

pubs.acs.org/JACS

Ni-Catalyzed Carboxylation of Aziridines en Route to β -Amino Acids

Jacob Davies, Daniel Janssen-Müller,^{||} Dmitry P. Zimin,^{||} Craig S. Day, Tomoyuki Yanagi, Jonas Elfert, and Ruben Martin*

Cite This: J. Ar	n. Chem. Soc. 2021, 143, 4949–4954	Read Online	
ACCESS	III Metrics & More	Article Recommendations	s Supporting Information

ABSTRACT: A Ni-catalyzed reductive carboxylation of N-substituted aziridines with CO₂ at atmospheric pressure is disclosed. The protocol is characterized by its mild conditions, experimental ease, and exquisite chemo- and regioselectivity pattern, thus unlocking a new catalytic blueprint to access β -amino acids, important building blocks with considerable potential as peptidomimetics.

atalytic reductive carboxylation techniques of organic (pseudo) (halides with carbon dioxide (CO₂) have become a valuable tool for our synthetic arsenal in the construction of carboxylic acids,¹ privileged motifs in a myriad of biologically relevant molecules.² Despite the advances realized,¹ chemists are still challenged to design alternative catalytic carboxylation techniques that might offer improved versatility and flexibility in synthetic design while streamlining the preparation of valuable, yet a priori inaccessible building blocks.

Prompted by the seminal studies of Hillhouse and Wolfe,³ chemists have recently exploited the ability of enabling catalytic arylation/alkylation reactions of readily accessible aziridines with stoichiometric organometallics,⁴ ortho-directed C-H functionalizations,⁵ or reductive pathways⁶ via sp^3 C-N cleavage (Scheme 1, top).⁷ Unfortunately, the utilization of

counterparts other than aryl moieties remains an elusive endeavor in reductive coupling events, yet has potential to open up a broad range of novel transformations while streamlining the synthesis of valuable β -functionalized amines. As part of our interest in carboxylation reactions,⁸ we wondered whether we could design a new catalytic protocol for incorporating CO_2 into aziridines in a site-selective manner via I/II (Scheme 1, bottom). If successful, we anticipated that such a scenario would be a worthwhile endeavor for chemical

invention, as it might offer (a) a conceptually new entry to β amino acids-molecules displaying important biological activities with potential as peptidomimetics⁹-without requiring hazardous diazo compounds,¹⁰ cyanide sources,¹ carbon monoxide^{7,12} and (b) an unrecognized opportunity to expand the catalytic carboxylation portfolio of C-N electrophiles beyond activated benzyl quaternary ammonium salts.¹³ Herein, we report the successful realization of this goal. This protocol is characterized by its mild conditions, broad scope, and excellent chemo- and regioselectivity for a wide number of aziridines without recourse to organometallic reagents.

We began our studies by employing 1a as the model substrate (Table 1). Interestingly, not even traces of 2a were observed under conditions previously developed for other catalytic carboxylation reactions of organic (pseudo)halides,¹ thus contributing to the perception that the catalytic carboxylation of aziridines might not be particularly straightforward. We hypothesized that (a) hindered ligands might favor ring-opening of I to zwitterionic II and (b) the stability of II might be improved by interaction with a suitable additive. After extensive optimization,¹⁴ we found that the purity of 1a,¹⁵ the inclusion of MeOH, and a subtle balance of electronic/steric effects at the ligand backbone was critical for suppressing undesirable side reactions while improving the efficiency of the process. Finally, we found that the combination of NiCl₂·glyme (10 mol %), L1 (20 mol %), and MeOH (5 equiv) in DMPU (0.40 M) with Mn powder (3 equiv) as reductant under 1 bar CO_2 delivered 2a in 73% yield (Table 1, entry 1). Under the limits of detection, no cyclic carbamates arising from CO₂ incorporation at the N-tosyl amide¹⁶ were found in the crude mixtures. As shown in entries 2-7, subtle differences on the Ni/L1 ratio or the employment of ligands or precatalysts other than NiCl₂·glyme/L1 resulted in lower yields of 2a. Likewise, the nature of the solvent,

Received: February 18, 2021 Published: March 16, 2021

Table 1. Optimization of the Reaction Conditions^a

^{*a*}**1a** (0.20 mmol), NiCl₂·glyme (10 mol %), L1 (20 mol %), Mn (0.60 mmol). MeOH (1 mmol), CO₂ (1 bar), DMPU (0.50 mL) at 10 $^{\circ}$ C for 48 h. ^{*b*1}H NMR yields using trimethoxybenzene as internal standard. ^{*c*}Isolated yield.

temperature, and CO_2 pressure had a non-negligible impact on reactivity (entries 8–10 and 12) whereas a slight improvement in yield was found after a 72 h reaction time (entry 11).

