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Abstract: The collection of personal data is exponentially growing and, as a result, individual privacy
is endangered accordingly. With the aim to lessen privacy risks whilst maintaining high degrees
of data utility, a variety of techniques have been proposed, being microaggregation a very popular
one. Microaggregation is a family of perturbation methods, in which its principle is to aggregate
personal data records (i.e., microdata) in groups so as to preserve privacy through k-anonymity. The
multivariate microaggregation problem is known to be NP-Hard; however, its univariate version
could be optimally solved in polynomial time using the Hansen-Mukherjee (HM) algorithm. In this
article, we propose a heuristic solution to the multivariate microaggregation problem inspired by the
Traveling Salesman Problem (TSP) and the optimal univariate microaggregation solution. Given a
multivariate dataset, first, we apply a TSP-tour construction heuristic to generate a Hamiltonian path
through all dataset records. Next, we use the order provided by this Hamiltonian path (i.e., a given
permutation of the records) as input to the Hansen-Mukherjee algorithm, virtually transforming it
into a multivariate microaggregation solver we call Multivariate Hansen-Mukherjee (MHM). Our
intuition is that good solutions to the TSP would yield Hamiltonian paths allowing the Hansen-
Mukherjee algorithm to find good solutions to the multivariate microaggregation problem. We
have tested our method with well-known benchmark datasets. Moreover, with the aim to show the
usefulness of our approach to protecting location privacy, we have tested our solution with real-life
trajectories datasets, too. We have compared the results of our algorithm with those of the best
performing solutions, and we show that our proposal reduces the information loss resulting from
the microaggregation. Overall, results suggest that transforming the multivariate microaggregation
problem into its univariate counterpart by ordering microdata records with a proper Hamiltonian
path and applying an optimal univariate solution leads to a reduction of the perturbation error whilst
keeping the same privacy guarantees.

Keywords: microaggregation; statistical disclosure control; graph theory; traveling salesman prob-
lem; data privacy; location privacy

1. Introduction

Knowledge retrieval and data processing are catalysts for innovation. The continuous
advances in information and communication technologies (ICT) and the efficient processing
of data allow the extraction of new knowledge by discovering non-obvious patterns
and correlations in the data. Nevertheless, such knowledge extraction procedures may
threaten individuals’ privacy if the proper measures are not implemented to protect it [1-3].
For instance, an attacker may use publicly available datasets to obtain insights about
individuals and extract knowledge by exploiting correlations that were not obvious from
examining a single dataset [4]. Therefore, before disclosing any data, privacy protection
procedures (e.g., anonymization, pseudonymization, aggregation, generalization) must be
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applied. A wide variety of privacy models and protection mechanisms have been proposed
in the literature so as to guarantee anonymity (at different levels depending on the utilized
model) when disclosing data [5]. Since most privacy protection methods are based on
modifying/perturbing/deleting original data, their main drawback is that they negatively
affect the utility of the data. Hence, there is a need for finding a proper trade-off between
data utility and privacy.

One of the most well-known disciplines studying methods to protect individuals’
private information is Statistical Disclosure Control (SDC [6]), which seeks to anonymize
microdata sets (i.e., datasets consisting of multiple records corresponding to individual
respondents) in a way that it is not possible to re-identify the respondent corresponding to
any particular record in the published microdata set. Microaggregation [7], which perturbs
microdata sets by aggregating the attributes’ values of groups of k records so as to reduce
re-identification risk by achieving k—anonymity, stands out among the most widely used
families of SDC methods. It is usually applied by statistical agencies to limit the disclosure
of sensitive microdata, and it has been used to protect data in a variety of fields, namely
healthcare [8], smart cities [9], or collaborative filtering applications [10], to name a few.

Although the univariate microaggregation problem can be optimally solved in poly-
nomial time, optimal multivariate microaggregation is an NP-hard problem [11]. Thus,
finding a solution for the multivariate problem requires heuristic approaches that aim to
minimize the amount of data distortion (often measured in terms of information loss),
whilst guaranteeing a desired privacy level (typically determined by a parameter k that
defines the cardinality of the aggregated groups).

1.1. Contribution and Research Questions

In this article, we propose a novel solution for the multivariate microaggregation
problem, inspired by the heuristic solutions of the Traveling Salesman Problem (TSP) and
the use of the optimal univariate microaggregation algorithm of Hansen and Mukherjee
(HM) [12]. Given an ordered numerical vector, the HM algorithm creates the optimal
k-partition (i.e., the optimal univariate microaggregation solution). Hence, our intuition is
that, if we feed the HM algorithm with a good ordering of the records in a multivariate
dataset, it would output a good k-partition of the multivariate dataset (although not
necessarily optimal).

Ordering the records of a univariate dataset is trivial. However, ordering those records
in a multivariate dataset, in which every record has p attributes, is not obvious since it
is not apparent how to determine the precedence of an element over another. Thus, the
primary question is:

Q1: How to create this ordering, when the records are in RP.

We suggest that a possible order for the records in R? is determined by the Hamiltonian
path resulting from solving the Traveling Salesman Problem, in which the goal is to find
the path that travels through all elements of a set only once, whilst minimizing the total
length of the path. Optimally solving the TSP is known to be NP-Hard, but very good
heuristic solutions are available. Hence, our intuition is that good heuristic solutions of the
TSP (i.e., those with shorter path lengths) would provide a Hamiltonian path, that could
be used as an ordered vector for the HM optimal univariate microaggregation algorithm,
resulting in a good multivariate microaggregation solution.

