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Mass spectrometry imaging (MSI) consist of spatially located spectra with thousands of peaks. Only a
fraction of these peaks corresponds to unique monoisotopic peaks, as mass spectra include isotopes,
adducts and fragments of compounds. Current peak annotation solutions depend on matching MS fea-
tures to compounds libraries. We present rMSIannotation, a peak annotation algorithm to annotate
carbon isotopes and adducts in metabolomics and lipidomics imaging mass spectrometry datasets
without using supporting libraries. rMSIannotation measures and evaluates the intensity ratio between
carbon isotopic peaks and models their distribution across the m/z axis of the compounds in the Human
Metabolome Database. Monoisotopic peak selection is based on the isotopic likelihood score (ILS) made
of three components: image morphology correlation, validation of isotopic intensity ratios, and peak
centroid mass deviation. rMSIannotation proposes pairs of peaks that can be adducts based on three
scores: isotopic pattern coherence, image correlation and mass error. We validated rMSIannotation with
three MALDI-MSI datasets which were manually annotated by experts, and compared the annotations
obtained with rMSIannotation and with the METASPACE annotation platform. rMSIannotation replicated
more than 90% of the manual annotation reported in FT-ICR datasets and expanded the list of annotated
compounds with additional monoisotopic peaks and neutral masses. Finally, we evaluated isotopic peak
annotation as a data reduction method for MSI by comparing the results of PCA and k-means segmen-
tation before and after removing non-monoisotopic peaks. The results show that monoisotopic peaks
retain most of the biologic variance in the dataset.
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Department of Electronic Engineering, Tarragona, Spain.
arcía-Altares).

B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:maria.garcia-altares@urv.cat
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aca.2021.338669&domain=pdf
www.sciencedirect.com/science/journal/00032670
www.elsevier.com/locate/aca
https://doi.org/10.1016/j.aca.2021.338669
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.aca.2021.338669


L. Sement�e, G. Baquer, M. García-Altares et al. Analytica Chimica Acta 1171 (2021) 338669
1. Introduction

Mass spectrometry imaging (MSI) is a technique that can
spatially resolve the chemical composition of a variety of bio-
samples, including animal and plant tissues, to reveal their bio-
logical mechanisms [1e3]. An MSI dataset consists of a collection of
mass spectra localized in the pixels of an image. Raw mass spectra
need to be processed to reduce the variance introduced during
acquisition (electronic noise, mass drifts, intensity fluctuations,
etc.) [4]. The information in a processed dataset consists of spatially
resolved discrete m/z features, which undergo data analysis steps
such as multivariate statistics and compound identification to
obtain biological knowledge [5e7].

Mass spectrometry dataset contains redundant information,
since a single chemical compound generates multiple peaks, which
can be attributed to isotopes, adducts, fragments, and different
ionization states. Therefore, the redundant variables in the dataset
tend to enlarge the data size and hinder statistical analysis [8].
Reducing this redundancy to obtain statistically relevant variables
is crucial to unveiling biological knowledge [9e11].

In this study, we define peak annotation as the process of
automatically grouping all peaks related to the same molecule, and
the ion species to which they correspond [11e13]. This involves
labeling carbon monoisotopic (Mþ0) and isotopic ions (Mþ1, Mþ2,
etc.), adducts of the same compounds ([MþNa]þ [MþK]þ, etc.), and,
when possible, assigning putative molecular classes with the
Kendrick mass defect [14,15]. Besides, a neutral monoisotopic mass
can be determined if two or more adducts can be annotated for a
given compound. This allows the assignment of molecular formulas
with higher confidence. Peak annotation is an essential step prior to
peak identification, which consists in searching the annotated
peaks in libraries of chemical compounds to assign them a putative
chemical formula and name using MS data and confirming each
assignment through MSn data and orthogonal techniques [16].

Moreover, peak annotation algorithms are reliable variable se-
lection approaches and greatly facilitate the identification process.
Annotation ideally allows unifying all peaks coming from the same
compound, reducing the number of statistical variables to only one
independent variable per compound.

Peak annotation algorithms are more established in LC-MS-
based experiments than in MSI. Although, LC-MS and MSI have
different data structure and content, some peak annotation stra-
tegies in LC-MS can be adapted to MSI datasets. Notable examples
are:

(1) R package CAMERA [11] annotates carbon isotopes, adducts,
and fragments in a peak list by first grouping peaks by peak
shape correlation, retention time similarity and correlation
across samples, and then by checking Mþ1/Mþ0 isotopic
ratios, and adduct distances. Ratios between Mþ0 and Mþ1
isotopes are computationally pre-established.

(2) R package CliqueMS [17] annotates adducts using the simi-
larity between coelution profiles and a similarity network
based on the natural frequency of adduct formation observed
in real samples.

(3) R package Astream [18] annotates isotopes, fragments, and
adducts by using intensity correlations across samples,
retention time differences, and expected m/z differences.

In MSI there is no chromatographic separation before ionization
and ions frequently overlap, even with high resolving power
spectrometers (>20,000). Since MSI is an imaging technique,
spatial correlation methods can be used to increase peak annota-
tion confidence. To our knowledge, only two annotation tools have
been developed specifically for MSI applications:
2

(1) R package MassPix [19] annotates Mþ0, Mþ1 and Mþ2 iso-
topes by searching for intensity ratios between peaks below
user defined ratios. After deisotoping, it searches for the m/z
of Mþ0 peaks in a self-developed library of lipids to tenta-
tively annotate and identify them. MassPix does not consider
spatial information or colocalization among isotopic ion
images.

(2) METASPACE annotation platform [20] is an online annotation
tool in which users upload their MSI datasets to be anno-
tated. Its annotationworkflow consists of generating isotopic
patterns from metabolites databases and matching them
with the experimental MSI data using three different met-
rics: spatial chaos measure, spatial isotope measure and
spectral isotope measure. Matches with an overall score
higher than a threshold are then given a false discovery rate
score based on a target-decoy approach [21]. The results of
this workflow are pairs of matching adducts and formulae,
which lead to tentativem/z identifications. On the downside,
it is important to notice that METASPACE requires to uploads
datasets with a high mass accuracy (<3 ppm) and a resolving
power over 70k (m/z 200) for reliable results. In addition,
METASPACE may be impractical for large experiments since
datasets must be uploaded through the internet. Finally,
despite having METASPACE 0s source code available, it still
suffers from the black box effect where users are restricted to
visualize the annotation results and are not able to finely
control/adapt the annotation tool themselves.