Table 2. Ni-Catalyzed Carboxylation of Aziridines^a

Rigorous control experiments confirmed that all of the reaction parameters were critical for success (entry 13).

With the optimized reaction conditions in hand, we proceeded to investigate the generality of our protocol. A particular focus was the ability to generate β -derivatives of naturally occurring amino acids (Table 2). Although some compounds were obtained in moderate yields, these results should be interpreted against the challenge that is addressed, providing a complementary approach to an elegant solution recently disclosed by Skrydstrup using stoichiometric Ni-metallacycles and CO.¹² As shown, β -alanine derivative **2c** was obtained in moderate yields whereas the inclusion of substituents at the aziridine backbone delivered the corresponding β -homoalanine (2b), β -homoleucine (2d), β homophenylalanine (2f), β -homotryptophan (2g), β -homoglutamate methyl ester (2i), or β -homotyrosine (2h) derivatives in good yields. Note, however, that more hindered substrate combinations proved challenging, with β -leucine being obtained in moderate yield (2e). As evident from the results illustrated in Table 2, our protocol tolerated the presence of a variety of functional groups, including esters (2i, 2q, 2r, 2s, 2y), ketones (2o), and nitriles (2u, 2x). Notably, the presence of nitrogen- or oxygen-containing heterocycles did not interfere with productive carboxylation of the aziridine backbone (2g, 2p, 2r). Even primary alcohols did not compete with the efficacy of the reaction (2v). While aryl tosylates (2h), chlorides (2m), and alkyl halides (2i, 2k) or sulfonates (2w)are inherently disposed to Ni-catalyzed carboxylation reac-

^aAs Table 1 (entry 1); isolated yields, average of at least two independent runs. ^b1 mmol scale. ^c10 day reaction time. ^d2ag (0.07 mmol), tetrahydropyrazine (1.10 equiv), EDC·HCl (2 equiv), DMAP (4 equiv), CH₂Cl₂, rt.

Journal of the American Chemical Society

tions,¹⁷ CO₂ insertion occurred exclusively at the aziridine backbone, thus providing a handle for further functionalization via conventional cross-coupling reactions.¹⁸ Interestingly, our protocol could be implemented with 2,3-disubstituted aziridines, albeit in low yields and diastereoselectivities (2z). As shown for 2aa-2ae, sulfonyl groups other than the tosyl moiety could be utilized, with electron-rich aromatics providing the best results. Unfortunately, 2-aryl aziridines were not compatible reaction partners.¹⁹ Importantly, our protocol could be easily implemented with ¹³CO₂ (2af), thus providing a useful entry point to ¹³C-labeled β -homo-DOPA after a single deprotection step. Moreover, 2ag was easily within reach, representing a useful strategy en route to Sitagliptin. Figure 1 further illustrates the potential applicability

Figure 1. Derivatization en route to other β -amino acids. Conditions: (*path a*) NH₄OH (20 equiv), reflux; (*path b*) NaH (2.2 equiv), DMF, rt. ^{*a*} Using **2j**. ^{*b*} Using **2k**.

of our Ni-catalyzed carboxylation of aziridines. Specifically, 2j and 2k could be used as formal linchpins en route to β -homolysine (4), β -homoproline (5) and piperidin-2-yl-acetic acid (6) in a single-step operation.