The quality of a TSP solution is measured in terms of "path length", the shorter the
length the better the solution. However, the quality of the microaggregation is measured in
terms of information loss. Given a cardinality parameter k (which sets the minimum size of
the aggregation clusters), the lower the information loss, the better the microaggregation.
Hence, the next questions that we aim to answer are:

Q2: Are the length of the Hamiltonian path and the information loss of the microaggrega-

tion related?, or Do shorter Hamiltonian paths lead to microaggregation solutions with
lower information loss?
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and

Q3: Is the length of the Hamiltonian path the only factor affecting information loss or
does the particular construction of the path (regardless of the length) affect the informa-
tion loss?

Overall, the key question is:

Q4: Does this approach provide better solutions (in terms of information loss) than the
best performing microagqregation methods in the literature?

In order to answer these questions, we have tested seven TSP solvers, combined with
the HM algorithm (virtually applied in a multivariate manner, or Multivariate HM (MHM)).
Particularly, we have tested the “Concorde” heuristic, which, to the best of our knowledge,
is the first time it is used for microaggregation. In addition, we have tested well-known
classic microaggregation methods (i.e., MDAV and V-MDAV), and an advanced refinement
of the former (i.e., MDAV-LK-MHM).

With the aim to test all the aforementioned approaches on a variety of datasets, we
have used three classical benchmarks (i.e., Census, Tarragona, and EIA) and three novel
datasets containing trajectory data retrieved from public sources, which lead to our last
research question:

Qb5: Do TSP-based microaggregation methods perform better than current solutions on
trajectories datasets?

1.2. Plan of the Article

The rest of the article aims to answer the research questions above, and it is organized
as follows: Section 2 provides the reader with some fundamental knowledge on Statistical
Disclosure Control and microaggregation. In addition, it introduces the basics of the
Traveling Salesman Problem and an overview of the existing heuristics to solve it. Next,
Section 3 analyzes related work and highlights the novelty of our proposal compared with
the state of the art. Section 4 describes our proposal, which is later thoroughly tested and
compared with well-known classical and state-of-the-art microaggregation methods in
Section 5. Section 6 discusses the research questions and the main benefits of our proposal.
The article concludes in Section 7 with some final remarks and comments on future research
lines.

2. Background
2.1. Statistical Disclosure Control and Microaggregation

Statistical disclosure control (SDC) has the goal of preserving the statistical properties
of datasets, whilst minimizing the privacy risks related to the disclosure of confidential
information from individual respondents. Microaggregation is a family of SDC methods
for microdata, which use data perturbation as a protection strategy.

Given an original data file D and a privacy parameter k, microaggregation can be
defined as follows: Let us assume a microdata set D with p continuous numerical attributes
and n records. Clusters (also referred to as groups or subsets in this context) of D are
formed with #; records in the i-th cluster (n; > kand n = Z§:1 n;), where g is the number
of resulting clusters, and k a cardinality constraint. Optimal microaggregation is defined
as the one yielding a k-partition maximizing the within-clusters homogeneity. Optimal
microaggregation requires heuristic approaches since it is an NP-hard problem [11] for
multivariate data. Microaggregation heuristics can be classified into two main families:

¢  Fixed-size microaggregation: These heuristics cluster the elements of D into k-partitions
where all clusters have size k, except perhaps one group which has a size between k
and 2k — 1, when the total number of records is not divisible by k.

®  Variable-size microaggregation: These heuristics cluster the elements of D into k-
partitions where all clusters have sizes in (k, 2k — 1). Note that it is easy to show that
any cluster with size larger than (2k — 1) could be divided in several smaller clusters
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of size between k and 2k — 1 in which its overall within-cluster homogeneity is better
than that of the single larger cluster.

Therefore, a microaggregation process consists in constructing a k-partition of the
dataset, this is a set of disjoint clusters (in which the cardinality is between k and 2k — 1)
and replacing each original data record by the centroid (i.e., the average vector) of the
cluster to which it belongs, hence creating a k-anonymous dataset D’. With the aim to
reduce the information loss caused by the aggregation, the clusters are created so that the
records in each cluster are similar.

2.2. Data Utility and Information Loss
The sum of square error (SSE) is commonly used for measuring the homogeneity
in each group. In terms of sums of squares, maximizing within-groups homogeneity is
equivalent to finding a k-partition minimizing the within-groups sum of square error
(SSE) [13] defined as:
8 M
SSE =YY (xi;— %) (xij — %), 1
i=1j=1
where x; ; is the j-th record in group 7, and ; is the average record of group i. The total sum

of squares (SST), an upper bound on the partitioning information loss, can be computed
as follows:

SST =Y (i — 2)(x; — %), @
i=1

where x; is the i-th record in D, and ¥; is the average record of D. Note that all the above
equations use vector notation, so x; € R”.

The microaggregation problem consists in finding a k-partition with minimum SSE,
this is, the set of disjoint subsets of D so that D = Ufn:l Sm, where s, is the m-th subset,
and g is the number of subsets, with minimum SSE. However, a normalized measure of
information loss (expressed in percentage) is also used:

Ljpss = ?;—f, x 100. (©)]

In terms of information loss, the worst case scenario for microaggregation would
happen when all records in D are replaced in D’ by the average of the dataset (i.e., SSE =
SST — Ij,ss = 100), and the best case scenario implies that D = D’ (i.e., k = 1, no
aggregation), which leads to SSE = I;,5; = 0. Obviously, the latter case is optimal in
terms of information loss, but it offers no privacy protection, at all. Hence, values for the
protection parameter k are greater than one, typically: k = 3, 4, 5, or 6, and are chosen by
privacy experts in statistical agencies so as to adapt to the needs of each particular dataset.

2.3. Basics on the Traveling Salesman Problem

The Traveling Salesman Problem (TSP) [14] consists of finding a particular Hamiltonian
cycle. The problem can be stated as follows: a salesman leaves from one city and wants to
visit (exactly once) each other city in a given group and, finally, return to the starting city.
The salesman wonders in what order he should visit these cities so as to travel the shortest
possible total distance.