Both MassPix and METASPACE use generated isotopic patterns
from libraries of metabolites, which restrict the annotation to com-
pounds already reported in the libraries. To overcome this limitation,
we propose rMSIannotation, a new annotation tool based on the
analysis of isotopic patterns optimized for compounds below
1200 Da, included in the MSI data processing R package rMSIproc
[22]. rMSIannotation takes advantage of the high number of pixels in
an MSI dataset to annotate carbon-based isotopes with single and
multiple charges using three scores: (1) image morphology, which
considers the colocalization among related m/z ion images, (2) iso-
topic pattern profile, which asserts the plausibility of isotopic ratios
given an m/z ratio and (3) centroid mass deviation, which evaluates
the theoretical distance of carbon isotopic patterns. Additionally,
monoisotopic ions found by the algorithm are compared with
theoretical mass distances of adducts to generate tentative neutral
masses. The algorithm has been tested and validated using in silico
datasets, experimental datasets with manual identifications and by
comparing the annotations produced by rMSIannotation with the
results provided by METASPACE. Users can freely access and/or
contribute to rMSIproc at <https://github.com/prafols/rMSIproc>.

2. Materials and methods

2.1. Imaging datasets

Three published datasets were used to test the algorithm: (1) a
MALDI-TOF dataset consisting of bovine ovarian follicles [23], (2) a
MALDI-FT-ICR dataset consisting of a bloom-forming alga during
infection [24] and (3) a MALDI-FT-ICR dataset consisting of coronal
12 mm-thick brain sections of adult wild-type C57 mice [20].

2.1.1. MALDI-TOF dataset
TheMALDI-TOF dataset consists of a collection of bovine ovarian

follicles [23]. The dataset was kindly provided by the authors. De-
tails of sample preparation and data acquisition can be found in the
original paper. The authors identified 43 metabolites in the MSI
dataset by first, analyzing lipid extracts from the follicular cells with

https://github.com/prafols/rMSIproc
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high-resolution LC-MS and direct infusion MS/MS structural ana-
lyses and second, searching the identifications in the MSI dataset.
The raw data was exported to imzML format using Bruker Flex-
Imaging software and the dataset was then processed using the
rMSIproc processing workflow [22]. The processing pipeline con-
sisted of: (1) smoothing by Savitzky-Golay using a kernel size of 7,
(2) spectra alignment with two iterations, a 400 ppm max shift, an
oversampling of 2 and references for low, mid and high of 0, 0.5 and
0.8, (3) mass calibration using previously identified peaks (m/z
524.372, m/z 760.586 and m/z 824.557) and (4) peak-picking with
an SNR threshold set to 5, a peak detector window of 12, a peak
oversampling of 10, a binning tolerance of 5 scans and a binning
filter of 0.05. The result was a peak matrix with a total of 235 peaks
and 15293 pixels within the m/z range between 100 and 1200.

2.1.2. MALDI-FT-ICR dataset 1
The MALDI-FT-ICR dataset 1 consists of a bloom-forming alga

(Emiliana huxleyi) during infection with a virus [24]. The dataset
was available from MetaboLights [25] stored in the study with
reference MTBLS769. Details of sample preparation and data
acquisition can be found in the original paper, in which the authors
identified 37 metabolites using LC-MS and LC-MS/MS in lipidomic
experiments performed in liquid cultures. The raw data was
exported to imzML format using Bruker FlexImaging and the
dataset was then processed using rMSIproc. The processing pipe-
line consisted of: (1) smoothing by Savitzky-Golay using a kernel
size of 7, (2) a spectra alignment with two iterations, a 300 ppms
max shift, an oversampling of 2 and references for low, mid and
high of 0, 0.5 and 1, (3) mass calibration using four previously
identified peaks (m/z 689.5024, m/z 749.5153, m/z 802.5469, m/z
826.6199 and m/z 902.5782) to facilitate the comparison of the
results and (4) peak-picking with an SNR threshold set to 20, a
detector window of 10, an oversampling of 10, a binning tolerance
of 6 scans and a binning filter of 0.05. The result was a peak matrix
with a total of 4047 peaks and 10517 pixels within them/z range of
100e1200.

2.1.3. MALDI-FT-ICR dataset 2
TheMALDI-FT-ICR dataset 2 consists of four coronal 12 mm-thick

brain sections of an adult wild-type C57 mice [20]. The dataset was
available fromMetaboLights [25] stored in the studywith reference
number MTBLS313. Details of sample preparation and data acqui-
sition can be found in the original paper. In the original work, the
dataset consisted of ten sections of two different animals. In this
work, we used four sections out of five from the first animal as the
data for one section was missing. The authors annotated 35 mole-
cules for the first animal using the METASPACE platform and vali-
dated 16 representative annotations with LC-MS/MS.

The data was obtained from individual imzML files in processed
mode containing the peaks list of each section, which was trans-
formed to rMSIproc's peak matrix format using a mass binning of
10 ppms and a bin filter of 1%. After that, the four peak matrices
were combined in a single dataset using rMSIproc's processing
pipeline. The resulting peak matrix contained 1011 peaks and
53241 pixels within a mass range from m/z 100 to m/z 1180.

2.2. Description of the algorithm

The algorithm consists of two modules: isotope annotation and
adduct annotation. The isotope annotation module detects pairs of
isotope candidates and computes the isotopic detection metrics for
all the peaks in the dataset. The adduct annotation module use the
information generated by the isotope annotation module and
proposes pairs of peaks that could be adducts of the same com-
pound. Lastly, all the annotations generated are organized in three
3

groups: two groups for the adduct module, differentiated by the
amount of information gathered during the annotation; and one for
the isotope module containing information on the monoisotopic
ions. Fig. 1 shows a flow diagram of the algorithm.