Next, we turned our attention to studying the mechanistic intricacies of our reaction. While azanickelacyclobutanes of type I (Scheme 1) can *a priori* be prepared by exposing low valent Ni complexes to aziridines, 3a,12 this unfortunately was not the case with sterically encumbered L5 possessing substituents adjacent to the nitrogen motif.²⁰ Prompted by this observation, experiments were undertaken with $Ni(L5)_{2}$, as this complex was found to be catalytically competent as an intermediate en route to 21 (Scheme 2).²¹ Interestingly, carboxylation of 11 with $Ni(L5)_2$ (1 equiv) could only be conducted in the presence of both MeOH and Mn,²² thus suggesting the intervention of Ni(I) species within the catalytic cycle (Scheme 2, top).²³ While the enigmatic role of MeOH still remains to be elucidated, we tentatively believe that it might promote and/or stabilize intermediates of type II. Careful examination of the crude mixtures en route to 21 revealed the formation of TsNH₂, 4-phenylbutan-2-one, and 4phenyl-1-butene, thus suggesting β -hydride and/or deamination pathways of alkyl nickel complexes. The latter was indirectly corroborated by the isolation of rather intriguing diazanickelacyclopentene (Ni-I) upon subjecting lab to Ni(L5)₂ (Scheme 2, *middle*),^{14,24} the identity of which could be univocally assigned by X-ray diffraction.¹⁴ While one might argue that these results suggest that our carboxylation event might occur via nucleophilic addition of in situ generated metalla-enamines III onto CO₂ (Scheme 2), the ability to convert enantiopure (S)-1f into 7 with preservation of the chiral integrity at the sp^3 C-N site argues against such a scenario.²⁵ This result is particularly interesting, as it offers an opportunity to exploit the applicability of enantioenriched aziridines that can be easily accessed from readily available

pubs.acs.org/JACS

Scheme 2. Preliminary Mechanistic Studies

precursors²⁶ and an alternative to the classical Arndt–Eistert homologation.¹⁰

Next, we turned our attention to studying the stereochemical course of the reaction. As shown in Scheme 2 (*bottom*), we found that the carboxylation of *trans* 1a- d_1 followed by reduction and a cyclization event resulted in 9 with a 4:1 *cis/trans* ratio. While the identity of the major product might be explained via an S_N2 type insertion of Ni(0) into the aziridine backbone, the presence of the *trans* isomer, together with the lack of diastereocontrol in 2z (Table 2), suggests that other conceivable pathways might come into play. Whether these results indicate the participation of singleelectron transfer processes or recombination events via radical intermediates is the subject of ongoing investigations.^{27–29}

In summary, we have developed a mild and selective catalytic protocol to access valuable β -amino acid building blocks from readily accessible aziridines. The salient features of this technique are the experimental ease and wide substrate scope, thus broadening the generality of Ni-catalyzed carboxylations beyond activated sp^3 nitrogen electrophiles. Notably, the addition of MeOH, Mn as reductant, and the ligand backbone were critical for success.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.1c01916.

Experimental procedures, spectral and crystallographic data (PDF)

Journal of the American Chemical Society

Accession Codes

CCDC 2049249–2049250 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

Ruben Martin – Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain; ICREA, 08010 Barcelona, Spain; orcid.org/0000-0002-2543-0221; Email: rmartinromo@ iciq.es

Authors

- Jacob Davies Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
- **Daniel Janssen-Müller** Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
- Dmitry P. Zimin Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain; Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, 43007 Tarragona, Spain
- Craig S. Day Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain; Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, 43007 Tarragona, Spain; orcid.org/0000-0002-6931-0280
- **Tomoyuki Yanagi** Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
- Jonas Elfert Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain

Complete contact information is available at: https://pubs.acs.org/10.1021/jacs.1c01916

Author Contributions

^{II}D.J.M. and D.P.Z. contributed equally to this work.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank ICIQ and FEDER/MCI-AEI/PGC2018-096839-B-100 for financial support. J.D. thanks the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant Agreement 884948. D.J.M. thanks the Alexander von Humboldt Foundation for a Feodor Lynen fellowship. D.P.Z. thanks European Union's Horizon 2020 for an ITN fellowship 859910. C.S.D. thanks European Union's Horizon 2020 under the Marie Curie PREBIST Grant Agreement 754558. T.Y. thanks JSPS Overseas challenge program for young researchers. We sincerely thank E. Escudero, M. Martinez, and J. Benet for X-ray crystallographic data; N. Cabello, V. Martínez, and C. Chedotal for HRMS spectra; and Xianwei Liu for preliminary studies.