In terms of graph theory, the TSP can be modeled by a graph G = (V, E), where cities
are the nodes in set V = {vy, vy, ..., v, } and each edge ejj € E has an associated weight wij
representing the distance between nodes i and j. The goal is to find a Hamiltonian cycle,
i.e., a cycle which visits each node in the graph exactly once, with the least total weight.
An alternative approach to the Hamiltonian cycle to solve the TSP is finding the Shortest
Hamiltonian path through a graph (i.e., a path which visits each node in the graph exactly
once). As an example, Figure 1 shows a short Hamiltonian path for the Eurodist dataset,
which contains the distance (in km) between 21 cities in Europe.
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Figure 1. A Hamiltonian path for the Eurodist dataset.

Finding an optimal solution to the TSP is known to be NP-Hard. Hence, several heuris-
tics to find good but sub-optimal solutions have been developed. TSP heuristics typically
fall into two groups: those involving minimum spanning trees for tour construction and
those with edge exchanges to improve existing tours. There are numerous heuristics to
solve the TSP [15,16]. In this article, we have selected a representative sample of heuristics,
including well-known approaches and top performers from the state-of-the-art:

*  Nearest Neighbor algorithm: The algorithm starts with a tour containing a randomly
chosen node and appends the next nearest node iteratively.

e Repetitive Nearest Neighbor: The algorithm is an extension of the Nearest Neighbor
algorithm. In this case, the tour is computed 7 times, each one considering a different
starting node and then selecting the best tour as the outcome.

e Insertion Algorithms: All insertion algorithms start with a tour that originated from a
random node. In each step, given two nodes already inserted in the tour, the heuristic
selects a new node that minimizes the increase in the tour’s length when inserted
between such two nodes. Depending on the way such the next node is selected, one
can find different variants of the algorithm. For instance, Nearest Insertion, Farthest
Insertion, Cheapest Insertion, and Arbitrary Insertion.

¢  Concorde: This method is currently one of the best implementations for solving
the symmetric TSP. It is based on the Branch-and-Cut method to search for optimal
solutions.

3. Related Work on Microaggregation

There is a wide variety of heuristics to solve the multivariate microaggregation prob-
lem in the literature. One of the most well-known methods is the Maximum Distance to
Average Vector (MDAYV), proposed by Domingo-Ferrer et al. [17]. This method iteratively
creates clusters of k members considering the furthest records from the dataset centroid.
A variant of MDAV was proposed by Laszlo et al., namely the Centroid-Based Fixed Size
method (CBFS) [18], which also has optimized versions based on kd-tree neighborhood
search, such as KD-CBFS and KD-CBFSapp [19]. The Two Fixed Reference Points (TFRP)
method was proposed by Chang et al. [20]. It uses the two most extreme points of the
dataset at each iteration as references to create clusters. Differential Privacy-based mi-
croaggregation was explored by Yang et al. [21], which created a variant of the MDAV
algorithm that uses the correlations between attributes to select the minimum required
noise to achieve the desired privacy level. In addition, V-MDAY, a variable group-size
heuristic based on the MDAV method was introduced by Solanas et al. in Reference [13]
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with the aim to relax the cardinality constraints of fixed-size microaggregation and allow
clusters to better adapt to the data and reduce the SSE.

Laszlo and Mukherjee [18] approached the microaggregation problem through mini-
mum spanning trees, aimed at creating graph structures that can be pruned according to
each node’s associated weights to create the groups. Lin et al. proposed a Density-Based
Algorithm (DBA) [22], which first forms groups of records in density descending order,
and then fine-tunes these groups in reverse order. The successive Group Selection based
on sequential Minimization of SSE (GSMS) method [23], proposed by Panagiotakis et al.,
optimizes the information loss by discarding the candidate cluster that minimizes the
current SSE of the remaining records. Some methods are built upon the HM algorithm. For
example, Mortazavi et al. proposed the IMHM method [24]. Domingo-Ferrer et al. [17]
proposed a grouping heuristic that combines several methods, such as Nearest Point Next
(NPN-MHM), MDAV-MHM, and CBFS-MHM.

Other approaches have focused on the efficiency of the microaggregation procedure,
for example, the Fast Data-oriented Microaggregation (FDM) method proposed by Mor-
tazavi et al. [25] efficiently anonymizes large multivariate numerical datasets for multiple
successive values of k. The interested readers can find more detailed information about
microaggregation in Reference [5,26].

The most similar work related to ours is the one presented in Reference [27] by Heaton
and Mukherjee. The authors use TSP tour optimization heuristics (e.g., 2-opt, 3-opt) to
refine a path created with the information of a multivariate microaggregation method (e.g.,
MDAV, MD, CBES). Notice that, in our proposed method (described in the next section), we
use tour construction TSP heuristics instead of optimization heuristics; thus, we eliminate
the need for using a multivariate microaggregation method as a pre-processing step, and
we decrease the computational time without hindering data utility.

4. Our Method

Our proposal is built upon two main building blocks: a TSP tour construction heuristic
(H), and the optimal univariate microaggregation algorithm of Hansen and Mukherjee
(HM). As we have already explained in Section 2, the HM algorithm is applied to univariate
numerical data, because it requires the input elements to be in order. However, we virtually
use it with multivariate data; thus, when we do that, we refer to it as Multivariate Hansen-
Mukherjee (MHM), although, in practice, the algorithm is univariate. Since our proposal is
based on a Heuristic (H) to obtain a Hamiltonian Path and the MHM algorithm, we have
come to call it HMHM-microaggregation or (HM)2-Micro, for short.