2.2.1. Input data format
Raw spectra undergo rMSIproc's processing workflow [22],

which consists of spectral smoothing, spectral alignment, mass re-
calibration, peak picking, and peak binning of all the pixels in the
image. The result of this workflow is a peak matrix, in which pixels
of the image are arranged in rows, m/z features are arranged in
columns and the m/z axis is shared between all pixels.

The annotation algorithm uses the rMSIproc peak matrix format
as input. Alternatively, rMSIproc can create a peak matrix from an
imzML file already centroided by third-party software. However, it
is recommended to use raw data in profile mode to take full
advantage of the complete rMSIproc processing workflow.

2.2.2. Isotope annotation
First, allm/z features in the peak matrix are assumed to be Mþ0

ions and, for all of them, a list of possible Mþ1 candidates is
generated looking for peaks at a mass distance of 1.00336 Dawithin
a user-defined windows (depending on the spectral resolution of
the MS analyzer), expressed in number of raw spectra data points.
We prefer to specify this mass distance in data points instead of
ppm since it provides a more constant metric thought all the mass
range. Alternatively, if spectral data is not available in profile mode,
the mass tolerance can be specified in ppm. The mass distance is
divided by the charge number, if isotopes of ions with multiple
charges are being searched for.

Next, the m/z features with one Mþ1 candidate or more are
evaluated pairwise with the isotopic likelihood score (ILS) which
was developed in-house and consists of the combination of three
different scores: 1) the image morphology score, 2) the isotopic
pattern profile score and 3) the centroid mass deviation score.
Before computation, the pixels with zero value are removed pair-
wise from both m/z features to increase the discriminant power of
the score.

1. The image morphology score considers that m/z features
belonging to the same isotopic pattern are colocalized. We es-
timate colocalization by least squares regression between the
intensities of Mþ0 and the Mþ1 candidate across all the pixels
using the coefficient of determination (R2). Ions are colocalized
if the coefficient is close to 1.

2. The isotopic pattern profile score examines the relationship
between the experimental and the theoretical Mþ1/Mþ0 in-
tensity ratios. The experimental intensity ratio is defined as the
slope of a linear model produced by least squares regression
between the Mþ0 and the Mþ1 candidate intensities. The
theoretical intensity ratio is calculated inputting the m/z of the
monoisotopic candidate to a self-developed carbon isotopic ra-
tio model (CIR model). The carbon isotopic ratio model contains
the distribution of carbon isotopes intensities ratios across the
m/z axis up tom/z 1200 and delivers the most probable intensity
ratio for a given peak mass (see section 1 of supplementary
information). Lastly, the experimental and theoretical intensity
ratios are subtracted and fitted in a Gaussian score function
which preserves the expected variability of the carbon isotopic
ratio model. The score gets close to one as the measured in-
tensity ratio of a pair of peaks is more likely to result from an
actual isotopic profile.

3. The centroid mass deviation score compares the experimental
mass distance between Mþ0 and its Mþ1 with the theoretical
mass distance between carbon isotopes (considering the



Fig. 1. Flow diagram of the peak annotation algorithm rMSIannotation. Rounded objects refer to data structures and rectangles to algorithmic processes.

L. Sement�e, G. Baquer, M. García-Altares et al. Analytica Chimica Acta 1171 (2021) 338669
charge). The user defines the error tolerance for the mass de-
viation, which can be introduced in ppms or number of data
points. The score gets close to one as the error tolerance reduces.

The three scores are multiplied to calculate the ILS. The pairs of
m/z features with an ILS greater than the user-defined threshold
constitute a monoisotopic/isotopic peak pair. Once all the true
Mþ0m/z features have been found, the full procedure is repeated to
evaluate the Mþ N candidates for all the Mþ0m/z features until no
more candidates are found or N has reached the maximum number
of iterations. The number of isotopes (N) to search for is a user-
defined parameter.
2.2.3. Adduct annotation
The algorithm searches for pairs of ions (discarding the features

annotated as isotopes) whose mass difference fits with a candidate
adduct ([MþH]þ, [MþNa]þ, [MþK]þ, user-defined adducts, and
neutral losses) within a mass tolerance in ppms to generate puta-
tive neutral masses. For each pair of adduct ions, the algorithm
calculates three scores to guide the user to select themore probable
adduct pairs. The scores are:

1. Isotopic pattern coherence. When two monoisotopic ions are
adducts of the same compound, their Mþ1/Mþ0 intensity ratio
should be the same (unless the ion forming the adduct contains
carbon, which would slightly modify the isotopic pattern). This
is calculated as the standard error of the mean Mþ1/Mþ0 in-
tensity ratios of both monoisotopic ions. Small standard error of
the mean indicates good isotopic pattern coherence.

2. Correlation between the two ions intensities using Pearson's R.
We assume that adducts of the same compound exhibit some
degree of colocalization. It is expected to obtain less degree of
colocalization between adducts peaks than between isotopes
peaks due to salts concentrations variations related to tissue
morphology. Nevertheless, the ion images between adducts of
the same compound should be still similar and very rarely show
complementary spatial distributions.

3. Mass error between the Mþ0 peaks and their putative neutral
mass. The neutral mass is calculated by subtracting the molec-
ular mass of each adduct ion and averaging the resulting neutral
masses. Small mass errors indicate a precise putative neutral
mass assignation.

The algorithm allows each m/z feature to be part of different
adduct pairs (e.g., an [MþNa]þ ion can be paired with an [MþH]þ

ion and with an [MþK]þ ion) and even labeled as different adducts
4

in different pairs (e.g., an ion can be labeled as [MþNa]þ in one pair
and as [MþK]þ in a different pair). The calculated scores of each
annotation are stored along with each adduct pair, which enables
the user post-evaluation of all possible adducts pairs to select the
most feasible annotations. The user is the responsible to choose/
validate the more feasible annotations provided by the algorithm.

Finally, the adduct annotation module generates a list with the
neutral masses and its annotation scores, facilitating the search in
compound libraries for tentative identification.

