zone corresponds to five 
Host–Guest system where our prediction was incorrect, 
but still within a range from the experimental values (3 
to 5 kcal/mol errors). These complex (G03, G05, G15, 

G16, G17), are mainly linear and the results originate from 
docking poses with the exception of G05, which originates 
from SaMD (result obtained after the submission dead-
line). The third zone corresponds to the six host–guest 
with large errors, including the G18 and G19 (for which 
none negative binding energy has been found). Most of 
them are cyclic and the errors can be attributed to our 
inability to find reasonable binding modes in the timeline 
of the challenge.

In Fig.  5b, we show that for the complexes where 
SaMD delivers a correct binding mode, the binding free 
energy predictions are far superior to the results obtained 
from docking poses. In fact, most cases (G01, G02, G05, 
G07) are in quantitative agreement with the experiment 
(± 1 kcal mol) and the overall performance statistics are 
excellent: for RMSE = 1.45 kcal/mol; MAE = 0.96 kcal/
mol; Pearson’s correlation (r) = 0.86; Spearman’s rank cor-
relation (ρ) = 0.94, Kendall’s rank correlation = 0.91(τ). 
Compared to SaMD, the results from docking underesti-
mate the binding free energy, which suggests that lower-
energy conformations of the Host–Guest complex can be 
sampled with MD, but not with the MM protocols.

Fig. 4   Inclusion process for trimer-trip dost-guest complexes 
observed with SaMD. (I) Linear guest G02 a starts from a fully dis-
sociated state; b after ~ 10 ns, surface interactions are formed between 
host and guest; c eventually, the host widens the cavity and the guest 
molecule slides across to form a complex; d–f the complex remains 
stable but explores a variety of conformations for the remaining of 

the simulation. (II) Cyclic guest G07 a forms an encounter complex 
very early (~ 1  ns); b and remains in contact with the host for over 
100 ns, until the host clicks into the closed geometry; c, d the com-
plex remains stable but explores a variety of conformations for the 
remaining of the simulation
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Knowledge‑based approach

For GDCC prediction, as there was an important amount of 
pre-existing data from previous challenges, we decided to try 
an orthogonal approach-based ML. The dataset includes 35 
compounds in total, belonging to three classes of host sys-
tems that are similar in structure and chemical composition: 
OA, TEMOA, and exoOA (Fig. 6). The binding free energy 
values range between − 3.73 and − 8.38 kcal/mol. The final 
model (see Methods) is a neural network, using 90 CORINA 
descriptors (60 describing the guest and 30 describing the 
host system). As expected, the predictions for the training 
set are very accurate, with RMSE = 0.92 kcal/mol and all the 
predicted values within a 1 kcal/mol range from the experi-
mental values (Fig. 7a). For the test set, all the predicted 
values are close to the experimental one, with maximum 

and minimum errors of -1.49 kcal/mol and + 0.22 kcal/mol, 
respectively.

The GDCC-7 dataset to be predicted this year consisted 
of 8 guest compounds (4 charged and 4 non-charged) bind-
ing to two related host systems. After the model has been 
optimized, it takes only 10 s to calculate the free bind-
ing energy of the 8 guests in the 2 hosts. With RMSE 
and MAE values of 1.67 kcal/mol and 1.21 kcal/mol, 
respectively, the overall performance is rather satisfac-
tory, especially by comparison with the thermodynamic-
based approach. It is worth noting that the four negative 
guests are not predicting well, which can be explained 
by the limits of the model imposed by the composition 
of the training set: since the least favorable binding free 
energy value is − 3.73 kcal/mol, the model can’t predict 
more positive values. Even then, the hierarchy between 
the guest values is respected (G4 < G3 < G2). There is no 