Given a multivariate microdata set (D) with p columns and r rows, we model it
as a complete graph G(N, E), where we assume that each row is represented by a node
n; € N (or a city, if we think in terms of the TSP), and each edge ¢;; € E represents the
Euclidean distance between n; and 1; (or the distance between cities in TSP terms). Hence,
we have a set of nodes N = {ny,ny,...n,} each representing rows of the microdata set in a
multivariate space R?.

In a nutshell, we use H over G to create a Hamiltonian path (Hp,;) that travels across
all nodes. Hyy, is a permutation AN = {nN, 7l¥,... 7N}) of the nodes in N, and de facto
it determines an order for the nodes (i.e., it provides a sense of precedence between nodes).
Hence, although D is multivariate, its rows represented as nodes in N can be sorted in a
univariant permutation Hp,, that we use as input to the MHM algorithm. As a result, the
MHM algorithm returns the optimal univariate k-partition of H,, this is, the set of disjoint
subsets S = {s1, 52, ...s:} defining the clusters of N. Hence, since each node ; represents a
row in D, which is indeed multivariate, we have obtained a multivariate microaggregation
of the rows in D and provided a solution for the multivariate microaggregation. Notice that,
although MHM returns the optimal k-partition of Hp,yy, it does not imply that the resulting
microaggregation of D is optimal A schematic of our solution is depicted in Figure 2.
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Figure 2. Given a microdata dataset, we use a tour construction heuristic to generate a Hamiltonian path, which will be used as the

input of the MHM method to generate the groups.

Although the foundation of our proposal described above is pretty straightforward,
it has the beauty of putting together complex mathematical building blocks from the
multivariate and univariate worlds in a simple yet practical manner. In addition, our
solution is very flexible, since it allows the use of any heuristic H to create the Hamiltonian
path Hp,y,, and it allows for comprehensive studies, such as the one we report in the next
section.

Note that most TSP heuristics output a Hamiltonian cycle. However, since we need a
Hamiltonian path, we use the well-known solution of adding a dummy node in the graph
(i.e., a theoretical node in which its distance to all other nodes is zero), and we cut the cycle
by eliminating this node, so as to obtain a Hamiltonian path.

For the sake of completeness, we summarize our proposal step-by-step in Algorithm 1,
and we next comment on it. Our solution can be seen as a meta-heuristic to solve the
multivariate microaggregation problem, since it can accommodate any Heuristic (H) able
to create a Hamiltonian cycle from a complete graph (G), and it could deal with any privacy
parameter (k). Thus, our algorithm receives as input a numerical multivariate microdata
set D with p columns (attributes) and r rows, that have to be microaggregated, a Heuristic
H, and a privacy parameter k (see Algorithm 1: line 1). In order to avoid bias towards
higher magnitude variables, the original dataset D (understood as a matrix) is standardized
by subtracting to each element the average of its column and dividing it by the standard
deviation of the column. The result is a standardized dataset D,;; in which each column
has zero mean and unitary standard deviation (see Algorithm 1: line 2). Next, the distance
matrix Mg;s; is computed. Each element m;; € My, contains the Euclidean distance
between row i and row j in Dg;; hence, My;g; is a square matrix (r x r) (see Algorithm 1: line
3). In order to be able to cut the Hamiltonian Cycle and obtain a Hamiltonian path, we add
a dummy node to the dataset by adding a zero column and a zero row to M;s; and generate
Mgl”s'f, which is a square matrix (r +1 x r 4 1) (see Algorithm 1: line 4). Mgl"s’f is, in fact, a
weighted adjacency matrix that defines a graph G(N, E) with nodes N = {ny,..., 1,41}

and edges E = {e11,...¢jj...€ry1,41} = {Mg?sTl,l" .. MZ;;TH”H}. With this matrix as
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an input, we could compute a Hamiltonian Cycle H,,, on G by applying a TSP heuristic
H (see Algorithm 1: line 5). Notice that this Heuristic H could be anyone that gets as
input a weighted graph and returns a Hamiltonian cycle. Some examples are: Concorde,
Nearest Neighbor, Repetitive Nearest Neighbor, and Insertion Algorithms. After obtaining
Hcycle, we cut it by removing the dummy node (see Algorithm 1: line 6), and we obtain a
Hamiltonian path H,,, that defines a permutation AN = {#N, 7, ... 7N}) of the nodes
in N, as well as determines an order for the nodes that can be inputted to the MHM
algorithm to obtain its optimal k-partition (S) (see Algorithm 1: line 7). S is a set of disjoint
subsets S = {sl,sz,. . .st} defining the clusters of nodes in N. Hence, with S and D, we
could create a microaggregated dataset D’ by replacing each row in D by the average vector
of the k-partition subset to which it belongs (see Algorithm 1: line 8).

After applying the algorithm, we have transformed the original dataset D into a
dataset D’ that has been microaggregated so as to guarantee the privacy criteria established
by k.

Algorithm 1 (HM)?-Micro
1: function (HM)?-MICRO( Microdata set D, TSP-Heuristic H, Privacy Parameter k)

2: D;; = StandardizeDataset(D)
3: Myist = ComputeDistanceMatrix(Dgy4)

4: Mg;‘s’f = InsertDummyNode(My;s;)

dum

5: H_yele = CreateHamiltonianCycle(Mg;5y", H)
6: Hpapn = CutDummyNode(Hy )

7: S = MHM(H pasn, Dsta, k)

8: D’ = BuildMicroaggregatedDataSet(D, S);
9: return D’

10: end function

5. Experiments

With the aim to practically validate the usefulness of our multivariate microaggrega-
tion proposal, we have thoroughly tested it on six datasets (described in Section 5.1) that
serve as benchmarks. In addition, we are interested in knowing (if and) to what extend
our method outperforms the best performing microaggregation methods in the literature.
Hence, we have compared our proposal with these methods (described in Section 5.2),
and the results of all these tests are summarized in Section 5.3. Overall, considering four
different values for the privacy parameter k € {3,4,5,6}, ten microaggregation algorithms,
50 repetitions per case, and six datasets, we have run over 12.000 microaggregation tests,
which allow us to provide a statistically solid set of results.