2.2.4. Feature annotation groups and output information
The annotations are divided into three groups (A, B and C)

depending on the information available to reliably annotate each
m/z feature.

Group ‘A’ contains neutral masses from pairs of Mþ0 ions
cataloged as adducts, where at least one isotope is identified for
every Mþ0 ion. The three scores described for adducts can be
computed for all these pairs.

Group ‘B’ contains neutral masses from pairs of ions in which,
one ion is anMþ0, but not the other. The isotopic information is not
available for the second ion since the algorithm failed to assign the
corresponding Mþ1 peak. Therefore, isotopic pattern coherence
cannot be computed in this annotation group.

Group ‘C’ contains them/z ratios of all Mþ0 annotated ions. Ions
only reported in group C are, therefore, annotated asMþ0, but their
adduct identity is unknown. This group consists of a summary of
the isotope annotation module, in which ILS is the key quality
parameter.

The output of rMSIannotation consists of the annotations in
groups A, B and C (which can be exported as CSV files); the com-
putations of the ILS for all candidates during isotope annotation,
and two vectors of the monoisotopic and isotopic ions. The vectors
of monoisotopic and isotopic ions can be used to filter the peak
matrix to remove the isotopic peaks, or to work with only the
monoisotopic ions found.

3. Results

First, we tested the performance of rMSIannotation using two in
silico MSI datasets. The datasets were developed simulating TOF
and FT-ICR mass analyzers experiment in which we know a priori
the identity of all the m/z features. Section 2 of supplementary in-
formation contains the detailed procedure. Then, we used different
ILS thresholds with the in silico datasets to test the performance of
rMSIannotation's criteria and to obtain optimal ILS thresholds. The
optimal ratios found were 0.55e0.7 for TOF datasets and 0.7 to 0.8
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for FT-ICR datasets. Next, we compared the number of coinciding
annotations produced by sweeping the ILS threshold in a range of
0.2e0.9 for the MALDI-TOF dataset and MALDI-FT-ICR dataset 1.
This allowed us to determine whether the optimal ILS thresholds
obtained with the in silico dataset were applicable to experimental
data. The results show that the number of annotations provided by
rMSIannotation coinciding with the manual annotations decreases
slowly as we increase the ILS threshold until it reaches the optimal
thresholds (Fig. S5). After this point, the number of coinciding an-
notations drastically decreases. This suggests that the optimal ILS
thresholds obtained in silico are applicable experimental data and
can be setup as default parameter values. Refer to Section 3 of
supplementary information for the complete study.

Second, we annotated using rMSIannotation three experimental
datasets acquired with TOF and FT-ICR mass analyzers from papers
that reported manually identified compounds. We compared the
reported annotations with the ones generated by rMSIannotation.
Later, we compared the annotations of rMSIannotation with the
results obtained using METASPACE annotation platform on the FT-
ICR datasets.

Finally, we evaluated the effects of retaining only Mþ0 ions
during the post-processing of MSI datasets, using principal
component analysis (PCA) and k-means clustering.

3.1. MALDI-TOF annotation results

TheMALDI-TOF dataset consists of a collection of bovine ovarian
follicle tissues in which the authors identified 43 metabolites (see
Fig. 2). After the raw data had been processed, the peak matrix was
fed to the annotation algorithm. The parameters usedwere: isotope
search up to Mþ3, isotope mass tolerance in data points mode and
up to 4 data points (~100 ppms at m/z 800 for this dataset), ILS
threshold set to 0.6 and default [MþK]þ, [MþH]þ and [MþNa]þ

adducts searched for within a window of 30 ppm.
With these parameters, rMSIannotation generated 16 putative

neutral masses in group A and 22 in group B, and found a total of 42
monoisotopic ions in group C. All the annotations of each group are
presented in Supplementary Table S1, S2 and S3.

First, we compared the adduct ions found in groups A and Bwith
the adduct ions from the original publication. This was done by
searching in groups A and B for the exact masses of the compounds
identified. Then, we searched for monoisotopic ions without adduct
annotation in group C. Table 1 shows the monoisotopic ions found
by rMSIannotation that coincide with those identified in the orig-
inal work. The ions in group C that also appear in groups A or B
(annotated as monoisotopic ions) display its ILS value.

We annotated as monoisotopic 23 of the ions in the list of 43
provided by the authors in the original study (see Fig. 2). There are
three causes explaining why the other 20 ions provided by the
authors were not annotated as monoisotopic ions by rMSIannota-
tion: (1) the peak picking algorithm detected only the Mþ0 ion due
to low intensity of the subsequent isotopes; (2) all the ions of the
compound have an intensity group below the S/N ratio, and (3)
overlapping isotopic patterns of isobaric species which could not be
properly resolved by the mass analyzer. Causes 1 and 2 are related
to the presence of only one peak per compound in the MSI dataset
as the provided identifications were obtained using LC-MS and
direct infusion MS/MS. In addition, we further analyzed the case of
overlapping with in silico overlapping isotopic patterns with
different resolving power to determine how it affects rMSIanno-
tation (section 4 of supplementary information). The results show
that, rMSIannotation is tolerant to some extend of peak overlapping
and the resulting annotation depend on the two overlapped com-
pounds abundance ratios and on the spectral resolving power. As
expected, a higher resolving power increases the annotation
5

performance, but even when lowering the resolving power the
algorithm still provides reliable results by annotating peak in the
isotopic pattern (Mþ1, Mþ2, …) only when isotopic ratio criteria is
met. Therefore, monoisotopic peaks (Mþ0) highly overlapped with
the Mþ1 peak of another molecule will not be annotated as part of
an isotopic pattern of the formermolecule. Supplementary Table S4
shows which category applies to the non-annotated ions and
Supplementary Figures S9, S10 and S11 show examples of each
group defined above, respectively. It is worthmentioning that some
of the non-annotated ions could have been annotated by reducing
the SNR in the preprocessing steps of the datasets although unin-
formative noisy peaks may be introduced hampering the subse-
quent data analysis.