REFERENCES

(1) For selected reviews on carboxylations with CO_2 , see: (a) Hazari, N.; Heimann, J. E. Carbon Dioxide Insertion into Group 9 and 10 Metal-Element σ Bonds. Inorg. Chem. 2017, 56, 13655. (b) Chen, X.-G.; Xu, X.-T.; Zhang, K.; Li, Y.-Q.; Zhang, L.-P.; Fang, P. Transition-Metal-Catalyzed Carboxylation of Organic Halides and Their Surrogates with Carbon Dioxide. Synthesis 2018, 50, 35. (c) Luan, Y.-X.; Ye, M. Transition metal-mediated or catalyzed hydrocarboxylation of olefins with CO2. Tetrahedron Lett. 2018, 59, 853. (d) Fujihara, T.; Tsuji, T. Cobalt- and rhodium-catalyzed carboxylation using carbon dioxide as the C1 source. Beilstein J. Org. Chem. 2018, 14, 2435. (d) Tortajada, A.; Julia-Hernandez, F.; Borjesson, M.; Moragas, T.; Martin, R. Transition-Metal-Catalyzed Carboxylation Reactions with Carbon Dioxide. Angew. Chem., Int. Ed. 2018, 57, 15948. (e) Hong, J.; Li, M.; Zhang, J.; Sun, B.; Mo, F. C-H Bond Carboxylation with Carbon Dioxide. ChemSusChem 2019, 12 (6), 6. (f) Yang, Y.; Lee, J.-W. Toward ideal carbon dioxide functionalization. Chem. Sci. 2019, 10, 3905.

(2) (a) Maag, H. Prodrugs of Carboxylic Acids. In Prodrugs; Springer: New York, 2007; pp 703–729. (b) Lamberth, C.; Dinges, J. Different Roles of Carboxylic Functions in Pharmaceuticals and Agrochemicals in Bioactive Carboxylic Compound Classes: Pharmaceuticals and Agrochemicals; Wiley-VCH Verlag GmbH & Co. KGaA.: Weinheim, 2016; pp 1–11.

(3) (a) Lin, B. L.; Clough, C. R.; Hillhouse, G. L. Interactions of Aziridines with Nickel Complexes: Oxidative-Addition and Reductive-Elimination Reactions that Break and Make C–N Bonds. J. Am. Chem. Soc. 2002, 124, 2890. (b) Ney, J. E.; Wolfe, J. P. Synthesis and Reactivity of Azapalladacyclobutanes. J. Am. Chem. Soc. 2006, 128, 15415.

(4) For metal-catalyzed cross-coupling reactions of aziridines and organozinc reagents, see: (a) Huang, C.-Y. D.; Doyle, A. G. Nickel-Catalyzed Negishi Alkylations of Styrenyl Aziridine. J. Am. Chem. Soc. 2012, 134, 9541. (b) Nielsen, D. K.; Huang, C.-Y.; Doyle, A. G. Directed Nickel-Catalyzed Negishi Cross Coupling of Alkyl Aziridines. J. Am. Chem. Soc. 2013, 135, 13605. (c) Jensen, K. L.; Standley, E. A.; Jamison, T. F. Highly Regioselective Nickel-Catalyzed Cross-Coupling of N-Tosylaziridines and Alkylzinc Reagents. J. Am. Chem. Soc. 2014, 136, 11145. For the utilization of organoboron reagents, see: (d) Duda, M. L.; Michael, F. E. Palladium-Catalyzed Cross-Coupling of N-Sulfonylaziridines with Boronic Acids. J. Am. Chem. Soc. 2013, 135, 18347. (e) Takeda, Y.; Ikeda, Y.; Kuroda, A.; Tanaka, S.; Minakata, S. Pd/NHC-Catalyzed Enantiospecific and Regioselective Suzuki-Miyaura Arylation of 2-Arylaziridines: Synthesis of Enantioenriched 2-Arylphenethylamine Derivatives. J. Am. Chem. Soc. 2014, 136, 8544. (f) Takeda, Y.; Kuroda, A.; Sameera, W. M. C.; Morokuma, K.; Minakata, S. Palladium-catalyzed regioselective and stereo-invertive ring-opening borylation of 2-arylaziridines with bis(pinacolato)diboron: experimental and computational studies. Chem. Sci. 2016, 7, 6141. (g) Takeda, Y.; Matsuno, T.; Sharma, A. K.; Sameera, W. M. C.; Minakata, S. Asymmetric Synthesis of β 2-Aryl Amino Acids through Pd-Catalyzed Enantiospecific and Regioselective Ring-Opening Suzuki-Miyaura Arylation of Aziridine-2-carboxylates. Chem. - Eur. J. 2019, 25, 10226. (h) Yu, X.-Y.; Zhou, Q.-Q.; Wang, P.-Z.; Liao, C.-M.; Chen, J.-R.; Xiao, W.-J. Dual Photoredox/ Nickel-Catalyzed Regioselective Cross-Coupling of 2-Arylaziridines and Potassium Benzyltrifluoroborates: Synthesis of β -Substitued Amines. Org. Lett. 2018, 20, 421.