5.1. Datasets

We used six datasets as benchmarks for our experiments. We can classify those
datasets into two main groups: The first group comprises three well-known SDC microdata
sets that have been used for years as benchmarks in the literature, namely “Census”, “EIA”,
and “Tarragona”. The second group comprises three mobility datasets containing real GPS
traces from three Spanish cities, namely “Barcelona”, “Madrid”, and “Tarraco”. Notice that
we use the term “Tarraco”, the old Roman name for the city of Tarragona, in order to avoid
confusion with the classic benchmark dataset “Tarragona”. The features of each dataset are
next summarized:
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The Census dataset was obtained using the public Data Extraction System of the LS.
Census Bureau. It contains 1080 records with 13 numerical attributes. The Tarragona dataset
was obtained from the Tarragona Chamber of Commerce. It contains information on
834 companies in the Tarragona area with 13 variables per record. The EIA dataset was
obtained from the U.S. Energy Information Authority, and it consists of 4092 records with 15
attributes. More details on the aforementioned datasets can be obtained in Reference [28].

The Barcelona, Madrid, and Tarraco datasets consist of OpenStreetMap [29] GPS traces
collected from those cities: Barcelona contains the GPS traces of the city of Barcelona within
the area determined by the parallelogram formed by latitude (41.3726866, 41.4078446)
and longitude (2.1268845, 2.1903992). The dataset has 969 records with 30 GPS locations
each. Madrid contains the GPS traces of the city of Madrid within the area determined by
the parallelogram formed by latitude (40.387613, 40.483515) and longitude (—3.7398145,
—3.653985). The dataset has 959 records with 30 GPS locations each. Tarraco contains the
GPS traces of the city of Tarragona within the area determined by the parallelogram formed
by latitude (41.0967083, 41.141174) and longitude (1.226008, 1.2946691). The dataset has
932 records with 30 GPS locations each.

In all trajectories datasets, each record consists of 30 locations represented as (latitude
and longitude). Hence, each record has 60 numerical values. These locations were extracted
from each corresponding parallelogram according to the amount of recorded tracks and
their length.

All datasets are available in our website: https://www.smarttechresearch.com/publ
ications/symmetry2021-Maya-Casino-Solanas/ (accessed on 1 May 2021).

Table 1. Comparing methods and features. For Concorde, M is a bound on the time to explore subproblems, b is a branching

factor, and d is a search depth.

Method Cardinality Computational Cost Reference
MDAV fixed O(n?/2k) [17]
V-MDAV variable O(n?) [13]
MDAV-LK-MHM variable O(n?/2k) [27]
(HM)?-Micro TSP Heuristic + MHM
Nearest Neighbor variable O(n?) [15]
Repetitive Nearest-Neighbor variable O(n?logn) [15]
Nearest Insertion variable O(n?) [30]
Farthest Insertion variable O(n?) [30]
Cheapest Insertion variable O(n?) [30]
Arbitrary Insertion variable O(n?) [30]
Concorde variable O(Mb%) [31]

5.2. Compared Methods

We have selected a representative set of well-known and state-of-the-art methods to
assess the value of our approach. We have selected two classic microaggregation methods
(i.e., MDAV and V-MDAV), as baselines. In the case of V-MDAYV, the method was run for
several values of ¢ € {0,2}, and the best result is reported. Although some other newer
methods might have achieved better results, they are still landmarks that deserve to be
included in any microaggregation comparison.

For newer and more sophisticated methods, we have considered the work of Heaton
and Mukherjee [27], in which they study a variety of microaggregation heuristics, including
methods, such as CBFS and MD. Thus, instead of comparing our proposal with all those
methods, we have taken the method that Heaton and Mukherjee reported as the best
performer, namely the MDAV-LK-MHM method. This method, which is based on MDAY,
first creates a microaggregation using MDAV, next improves the result of MDAV by apply-
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ing the LK heuristic, and it finally applies MHM to obtain the resulting microaggregation
(cf. Reference [27] for further details on the algorithm).

Regarding our proposal (i.e., (HM)2-Micro), as we already discussed, it can be under-
stood as a meta-heuristic able to embody any heuristic H that returns a Hamiltonian Cycle.
Hence, with the aim to determine the best heuristic, we have analyzed seven alternatives,
namely Nearest Neighbor, Repetitive Nearest Neighbor, Nearest Insertion, Farther In-
sertion, Cheapest Insertion, Arbitrary Insertion, and (our suggestion) Concorde. Table 1
summarizes some features of all selected methods, including the reference to the original
article where the method was described. For our method, each reference points to the
article describing the TSP heuristic.

The implementation of all these methods have used the R package sdcMicro [28],
the TSP heuristics implemented in Reference [32], and the LK heuristics implemented in
Reference [33]. LK has been configured so that the algorithm runs once at each iteration
parameter RUN=1 until a local optimum is reached. This same criteria was followed for the
other TSP heuristics. In this regard, the heuristics we used consider a random starting node
at each run. Hence, each experiment has been repeated 50 times to guarantee statistically
sound outcomes regardless of this random starting point.