Lastly, we used the Humanmetabolome database [26] and Lipid
maps [27] to putatively identify the ions annotated by rMSIanno-
tation that had not been identified in the original paper. We iden-
tified 1 neutral mass with a mass error below 30 ppms that
belonged to the CHCA molecule used as matrix (we found 9 com-
mon adduct ions by hand in group C), and 4 more monoisotopic
masses, resulting in 13 new monoisotopic ions identified.
Supplementary Table S5 shows the putative name and molecular
formula for the 4 monoisotopic masses in group C (CHCA related
annotations are excluded).

3.2. MALDI-FT-ICR annotation results

The MALDI-FT-ICR dataset 1 consists of a bloom-forming alga
(Emiliana huxleyi) analyzed during a viral infection [24]. The au-
thors of the original paper identified 37 metabolites. The algorithm
parameters used were: isotope search up to Mþ3, isotope mass
tolerance in ppm mode up to 10 ppms, ILS threshold set to 0.7 and
[MþK]þ, [MþH]þ and [MþNa]þ adducts searched up to a maximum
of 5 ppm mass tolerance.

With these parameters, rMSIannotation generated 31 putative
neutral masses in group A and 95 putative neutral masses in group
B, and found a total of 187 monoisotopic ions in group C. All the
annotations of each group are presented in Supplementary
Table S6, S7 and S8.

Considering all the matching annotations, we found 28 ions on
the list of 37 provided by the authors of the original study (Fig. 2)
and we obtained 2 additional adducts for two of the compounds in
the original work annotation list. Table 2 shows all the coinciding
annotations. We observed that in this dataset several Mþ1 peak
(and subsequent isotopes) have some pixels with null value due to
the data reduction mode for FT-ICR raw data which automatically
discarded low intensity signals. This produces a bias in the isotopic
pattern profile score which can increase or decrease the real ILS
score. To solve this problem, the algorithm is designed to discard
pairwise pixels with null values to ensure proper linear modeliza-
tion. Supplementary Fig. S12 shows the example of ionm/z 826.620
corresponding to compound DGCC 40:7, in which the ILS is 0.877 if
null pixels are included and 0.984 if null pixels are discarded.

rMSIannotation was not able to annotate 9 of the manually
identified compounds because of their low intensity. This means
that theMþ1 and subsequent isotopes were not present in the peak
matrix or there were too many null pixels to be properly corrected
by the algorithm. Supplementary Table S9 shows these compounds
and Supplementary Fig. S13 shows the case of ionsm/z 826.640 and
m/z 812.622.

Various compound libraries were used to tentatively assign the
new annotations generated by rMSIannotation not reported in the
original work. Supplementary Table S10 shows the putative names
and molecular formulae assigned to 19 monoisotopic masses, ac-
cording to METLIN [28], Lipid Maps [27] and Dictionary of Natural
Products [29]. It is worth mentioning that rMSIannotation helped



Fig. 2. Diagrams representing the number of identifications reported by the authors of the datasets, the number of Mþ0 annotations produced by rMSIannotation in group C and
the number of coinciding and new putative compound annotations found using rMSIannotation.

Table 1
Coinciding annotations of MALDI-TOF dataset between rMSIannotation and author's manual identifications.

Name Formula Adduct m/z Mass error (ppm) Annotation group ILS

Phosphocholine C5H15NO4P [M]þ 184.141 364.560 C 0.842
LPC 16a:0 C24H50NO7P [MþH]þ 496.367 54.866 A 0.848
LPC 16a:0 C24H50NO7P [MþNa]þ 518.348 50.717 B e

LPC 18a:1 C26H52NO7P [MþH]þ 522.387 60.460 B 0.812
LPC 18a:0 C26H54NO7P [MþH]þ 524.372 1.781 C 0.746
LPC 16a:0 C24H50NO7P [MþK]þ 534.318 41.833 A 0.662
LPC 18a:1 C26H52NO7P [MþNa]þ 544.363 47.099 B e

LPC 18a:1 C26H52NO7P [MþK]þ 560.338 47.653 B e

SM(d18:1/C16:0) C39H79N2O6P [MþH]þ 703.576 1.632 B e

SM(d18:1/C16:0) C39H79N2O6P [MþNa]þ 725.543 19.014 A 0.853
PC 32a:0 C40H80NO8P [MþH]þ 734.562 10.116 A 0.866
SM(d18:1/C16:0) C39H79N2O6P [MþK]þ 741.510 27.960 A 0.916
PC 32a:0 C40H80NO8P [MþNa]þ 756.526 33.542 A 0.672
PC 34a:2 C42H80NO8P [MþH]þ 758.548 28.253 B 0.705
PC 34a:1 C42H82NO8P [MþH]þ 760.574 14.569 A 0.829
PC 32a:0 C40H80NO8P [MþK]þ 772.508 22.411 A 0.641
PC 34a:2 C42H80NO8P [MþNa]þ 780.537 18.418 B e

PC 34a:1 C42H82NO8P [MþNa]þ 782.539 35.814 A 0.877
PC 36a:2 C44H84NO8P [MþH]þ 786.585 19.999 A 0.692
PC 34a:2 C42H80NO8P [MþK]þ 796.522 4.159 B e

PC 34a:1 C42H82NO8P [MþK]þ 798.517 30.009 A 0.866
PC 36a:2 C44H84NO8P [MþNa]þ 808.555 34.229 B e

PC 36a:2 C44H84NO8P [MþK]þ 824.530 32.277 A 0.642

*A missing ILS value correspond to ions where the isotopic pattern could not be annotated and are exclusively in group B.
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to find different adducts of common alkenones produced by
Emiliana huxleyi [30,31].

Additionally, we submitted the MALDI-FT-ICR dataset 1 to
METASPACE to compare its performance against rMSIannotation.
Table 3 lists all the manually identified compounds by the authors
of the datasets and shows which ions were annotated by rMSIan-
notation and/or METASPACE. In case of METASPACE, we show the
results for FDR 10%, which are showcased as the default results in
the online platform, and the results for FDR 20%. The libraries
selected in METASPACE were the Human Metabolome Database,
LipidMaps and Chemical Entities of Biological Interest. For FDR 10%,
taking as a reference the manually identified compounds, META-
SPACE found 12 coinciding monoisotopic ions, and for FDR 20%
found 20, which is less than the 28 found by rMSIannotation.