(5) For selected references: (a) Li, X. W.; Yu, S. J.; Wang, F.; Wan, B. S.; Yu, X. Z. Rhodium(III)-Catalyzed C–C Coupling between Arenes and Aziridines by C–H Activation. *Angew. Chem., Int. Ed.* **2013**, 52, 2577. (b) Gao, K.; Paira, R.; Yoshikai, N. Cobalt-Catalyzed ortho-C–H Alkylation of 2-Arylpyridines via Ring-Opening of Aziridines. *Adv. Synth. Catal.* **2014**, 356, 1486. (c) Zhou, K.; Zhu, Y.; Fan, W.; Chen, Y.; Xu, X.; Zhang, J.; Zhao, Y. Late-Stage Functionalization of Aromatic Acids with Aliphatic Aziridines: Direct Approach to Form β -Branched Arylethylamine Backbones. *ACS Catal.* **2019**, 9, 6738.

Journal of the American Chemical Society

(6) (a) Woods, B. P.; Orlandi, M.; Huang, C.-Y.; Sigman, M. S.; Doyle, A. G. Nickel-Catalyzed Enantioselective Reductive Cross-Coupling of Styrenyl Aziridines. *J. Am. Chem. Soc.* **2017**, *139*, 5688. (b) Steiman, T. J.; Liu, J.; Mengiste, A.; Doyle, A. G. Synthesis of β -Phenethylamines via Ni/Photoredox Cross-Electrophile Coupling of Aliphatic Aziridines and Aryl Iodides. *J. Am. Chem. Soc.* **2020**, *142*, 7598.

(7) Huang, C-Y. D.; Doyle, A. G. The Chemistry of Transition Metals with Three-Membered Ring Heterocycles. *Chem. Rev.* 2014, 114, 8153.

(8) For selected references: (a) Sahoo, B.; Bellotti, P.; Juliá-Hernández, F.; Meng, Q. Y.; Crespi, S.; König, B.; Martin, R. Site-Selective, Remote sp3 C–H Carboxylation Enabled by the Merger of Photoredox and Nickel Catalysis. *Chem. - Eur. J.* **2019**, *25*, 9001. (b) Tortajada, A.; Duan, Y.; Sahoo, B.; Cong, F.; Toupalas, G.; Sallustrau, A.; Loreau, O.; Audisio, D.; Martin, R. Catalytic Decarboxylation/Carboxylation Platform for Accessing Isotopically Labeled Carboxylic Acids. *ACS Catal.* **2019**, *9* (7), 5897. (c) Börjesson, M.; Janssen-Müller, D.; Sahoo, B.; Duan, Y.; Wang, X.; Martin, R. Remote sp² C–H Carboxylation via Catalytic 1,4-Ni Migration with CO₂. *J. Am. Chem. Soc.* **2020**, *142*, 16234.

(9) (a) Seebach, D.; Gardiner, J. β -Peptidic Peptidomimetics. Acc. Chem. Res. 2008, 41 (10), 1366. (b) Cabrele, C.; Martinek, T. A.; Reiser, O.; Berlicki, L. Peptides Containing β -Amino Acid Patterns: Challenges and Successes in Medicinal Chemistry. J. Med. Chem. 2014, 57, 9718.

(10) (a) Podlech, J.; Seebach, J. On the Preparation of β -Amino Acids from α -Amino Acids Using the Arndt-Eistert Reaction: Scope, Limitations and Stereoselectivity. Application to Carbohydrate Peptidation. Stereoselective a-Alkylations of Some p-Amino Acids. *Liebigs Ann.* **1995**, 1995, 1217. (b) Matthews, J. L.; Braun, C.; Guibourdenche, C.; Overhand, M.; Seebach, D. Preparation of Enantiopure β -Amino Acids from α -Amino Acids Using the Arndt-Eistert Homologation in Enantioselective Synthesis of β -Amino Acids; Wiley-VCH Verlag GmbH & Co. KGaA.: Weinheim, 2005; pp 93–99.