5.3. Results Overview

By using the datasets and methods described above, we have analyzed the Information
Loss (expressed in percentage), as a measure of data utility (cf. Section 2 for details). It is
assumed that, given a privacy parameter k that guarantees that the microaggregated dataset
is k-anonymous, the lower the Information Loss the better the result and performance of
the microaggregation method. The results are reported in Tables 2-7 with the best (lowest)
information loss highlighted in green.

Overall, it can be observed that our method, (HM )Z—Micro, with the Concorde heuris-
tic is the best performer in 79% of the experiments, and it is the second best in the remaining
21% (for which the MDAV-LK-MHM outperforms it by a narrow margin of less than 2%).
Interestingly enough, although (HM )2-Micro, with both Nearest Insertion and Farthest-
Insertion, is not the best performer in any experiment, it outperforms MDAV-LK-HMH
50% of the times. The rest of the methods obtain less consistent results and highly depend
on the dataset.

When we analyze the results more closely for each particular dataset, we observe that,
in the case of the “Census” dataset (cf. Table 2), our method with Concorde outperforms all
methods for all values of k. In addition, despite the random nature of TSP-heuristics, the
values of ¢ are very stable, denoting the robustness of all methods, yet slightly higher on
average in the case of the methods with higher Information Loss. It is worth emphasizing
though, that, in all runs, our method with Concorde and the MDAV-LK-MHM method
obtained better results than MDAV and V-MDAV (i.e., the max values obtained in all runs
are lower than the outcomes obtained by MDAV and V-MDAYV).

Table 2. Information Loss obtained on the Census dataset.

Census
k=3 k=4 k=5 k=6

Method Average o min max  Average o min max  Average o min max  Average o min max

MDAV 5.6922 NA NA NA 7.4947 NA NA NA 9.0884 NA NA NA  10.3847 NA NA NA
V-MDAV 5.6619 NA NA NA 7.4947 NA NA NA 9.0070 NA NA NA  10.2666 NA NA NA
MDAV-LK-MHM 51085 0.0398 5.0256 5.1877 6.9131 0.0526 6.7774  7.0227 85199 0.0842 83100  8.7030 9.9752 0.1284  9.7675 10.2527
Nearest Insertion-MHM 5.6561 0.1369 5.3596 6.0695 74818 0.1579 7.1946  7.9318 89617 02539 85190 94727 103005 0.2927  9.7624 11.2086
Farthest Insertion-MHM 5.5638 0.0956 5.3300 5.8995 7.3485 0.0990 7.1723  7.5853 8.8234 0.1322 85784 9.1748 10.1250 0.1932  9.6970 10.7363
Cheapest Insertion-MHM 57044 0.0719 5.5669 5.8766 74625 0.1155 7.2674  7.8052 9.0340 0.1236 87212  9.3847  10.3787 0.1305 10.1706 10.9089
Arbitrary Insertion-MHM 55883 0.0976 5.4235 5.8763 73723 0.1438 7.1272  7.8250 88696 0.1788 85072 92867 10.2011 0.2475  9.7081 10.7794
Nearest Neighbor-MHM 6.9718 0.3508 6.1978 7.7291 9.2433  0.3702 8.6744 10.2246  11.3287 0.3854 10.5230 12.3958  13.1357 0.4053 124711 13.9421
Repetitive NN-MHM 6.2888 02192 5.8811 6.6841 8.6779 02799 7.9941  9.3345 10.7518 0.2472 10.3421 11.4554 12.5882 0.3143 11.9360 13.2915
Concorde-MHM 5.0563 0.0377 4.9917 5.1169 6.8846 0.0555 6.7895  7.0217 84576 0.0903 82372  8.6614 9.8440 0.1232  9.5542 10.2517
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For the “EIA” dataset (cf. Table 3), MDAV-LK-MHM is the best performer for all values
of k except k = 5, for which our proposal with Concorde performs better. In this case, the
results obtained by these two methods are very close. Similarly to the results in “Census”,
the max values obtained by these two methods outperform MDAV and V-MDAV. In the case
of “Tarragona” (cf. Table 4), our method with Concorde outperforms all other methods.
Surprisingly, both MDAV and V-MDAV obtain better results than MDAV-LK-MHM, which
performs poorly in this dataset.

Table 3. Information Loss obtained on the EIA dataset.