Fig. 5   Comparison of experimental binding free energies with pre-
dicted values. (Top) correlation plot; the green-shaded area repre-
sents a threshold of + 1/− 1  kcal/mol from the experimental energy; 
the symbols indicate the nature of the guest and the method used 
for binding mode generation (triangle = docking for cyclic guest, 
circle = docking for the linear guest, square = SaMD for the linear 
guest, cross = SaMD for cyclic guest). (Bottom) histogram of free 

binding energy colored by the method used for binding mode gen-
eration (black = docking for the cyclic guest, green = docking for the 
linear guest, blue = SaMD for Linear guest, purple = SaMD for cyclic 
guest). G18 and G19 guests are not shown or consider for statistical 
analysis because it was not possible to generate a plausible binding 
mode for them
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experimental value for G1, so it has not been considered 
for this analysis. If we apply the same analysis to every 
subgroup (based on the positive or negative charge and the 
host they are interacting with) we obtain an almost perfect 
hierarchical prediction. The only exception is the OA-G7 
complex, which was predicted lower than OA-G6 due to 
the fact that OA-G7 has been underestimated (− 5.67 kcal/
mol instead of − 6.98 kcal/mol) while OA-G6 have been 
predicted very close to his experimental values (− 5.92 
for − 5.83 experimental values).

In fact, all systems, except for the four negative com-
pounds interacting with exo-OA, are predicted within 
1 kcal/mol of the experimental values (Fig. 8). For the 
complexes involving the OA system, which features promi-
nently in the training set, the predictions are better still, with 
MAE = 0.55 kcal/mol and RMSE = 0.85 kcal/mol.

Conclusions

The participation in SAMPL7 allowed us to test two orthog-
onal approaches to calculate host–guest binding free ener-
gies, identifying in each case strengths and limitations that 
will be considered for the final design of an automated 
platform.

The thermodynamic-based approach is absolutely general 
and can be used, in principle, on any host–guest system. 
The use of an advanced semiempirical basis set (GFN2B) 
to calculate energies and thermostatistical corrections offers 
increased performance relative to MM approaches with a 
moderate computational cost (1–2 h on a single CPU) and 
eliminates the dependency on small-molecule force-fields, 
which are often inaccurate [55, 56]. However, we have iden-
tified two critical aspects that can lead to incorrect predic-
tions. The first one is a critical dependency on the structure 
of the host–guest complex used to generate the prediction 
(the binding mode). For systems with significant host flex-
ibility, rigid receptor docking can be inappropriate, and host 
conformational sampling is necessary. Direct observation 
of the host–guest pair formation through molecular dynam-
ics with explicit solvent is an optimal solution in terms of 
quality of the binding free energy predictions but can be 
unpractical due to the long simulation times, which increase 
with the number of degrees of freedom of the system. Future 
implementations of the platform will consider modifications 
of the MD parameters to increase efficiency, including par-
allelization, GPU-based implementations, and/or various 
MD software. In the trimertrip case, we identified a slow 
transition between the closed and open conformation of 
the host as the bottleneck in the association process. For 
such cases, starting the SaMD simulations with open host 
conformations can yield excellent results at a fraction of 
the simulation cost. The second limitation of our approach 
is the implicit solvation method (GBSA) which can under-
estimate the desolvation cost of ionic species in aqueous 
solvation, leading to the formation of ionic pairs whose 
contribution is overvalued. Other reports have observed a 
systematic bias with implicit solvation models [57]. We do 
not observe such systematic bias, but the implicit solvation 
model remains one of the weaknesses of the approach. More 
recent xtb versions have replaced the GB formalism for an 
analytically linearized Poisson-Boltzmann (ALPB) model. 
It will be interesting to check the performance of ALPB in 
future SAMPL editions. In any case, the explicit solvation 
in MD simulations is better suited to preserve the solvation 
shells around the solute’s ionic groups. Thus, the use of MD 
snapshots as input geometries in xtb-GFN2B calculations 
seems to provide better results than exhaustive conforma-
tional sampling with implicit solvation.