To further compare the performance of rMSIannotationwith the
METASPACE annotation platform, we tested rMSIannotation with
the MALDI-FT-ICR dataset 2, consisting of four coronal brain sec-
tions of two adult wild-type C57 mice, which were previously an-
notated by the authors of METASPACE, reporting 31 compounds.
The parameters used with rMSIannotation for the MALDI-FT-ICR
dataset 2 were: ILS threshold set to 0.7, isotope mass tolerance in
ppm mode up to 5 ppms and [MþK]þ, [MþH]þ and [MþNa]þ
6

adducts searched up to a maximum of 5 ppm mass tolerance.
rMSIannotation was able to putatively identify all the 31 com-
pounds annotated using METASPACE. Moreover, rMSIannotation
found 202 monoisotopic ions in group C and a total of 263 neutral
masses combining groups A and B. Table 4 show the lists of the 31
annotated ions, together with its ILS values. We obtained ILS values
over 0.9 for every annotated compound indicating high confidence
in the annotation and confirming the original METASPCAE results.

3.3. Effect of reducing variables to monoisotopic ions in
multivariate analysis

In section 3.2 we have shown the ability of rMSIanotation to
annotate monoisotopic ions and, thereby, to annotate the isotopes
which carries redundant information. There are also many peaks
that are not annotated that could correspond to overlapped peaks,
matrix derived peaks, etc. To test if rMSIannotation annotates most
of the relevant peaks in the datasets, we compared the results of
Principal Component Analysis (PCA) and image segmentation on
the complete dataset against the results using only the mono-
isotopic ions. The results of the multivariate analysis are similar in
both cases, indicating that the set of monoisotopic peaks annotated



Table 2
Coinciding annotations of MALDI-FT-ICR dataset 1 between rMSIannotation and author's manual identifications.

Name Formula Adduct m/z Mass error (ppm) Annotation group ILS

Sulfonioglycerolipid 28:0 C38H72O8S [MþH]þ 689.502 0.710 C 0.959
Sulfonioglycerolipid 30:0 C40H76O8S [MþH]þ 717.534 0.382 C 0.935
DGCC 36:6 C46H77NO8 [MþH]þ 772.573 0.653 C 0.996
PC 36:6 C44H76NO8P [MþH]þ 778.538 1.732 C 0.955
DGCC 37:6 C47H79NO8 [MþH]þ 786.588 1.376 C 0.992
Sulfonioglycerolipid 36:6 C46H76O8S [MþH]þ 789.533 1.125 C 0.984
PDPT 36:6 C44H75O8PS [MþH]þ 795.500 1.167 C 0.972
TG 46:1 C49H92O6 [MþNa]þ 799.679 1.309 C 0.943
PDPT 37:6 C45H77O8PS [MþH]þ 809.516 1.472 C 0.836
Sulfonioglycerolipid 38:6 C48H80O8S [MþH]þ 817.565 0.784 C 0.975
PDPT 38:6 C46H79O8PS [MþH]þ 823.530 1.524 C 0.941
DGCC 40:7 C50H83NO8 [MþH]þ 826.620 0.632 C 0.984
TG 48:1 C51H96O6 [MþNa]þ 827.710 1.148 C 0.919
PC 40:7 C48H82NO8P [MþH]þ 832.585 1.183 C 0.767
Sulfonioglycerolipid 40:7 C50H82O8S [MþH]þ 843.579 3.861 C 0.879
TG 50:6 C53H90O6 [MþNa]þ 845.664 0.376 C 0.735
PDPT 40:7 C48H81O8PS [MþH]þ 849.547 0.663 C 0.971
TG 50:2 C53H98O6 [MþNa]þ 853.726 1.619 C 0.805
PC 44:12 C52H80NO8P [MþH]þ 878.570 0.524 C 0.968
PDPT 42:9 C50H81O8PS [MþH]þ 895.530 1.899 C 0.856
TG 54:7 C57H96O6 [MþNa]þ 899.710 1.531 B 0.966
BLL 44:12 C54H79NO10 [MþH]þ 902.578 0.264 C 0.796
TG 56:7 C59H100O6 [MþH]þ 905.759 0.295 B e

TG 54:7 C57H96O6 [MþK]þ 915.685 1.256 B e

TG 56:7 C59H100O6 [MþNa]þ 927.742 1.311 B 0.899
TG 58:16 C61H86O6 [MþNa]þ 937.634 0.080 C 0.910
TG 58:12 C61H94O6 [MþNa]þ 945.695 1.332 C 0.883
TG 58:11 C61H96O6 [MþNa]þ 947.711 0.458 C 0.907
TG 58:10 C61H98O6 [MþNa]þ 949.727 1.332 C 0.914
TG 58:9 C61H100O6 [MþNa]þ 951.743 1.310 C 0.888

*A missing ILS value correspond to ions where the isotopic pattern could not be annotated and are exclusively in group B.
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by rMSIannotation retains the relevant biological information.
We standardized the data and thenwe compared the PCA scores

of the complete dataset with the PCA scores of a reduced version of
the dataset containing only monoisotopic ions. This involves
selecting 17.87% (42 out of 235) of the variables for the TOF dataset
and 4.62% (187 out of 4047) of the variables for the FT-ICR dataset 1.
We compared the images produced by the three principal com-
ponents on the tissue in each case. We compared the spatial
structures displayed in the principal components images of the
complete and the reduced datasets by computing its similarity
using Pearson's R correlation. For the TOF dataset the correlations
were: R¼ 0.99 (PC1), R¼ 0.96 (PC2), and R¼ 0.90 (PC3); for the FT-
ICR dataset 1 the correlations were: R¼ 0.91 (PC1), R¼�0.87 (PC2),
R ¼ 0.90 (PC3). In both cases, the principal components exhibit a
very similar distribution. Fig. 3 shows the images of the first three
principal components encoded in RGB color space for each studied
case. As it can be seen, the tissue morphology is preserved in the
reduced dataset.