EIA
k=3 k=4 k=5 k=6
Method Average min max Average o min max Average o min max Average o min  max
MDAV 04829 NA NA NA 06713 NA NA NA 16667 NA NA NA 13078 NA NA NA
V-MDAV 04829 NA NA NA 06713 NA NA NA 12771 NA NA NA 12320 NA NA NA
MDAV-LK-MHM 0.3741 0.0075 0.3659 0.4097  0.5251 0.0116 0.5117 0.5693  0.7890 0.0336 0.7502 0.8932  1.0430 0.0289 1.0033 1.1113
Nearest Insertion-MHM 0.4061 0.0114 0.3831 0.4238  0.5781 0.0241 0.5441 0.6179  0.8621 0.0456 0.8032 0.9760  1.1254 0.0837 0.9976 1.3334
Farthest Insertion-MHM 0.4070 0.0119 0.3872 0.4207  0.5878 0.0251 0.5524 0.6277  0.8764 0.0522 0.8190 0.9747 1.1776 0.0359 1.1245 1.2484
Cheapest Insertion-MHM  0.5254 0.0358 0.4692 0.5651  0.7321 0.0641 0.6322 0.8477  1.0868 0.0689 0.9910 1.2264  1.4061 0.1147 1.2605 1.6329
Arbitrary Insertion-MHM  0.4281 0.0300 0.3921 0.4944 0.6092 0.0376 0.5566 0.6699  0.9048 0.0840 0.8194 1.0621  1.1928 0.1077 1.0652 1.3476
Nearest Neighbor-MHM 0.9028 0.1455 0.5089 1.1023  1.1510 0.1675 0.7056 1.3776  1.4015 0.1788 0.9451 1.6767  1.6792 0.1107 1.4635 1.9139
Repetitive NN-MHM 0.5110 0.0532 0.4725 0.6599  0.7192 0.0557 0.6646 0.8619  1.0072 0.0701 0.9274 1.1126  1.3101 0.1521 1.1561 1.4825
Concorde-MHM 0.3889 0.0203 0.3673 0.4210  0.5288 0.0170 0.5087 0.5576  0.7802 0.0267 0.7581 0.8501  1.0476 0.0282 1.0009 1.0904
Table 4. Information Loss obtained on the Tarragona dataset.
Tarragona
k=3 k=4 k=5 k=6
Method Average o min max Average o min max Average o min max Average o min max
MDAV 16.9326 NA NA NA 195460 NA NA NA 224619 NA NA NA 263252 NA NA NA
V-MDAV 16.6603 NA NA NA 195460 NA NA NA 224619 NA NA NA 263252 NA NA NA
MDAV-LK-MHM 18.7969 1.8738 15.0595 23.0830 22.8523 1.7576 19.1195 26.2806 26.2432 1.5066 23.0421 28.9522 28.5244 1.7742 25.1703 30.9656
Nearest Insertion-MHM  15.9687 0.8360 15.1107 20.1835 19.3677 1.3141 17.8032 24.5286 23.7323 1.4376 21.8365 28.9753 26.9018 1.5674 24.6538 33.0785
Farthest Insertion-MHM  15.7634 0.2062 15.4743 16.6623 19.0323 0.5521 18.1062 20.2105 22.8316 0.7636 21.3313 24.1988 25.7627 0.4496 24.9004 26.9613
Cheapest Insertion-MHM  16.3142 1.4861 15.2169 22.0271 19.7784 1.6060 18.3103 25.8916 23.9017 1.7155 22.3121 30.0828 27.5572 1.6611 25.2394 32.7082
Arbitrary Insertion-MHM 16.0918 0.7527 15.1310 18.9668 19.5461 1.3436 18.2072 25.8572 23.7685 1.3985 21.7333 29.1863 27.0419 1.6872 25.0093 33.2382
Nearest Neighbor-MHM  22.3019 0.8866 19.9620 23.5496 27.1002 1.2234 24.2527 29.5117 30.4478 1.5455 27.7026 33.3513 34.5445 1.2088 31.3302 37.5350
Repetitive NN-MHM 17.6981 12157 15.7435 20.9981 22.1232 1.9138 20.0839 28.7399 27.9089 1.7946 25.1434 32.5729 30.4085 1.9216 28.0648 35.2458
Concorde-MHM 14.7677 0.0858 14.6294 14.9633 17.9957 0.1241 17.7528 18.2211 21.9895 0.2164 21.6712 22.3479 25.3459 0.2061 24.8045 25.6564

So, it can be concluded that the overall winner for the classical benchmarks (i.e.,
Census, EIA, and Tarragona) is our method, (HM )Z—Micro, with the Concorde heuristic,
that is only marginally outperformed by MDAV-LK-MHM in the EIA dataset.

Regarding the other three datasets containing GPS traces (i.e., Barcelona, Madrid and
Tarraco), our method, (H M)Z-Micro, with the Concorde heuristic, is the best performer in
83% of the cases and comes second best in the remaining 17%. For the Barcelona dataset (cf.
Table 5), MDAV-LK-MHM and (HM )Z-Micro, with the Concorde heuristic, perform very
well and similarly. The methods with the worst Information Loss are MDAV and V-MDAV.
Our method, (HM)2-Micro, with the Insertion heuristics, have a remarkable performance,
obtaining values similar to those of MDAV-LK-MHM and Concorde. Nevertheless, it is
worth noting that the max (worst) values obtained by MDAV-LK-MHM and Concorde are
still better than the averages obtained by the other methods. In the case of the Madrid
dataset (cf. Table 6), our method, (HM )Z-Micro, with the Concorde heuristic, achieves the
minimum (best) value of Information Loss for all values of k. We can also observe that our
method with Insertion heuristics offers higher performance than MDAV-LK-MHM. Finally,
the results for the Tarraco dataset (cf. Table 7) show that the minimum (best) Information
Loss value is obtained by our method with the Concorde heuristic in all cases. In this case,
MDAV-LK-MHM performs poorly, and, for k = 3 and k = 4, MDAV and V-MDAV are
better.
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Table 5. Information Loss obtained on the Barcelona dataset.