The use of knowledge-based methods can be highly 
advantageous when there is sufficient pre-existing data. Con-
trary to protein–ligand complexes, where a large body of 
data exists, host–guest systems cannot benefit from massive 

Fig. 6   Three different systems are used for the GDCC prediction. 
In grey with have the common scaffold representing the major part 
of the host. The differences between the host are highlighted: the 
TEMOA system (SAMPL3-6) in green differing from OA (SAMPL3-
6) by the methyl in green. The exoOA system (SAMPL7) differing 
from OA host by the addition of 4 carboxylate groups in yellow
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training sets. Thus, we were particularly interested in exam-
ining the suitability of machine learning approaches, with 
a particular concern on the risk of overfitting. The results 
obtained on the GDCC system are really encouraging and 
motivate us to build a database of host–guest systems, with 
their corresponding binding free energies, and train both 
general and host-specific models. Two critical aspects that 
will be explored are the use of other molecular descriptors 

to improve the predictions and the introduction of selec-
tion criteria to decide when a particular system is within the 
scope of the model.

Overall, the participation in SAMPL7 has allowed us to 
design an automatic pipeline to compute binding free ener-
gies for any Host–Guest system. We currently implementing 
and improving the protocol, that will be tested in subsequent 
SAMPL editions.

Fig. 7   a Performance of the training set including 27 different guests interacting with two different systems. b The test set includes 8 guest mol-
ecules with free energy predicted using the training set
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Fig. 8   Comparison of experimental binding free energies with pre-
dicted values. (Top) correlation plot; The green-shaded area repre-
sents a threshold of ± 1  kcal/mol from the experimental energy; the 
symbols indicate the nature of the guest and each prediction has a dif-
ferent color (triangle = positively charged guest interacting with OA 
system, circle = negatively charged guest interacting with OA sys-
tem, square = negatively charged guest interacting with the exo-OA 

system, cross = positively charged guest interacting with the exo-OA 
system). (Bottom) histogram of free binding energy with calculated 
(blue) and experimental values (red). The error bars reflect the RMSE 
of the nnet model on the training set (0.918 kcal/mol). As previously 
explained, there is no experimental value for G1, so it has not been 
considered for this analysis
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Results overview

See Table 1.

Table 1   Final results with 
experimental, calculated free 
binding energy and the error 
related

Challenge system Case name Experimental ΔGbind 
(kcal/mol)

Predicted ΔGbind 
(kcal/mol)

Error (kcal/mol)

TRIMERTRIP G01 − 6.10 − 5.50 − 0.60
G02 − 8.32 − 8.30 − 0.02
G03 − 10.05 − 5.40 − 4.65
G05 − 11.10 − 8.30 − 2.80
G06 − 9.60 − 2.50 − 7.10
G07 − 6.50 − 6.10 − 0.40
G08 − 9.45 − 11.50 2.05
G09 − 7.57 − 2.00 − 5.57
G10 − 8.17 − 8.40 0.23
G11 − 9.02 − 1.30 − 7.72
G12 − 8.29 − 2.90 − 5.39
G15 − 10.52 − 6.70 − 3.82
G16 − 11.50 − 7.10 − 4.40
G17 − 11.80 − 6.40 − 5.40
G18 − 10.55 0.00 − 10.55
G19 − 11.70 0.00 − 11.70

GDCC OA-G1 − 4.97 − 4.95 − 0.02
OA-G2 − 6.91 − 7.79 0.88
OA-G3 − 8.10 − 8.26 0.16
OA-G4 − 6.76 − 7.33 0.57
OA-G5 − 4.73 − 4.50 − 0.23
OA-G6 − 4.97 − 4.92 − 0.05
OA-G7 − 6.07 − 5.81 − 0.26
OA-G8 − 8.25 − 6.12 − 2.13
ExoOA-G1 0.00 − 5.67 5.67
ExoOA-G2 − 2.20 − 4.75 2.55
ExoOA-G3 − 3.37 − 6.60 3.23
ExoOA-G4 − 3.61 − 7.10 3.49
ExoOA-G5 − 5.57 − 3.91 − 1.66
ExoOA-G6 − 5.83 − 5.92 0.09
ExoOA-G7 − 6.98 − 5.67 − 1.31
ExoOA-G8 − 7.67 − 6.14 − 1.53
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Statistical analysis

See Table 2.
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