Next, we analyzed the importance of monoisotopic peaks in the
loadings of the first two principal components. Fig. 4 shows the
loadings of PC1 and PC2 of all m/z features on both peak matrices
and distinguishes between monoisotopes, isotopes and non-
annotated ions. The monoisotopic ions tend to have larger load-
ings on the PCA, indicating that the variance is mainly led by
monoisotopic peaks.

Finally, we also analyzed the extent to which monoisotopic
peaks influence a segmentation process. To this end, we applied the
k-means algorithm to the datasets with all the peaks, and with only
the monoisotopic ions. The number of clusters was selected to suit
the morphology of the tissues. Fig. 5 shows the results of this
procedure. The clusters have the same pixel distribution for both
datasets, which indicates that the monoisotopic peaks have a pre-
dominant role in establishing the centers of the clustering.
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4. Discussion

The annotation of low molecular weight compounds (below
1200 Da) in MSI datasets still has some limitations. As shown in
MALDI-TOF annotation results, datasets acquired with TOF mass
spectrometers with a resolving power less than 30,000 tend to suffer
from overlapping peaks (i.e. isobaric species with very similar mass
do not resolve completely). This problem can still arise, although to a
much lesser extent, with high resolving power MS analyzers. For
instance, if theMþ0 peak of a compound A overlaps theMþ1 peak of
another compound B, the ILS of the Mþ0 peak of compound B de-
creases, making it difficult to annotate (supplementary information,
section 4). Moreover, when both compounds are co-localized in the
same regions of the tissue, the overlapping is harder to detect as
peak picking cannot find pixels where both peaks are well resolved.
These cases could be addressedwith peak deconvolution algorithms,
which would split all the isotopic ions from overlapping peaks
increasing the scores of peak picking algorithms and generating
more annotations. At the same time, peak deconvolution algorithms
could benefit from previous peak annotation results by searching for
overlapped peaks for which the peak annotation algorithm has
previously failed. This would reduce the load of the overall process.
As far as we know, no deconvolution algorithms have been reported
with this exclusive purpose in the context of MSI, which could be a
line of further work. At the end, overlapping peaks is an issue that
affects rMSIannotation to some extend andmore generally, to all the
automatic annotation procedures. We presume that overlapping is
one of the reasons why METASPACE encourages users to submit
ultra-high-resolution datasets.

Adduct annotation is a problem that is harder to address than
isotope annotation. First, there are no general rules applicable to
the intensity ratios between Mþ0 adduct ions, since adduct gen-
eration depends on experimental conditions [17]. Some



Table 3
Coinciding annotations of MALDI-FT-ICR dataset 1 between rMSIannotation and METASPACE.

Formula Adduct m/z METASPACE (FDR 10%) METASPACE (FDR 20%) rMSIannotation

C38H72O8S [MþH]þ 689.502 e e x
C40H76O8S [MþH]þ 717.534 e e x
C40H77O8PS [MþH]þ 749.515 e x e

C46H77NO8 [MþH]þ 772.573 e e x
C44H76NO8P [MþH]þ 778.538 X x x
C47H79NO8 [MþH]þ 786.588 e e x
C46H76O8S [MþH]þ 789.533 e x x
C44H75O8PS [MþH]þ 795.501 X x x
C49H92O6 [MþNa]þ 799.679 x x x
C46H75NO10 [MþH]þ 802.547 e e e

C45H77O8PS [MþH]þ 809.516 x x x
C44H87NO10 [MþNa]þ 812.622 e e e

C50H94O6 [MþNa]þ 813.695 x x e

C48H80O8S [MþH]þ 817.565 e e x
C46H79O8PS [MþH]þ 823.533 x x x
C45H87NO10 [MþNa]þ 824.622 e e e

C50H83NO8 [MþH]þ 826.620 e e x
C45H89NO10 [MþNa]þ 826.640 e e e

C51H96O6 [MþNa]þ 827.712 x x x
C48H82NO8P [MþH]þ 832.585 e e x
C50H82O8S [MþH]þ 843.579 e e x
C53H90O6 [MþNa]þ 845.664 e x x
C48H81O8PS [MþH]þ 849.547 x x x
C53H98O6 [MþNa]þ 853.726 e x x
C53H100O6 [MþNa]þ 855.746 e e e

C52H80NO8P [MþH]þ 878.569 x x x
C49H91NO11 [MþNa]þ 892.649 e e e

C50H81O8PS [MþH]þ 895.531 e x x
C57H96O6 [MþNa]þ 899.712 x x x
C54H79NO10 [MþH]þ 902.578 e e x
C59H100O6 [MþH]þ 905.759 e x x
C57H108O6 [MþNa]þ 911.804 e e e

C57H96O6 [MþK]þ 915.685 e e x
C59H100O6 [MþNa]þ 927.742 x x x
C61H86O6 [MþNa]þ 937.634 e e x
C61H94O6 [MþNa]þ 945.695 e x x
C61H96O6 [MþNa]þ 947.711 e x x
C61H98O6 [MþNa]þ 949.727 x x x
C61H100O6 [MþNa]þ 951.743 e x x
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compounds tend to ionize better with one specific adduct [32], but
this still depends heavily on the sample preparation and the matrix
applied. Second, the mass distances between adducts may be
similar to mass distances between different compounds or neutral
loses. For example, the mass of the ammonium cation is 18.034 Da,
which is very close to themass of a neutral loss of water (18.011 Da).
And third, the colocalization of adducts of the same compound can
be affected by the natural abundance of the adduct elements, for
instance, some structures in the brain tissue have a high intrinsic
concentration of potassium which can affect the distribution of
potassium adducts across the tissue and their intensity in com-
parison to other adducts [33]. Therefore, we rely on correlations
between adduct ions to assess to likelihood of a set of peaks to
originate from the same chemical compound. These limitations
result in adduct annotations being less reliable than isotope an-
notations. To address this, the rMSIannotation strategy consists in
presenting to the user all the possible annotations with its scores to
facilitate a manually guided confirmation of the results.