(11) (a) Farras, J.; Ginesta, X.; Sutton, P. W.; Taltavull, J.; Egeler, F.; Romea, P.; Urpi, F.; Vilarrasa, J. β^3 -Amino acids by nucleophilic ringopening of N-nosyl aziridines. *Tetrahedron* **2001**, *57*, 7665. (b) Yadav, J. S.; Reddy, B. V. S.; Parimala, G.; Reddy, V. Lithium Perchlorate Catalyzed Regioselective Ring Opening of Aziridines with Sodium Azide and Sodium Cyanide. *Synthesis* **2002**, *16*, 2383. (c) Wu, J. W.; Hou, X.-L.; Dai, L.-X. Effective Ring-Opening Reaction of Aziridines with Trimethylsilyl Compounds: A Facile Access to β -Amino Acids and 1,2-Diamine Derivatives. *J. Org. Chem.* **2000**, *65*, 1344. Matsubara, S.; Kodama, T.; Utimoto, K. Yb(CN)₃-catalyzed reaction of aziridines with cyanotrimethylsilane. A facile synthesis of optically pure β -amino nitriles. *Tetrahedron Lett.* **1990**, *31*, 6379.

(12) For an elegant carbonylation of aziridines mediated by stoichiometric Ni complexes supported by nitrogen-containing ligands, see: Ravn, A. K.; Vilstrup, M. B. T.; Noerby, P.; Nielsen, D. U.; Daasbjerg, K.; Skrydstrup, T. Carbon Isotope Labeling Strategy for β -Amino Acid Derivatives via Carbonylation of Azanickellacycles. *J. Am. Chem. Soc.* **2019**, *141*, 11821.

(13) (a) Moragas, T.; Gaydou, M.; Martin, R. Nickel-Catalyzed Carboxylation of Benzylic C-N Bonds with CO₂. Angew. Chem., Int. Ed. 2016, 55, 5053. (b) Liao, L.-L.; Cao, G.-M.; Ye, J.-H.; Sun, G.-Q.; Zhou, W.-J.; Gui, Y.-Y.; Yan, S.-S.; Shen, G.; Yu, D.-G. Visible-Light-Driven External-Reductant-Free Cross-Electrophile Couplings of Tetraalkyl Ammonium Salts. J. Am. Chem. Soc. 2018, 140, 17338. (c) Yang, D.-T.; Zhu, M.; Schiffer, Z. J.; Williams, K.; Song, X.; Liu, X.; Manthiram, K. Direct Electrochemical Carboxylation of Benzylic C–N Bonds with Carbon Dioxide. ACS Catal. 2019, 9, 4699.

(14) For details, see Supporting Information.

(15) In the synthesis of aziridines from olefins using Chloramine T hydrate, minor side products are generated which were found to be detrimental to the reaction outcome and must be removed to achieve the highest yields. See Supporting Information for details.

(16) For the synthesis of oxazolidinones from aziridines, see: Lamb, K. J.; Ingram, I. D. V.; North, M.; Sengoden, M. Valorization of

Carbon Dioxide into Oxazolidinones by Reaction with Aziridines. *Current Green Chemistry* **2019**, *6*, 32 and references therein.

(17) (a) Fujihara, T.; Nogi, K.; Xu, T.; Terao, J.; Tsuji, Y. Nickel-Catalyzed Carboxylation of Aryl and Vinyl Chlorides Employing Carbon Dioxide. J. Am. Chem. Soc. **2012**, 134, 9106. (b) Liu, Y.; Cornella, J.; Martin, R. Ni-Catalyzed Carboxylation of Unactivated Primary Alkyl Bromides and Sulfonates with CO₂. J. Am. Chem. Soc. **2014**, 136, 11212. (c) Börjesson, M.; Moragas, T.; Martin, R. Ni-Catalyzed Carboxylation of Unactivated Alkyl Chlorides with CO₂. J. Am. Chem. Soc. **2016**, 138, 7504. (d) Rebih, F.; Andreini, M.; Moncomble, A.; Harrison-Marchand, A.; Maddaluno, J.; Durandetti, M. Direct Carboxylation of Aryl Tosylates by CO₂ Catalyzed by In situ-Generated Ni⁰. Chem. - Eur. J. **2016**, 22, 3758.

(18) de Meijere, A.; Bräse, S.; Oestreich, M. *Metal-Catalyzed Cross-Coupling Reactions and More*, *1*, *2 and* 3; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2014.