In the presented FT-ICR dataset 1, rMSIannotation found more
coinciding annotations with the original paper than METASPACE.
For the FT-ICR dataset 2, we were able to replicate the previous
METASPACE annotations. These results could be attributed to the
differences in the isotope annotation criteria. METASPACE annota-
tions are based on isotopic patterns generated using libraries,
reducing the possible annotations to the compounds available in
those libraries. This limits the annotation of MSI experiment from
understudied organisms like microalgae and precludes compound
8

discovery. On the other hand, rMSIannotation measures and vali-
dates isotope peaks intensity using intrinsic chemical information,
common for all organic compounds, without relying on compound
libraries. Moreover, the output of rMSIannotation can be easily
integrated in custom R scripts to filter ions and select the non-
redundant features to approach the bio-statistical analysis more
reliably.

We also investigated the isotope annotation module as a vari-
able selection method by retaining only monoisotopic peaks. The
results show that the annotated monoisotopic peaks play a pre-
dominant role (i.e. a considerable weight in the loadings) in
determining the result of a PCA (Figs. 3 and 4), and in establishing
the centers of a common clustering procedure like k-means (Fig. 5).
This is probably because monoisotopic peaks have more intensity
than their isotopes (this only applies to molecules with fewer than
93 carbon atoms) and that annotated monoisotopic peaks tend to
have larger intensities than non-annotated monoisotopic peaks.
This suggests that rMSIannotation can annotate the peaks with
highest statistical relevance and that in most cases, these peaks are
enough to summarize the dataset, which might be something
desirable depending on the objectives of the study.
5. Conclusion

We presented rMSIannotation, a software tool that annotates
carbon isotopes and adducts for MSI dataset in the lowmass range.
rMSIannotation is useful for putative identification of compounds



Table 4
Coinciding annotations of MALDI-FT-ICR dataset 2 between rMSIannotation and METASPACE.

Formula Adduct m/z rMSIannotation ILS

C35H66O4 [MþH]þ 551.503 x 0.977
C37H68O4 [MþH]þ 577.519 x 0.975
C28H33O14 [MþNa]þ 616.176 x 0.988
C37H71O8P [MþNa]þ 697.478 x 0.938
C37H71O8P [MþK]þ 713.452 x 0.965
C39H73O8P [MþNa]þ 723.494 x 0.957
C41H83N2O6P [MþH]þ 731.606 x 0.909
C40H80NO8P [MþH]þ 734.569 x 0.988
C39H73O8P [MþK]þ 739.468 x 0.951
C39H79N2O6P [MþK]þ 741.531 x 0.963
C41H82NO8P [MþH]þ 748.585 x 0.979
C41H83N2O6P [MþNa]þ 753.588 x 0.976
C40H80NO8P [MþNa]þ 756.551 x 0.977
C42H84NO8P [MþH]þ 762.601 x 0.962
C41H83N2O6P [MþK]þ 769.562 x 0.982
C43H74NO7P [MþNa]þ 770.510 x 0.912
C40H78NO8P [MþK]þ 770.510 x (isobaric) 0.912
C43H76NO7P [MþNa]þ 772.525 x 0.967
C40H80NO8P [MþK]þ 772.525 x (isobaric) 0.967
C42H84NO8P [MþNa]þ 784.583 x 0.924
C45H76NO7P [MþNa]þ 796.525 x 0.896
C42H80NO8P [MþK]þ 796.525 x (isobaric) 0.896
C45H80NO7P [MþNa]þ 800.557 x 0.797
C42H84NO8P [MþK]þ 800.557 x (isobaric) 0.797
C43H78NO8P [MþK]þ 806.510 x 0.921
C44H80NO8P [MþK]þ 820.525 x 0.968
C44H84NO8P [MþK]þ 824.557 x 0.950
C44H86NO8P [MþK]þ 826.572 x 0.970
C45H78NO8P [MþK]þ 830.510 x 0.942
C46H84NO8P [MþNa]þ 832.583 x 0.937
C46H80NO8P [MþK]þ 844.525 x 0.968
C46H82NO8P [MþK]þ 846.541 x 0.919
C46H84NO8P [MþK]þ 848.557 x 0.958
C48H91NO8 [MþK]þ 848.638 x 0.959
C48H84NO8P [MþK]þ 872.557 x 0.933

Fig. 3. Representation of the first three principal components on the tissue in RGB. Red channel for PC1, green channel for PC2 and blue channel for PC3. a) TOF dataset with all the
peaks. b) TOF dataset with only annotated monoisotopic peaks. c) FT-ICR dataset with all the peaks. d) FT-ICR with only annotated monoisotopic peaks. (For interpretation of the
references to color in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 4. a) Loadings of PC1 and PC2 of the TOF dataset b) Loadings of PC1 and PC2 of the FT-ICR datasets. Every point in the graphs represents an m/z feature in the datasets. Green
points represent the peaks annotated as monoisotopic, blue points are peaks annotated as isotopes (Mþ1, Mþ2, etc.) and red points are peaks that have not been annotated by
rMSIannotation. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 5. a) k-means clustering of the TOF dataset with all peaks with k ¼ 3. b) k-means clustering of the TOF dataset with only the monoisotopic ions with k ¼ 3. c) k-means clustering
of the FT-ICR dataset with all peaks with k ¼ 4. d) k-means clustering of the FT-ICR dataset with only the monoisotopic ions with k ¼ 4.
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and variable reduction strategies; and can be integrated in any low-
weight compounds MSI data analysis workflows. The results show
that rMSIannotation automatically extracts valuable information
from both high (TOF) and ultra-high (FT-ICR) resolution spec-
trometers. The presented algorithm demonstrated a high perfor-
mance and annotation confidence when compared to the
established metabolomics MSI annotation platform: METASPACE
and to the manual annotation approaches.

The tool is integrated into the MSI processing R package rMSI-
proc <https://github.com/prafols/rMSIproc>, which processes and
annotates data within the same software environment. This ex-
pands the possibilities of MSI data analysis for biological research
by reducing data processing and manual inspection time.
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