(19) The utilization of these coupling partners resulted in competing β -hydride elimination products. This outcome has already been observed in related carboxylations at activated positions: (a) Correa, A.; Leon, T.; Martin, R. Ni-Catalyzed Carboxylation of $C(sp^2)$ - and $C(sp^3)$ -O Bonds with CO₂. J. Am. Chem. Soc. **2014**, 136, 1062. (b) Leon, T.; Correa, A.; Martin, R. Ni-Catalyzed Direct Carboxylation of Benzyl Halides with CO₂. J. Am. Chem. Soc. **2013**, 135, 1221. (c) Ishida, N.; Masuda, Y.; Imamura, Y.; Yamazaki, K.; Murakami, M. Carboxylation of Benzylic and Aliphatic C-H Bonds with CO₂ Induced by Light/Ketone/Nickel. J. Am. Chem. Soc. **2019**, 141, 19611.

(20) All our attempts to prepare azanickelacyclobutanes by exposure of $(L5)_2Ni(0)$ to aziridines were unsuccessful. However, qualitative data could be gathered by MALDI-MS, allowing identification of the presence of I with L5. For more details, see Supporting Information. (21) We chose L5 for our stoichiometric studies due to its catalytic

competence (Table 1, entry 7) and the ease at which $(L5)_2Ni(0)$ can be accessed in large quantities. For direct comparison, aziridine 11 gave 21 (48%) after a 3 day reaction with L5 (20 mol%) instead of L1.

(22) While **2l** was not observed with Mn in the presence of MeOH, substantial amounts of an aliphatic carbonate were formed instead. Its formation likely arises from a nucleophilic attack of MeOH to a cyclic carbamate intermediate; see: Tascedda, P.; Duñach, E. Electrosynthesis of cyclic carbamates from aziridines and carbon dioxide. *Chem. Commun.* **2000**, 449. For more details, see Supporting information.

(23) Somerville, R. J.; Odena, C.; Obst, M. F.; Hazari, N.; Hopmann, K. H.; Martin, R. Ni(I)–Alkyl Complexes Bearing Phenanthroline Ligands: Experimental Evidence for CO2 Insertion at Ni(I) Centers. J. Am. Chem. Soc. 2020, 142, 10936.

(24) Intriguingly, a second nickel complex was isolated from stoichiometric reactions between **1ab** and Ni(**L5**)₂ in which C–H functionalization onto **L5** took place (Ni-II). Although tentative, this complex might arise via β -hydride elimination pathways. See Supporting Information for details.

(25) The preservation of chiral integrity in enantioenriched aziridines is not particularly common in Ni-catalyzed reactions. For a remarkable exception, see ref 6b.

(26) (a) Degennaro, L.; Trinchera, P.; Luisi, R. Recent Advances in the Stereoselective Synthesis of Aziridines. *Chem. Rev.* 2014, *114* (16), 7881. (b) Pellissier, H. Recent Developments in Asymmetric Aziridination. *Adv. Synth. Catal.* 2014, *356*, 1899.

(27) The high reduction potential of **1ab** ($E_p^{\text{red}} = -2.4 \text{ V vs Ag}/\text{AgCl in MeCN}$) argues against the possibility of an outer sphere type single-electron transfer from Ni(0)L_n to the aziridine backbone.

(28) Intriguingly, the utilization of homogeneous reductants such as DMAP-OED or Cp*₂Co resulted in no conversion of **11** to **21**. See: (a) Murphy, J. A.; Garnier, J.; Park, S. R.; Schoenebeck, F.; Zhou, S.z.; Turner, A. T. Super-Electron Donors: Bis-pyridinylidene Formation by Base Treatment of Pyridinium Salts. *Org. Lett.* **2008**, *10*, 1227. (b) Charboneau, D. J.; Brudvig, G. B.; Hazari, N.; Lant, H. M. C.; Saydjari, A. K. Development of an Improved System for the Carboxylation of Aryl Halides through Mechanistic Studies. *ACS Catal.* **2019**, *9*, 3228. Instead, we obtained substantial amounts of an

pubs.acs.org/JACS

aliphatic carbonate that likely arises from a nucleophilic attack of MeOH to a cyclic carbamate intermediate. See Supporting Information for details.

(29) For a mechanistic hypothesis, see the Supporting Information.