Barcelona
k=3 k=4 k=5 k=6
Method Average min max Average min max Average o min max Average min  max
MDAV 25667 NA NA NA 35023 NA NA NA 42849 NA NA NA 51873 NA NA NA
V-MDAV 25667 NA NA NA 33193 NA NA NA 42849 NA NA NA 51873 NA NA NA
MDAV-LK-MHM 1.6251 0.0362 1.5637 1.7425 2.1913 0.0339 2.1170 2.2738  2.6798 0.0607 2.5156 2.8067  3.2120 0.0664 3.0731 3.3825
Nearest Insertion-MHM 1.8022 0.0656 1.6857 1.9438  2.3526 0.0842 2.1754 2.5050  2.8405 0.1008 2.6417 3.0411  3.3316 0.1083 3.1093 3.5103
Farthest Insertion-MHM 1.7838 0.0525 1.6967 1.8980 2.3575 0.0698 2.1919 2.4681 2.8386 0.0751 2.6654 2.9670  3.3189 0.1131 3.1112 3.6445
Cheapest Insertion-MHM  1.8156 0.0565 1.6887 1.9293  2.3880 0.0912 2.2354 2.5473  2.8887 0.0792 2.7807 3.0405 3.4118 0.1238 3.1938 3.6247
Arbitrary Insertion-MHM  1.8061 0.0635 1.6823 1.9469  2.3593 0.0749 2.1808 2.5414  2.8231 0.0911 2.6338 3.0251  3.3331 0.1085 3.1031 3.5584
Nearest Neighbor-MHM 22019 0.1202 1.9165 2.4476 29274 0.1778 2.5276 3.3377  3.4733 0.2168 3.0611 3.9399  4.1053 0.2590 3.5159 4.6420
Repetitive NN-MHM 2.0091 0.0563 1.8899 2.2547 2.7474 0.0611 2.6108 3.0130  3.2318 0.1001 3.1176 3.5701  3.8877 0.1220 3.7106 4.1982
Concorde-MHM 1.6829 0.0375 1.6210 1.7848  2.2132 0.0534 2.1138 2.3426  2.6786 0.0627 2.4974 2.8268  3.1075 0.0718 2.9588 3.2348
Table 6. Information Loss obtained on the Madrid dataset.
Madrid
k=3 k=4 k=5 k=6
Method Average o min max Average o min max Average min max Average © min  max
MDAV 31876 NA NA NA 43353 NA NA NA 5283 NA NA NA 58235 NA NA NA
V-MDAV 31876 NA NA NA 4333 NA NA NA 52883 NA NA NA 58235 NA NA NA
MDAV-LK-MHM 29872 0.1285 2.7200 3.1946  4.0536 0.1398 3.6804 4.3314 4.8541 0.1664 4.4680 5.1856  5.5703 0.2163 5.0931 6.0088
Nearest Insertion-MHM 2.7511 0.0814 2.5782 29116  3.7039 0.1122 3.4304 3.9623  4.4522 0.1535 4.1533 4.8463 5.1544 0.1549 4.8661 5.5510
Farthest Insertion-MHM 2.6683 0.0558 2.5319 2.8280  3.6187 0.0742 3.4605 3.7755 4.3338 0.1131 4.1260 4.5668  5.0598 0.1172 4.8391 5.3372
Cheapest Insertion-MHM  2.7833 0.0749 2.6517 2.9789  3.7531 0.0804 3.5253 3.9830  4.4752 0.1140 4.3163 4.7356  5.2496 0.1345 5.0147 5.5609
Arbitrary Insertion-MHM  2.7476 0.0757 2.6009 2.9160 3.7156 0.0986 3.5213 3.9828  4.4149 0.1420 4.0583 4.7078  5.1070 0.1437 4.7687 5.3754
Nearest Neighbor-MHM 3.4257 0.1714 3.0816 3.9040 4.7553 0.2116 4.2823 5.3736  5.7671 0.2194 5.1807 6.3191  6.7615 0.2507 6.1871 7.4355
Repetitive NN-MHM 3.1236 0.1345 2.8799 3.5430 4.4141 0.1482 4.1254 5.0012 5.3911 0.2127 5.0894 6.1676  6.4865 0.2223 6.1764 7.3492
Concorde-MHM 2.4845 0.0336 2.4053 2.5728  3.4302 0.0466 3.3249 3.5664 4.1124 0.0774 3.9816 4.3228  4.8066 0.1065 4.6538 5.0534
Table 7. Information Loss obtained on the Tarraco dataset.
Tarraco
k=3 k=4 k=5 k=6
Method Average o min max Average o min max Average min max Average min  max
MDAV 09988 NA NA NA 14180 NA NA NA 17683 NA NA NA 20260 NA NA NA
V-MDAV 09988 NA NA NA 13093 NA NA NA 17182 NA NA NA 20051 NA NA NA
MDAV-LK-MHM 1.1365 0.0154 1.0979 1.1465 1.4216 0.0203 1.4115 1.4723 17201 0.0401 1.6995 1.8257  2.0238 0.0404 2.0061 2.1247
Nearest Insertion-MHM 0.9113 0.0345 0.8490 1.0100 1.2634 0.0745 1.1052 1.4306  1.5988 0.1160 1.4220 1.8839  1.9105 0.1517 1.7018 2.2870
Farthest Insertion-MHM 0.9190 0.0368 0.8582 1.0268  1.2217 0.0490 1.1123 1.3755 1.5040 0.0581 1.3965 1.7118  1.8346 0.0612 1.7533 2.1299
Cheapest Insertion-MHM  0.9500 0.0406 0.8975 1.0962  1.2951 0.0557 1.2270 1.4637  1.6200 0.0870 1.5225 1.8677  1.9704 0.1094 1.8584 2.2471
Arbitrary Insertion-MHM  0.9258 0.0455 0.8589 1.0269  1.2530 0.0753 1.1419 1.4538 1.5695 0.0971 1.4454 1.8312 1.9051 0.1265 1.7475 2.3396
Nearest Neighbor-MHM 1.5080 0.1937 1.1624 2.0189 2.1341 0.2232 1.5881 2.6725 2.6499 0.2671 2.0802 3.2271  3.3041 0.4123 2.6557 4.3884
Repetitive NN-MHM 1.2177 0.1286 1.0276 1.5906 1.7806 0.1599 1.4244 21131 2.2545 0.1882 1.9146 2.7394 2.7384 0.2209 2.3073 3.4314
Concorde-MHM 0.8482 0.0179 0.8167 0.9005  1.1031 0.0324 1.0739 1.2348  1.3805 0.0556 1.3275 1.6813  1.7280 0.0652 1.6610 2.1308

diagrams.

We have already discussed that all studied methods (with the exception of MDAV and
V-MDAV) have a non-deterministic component emerging from the random selection of the
initial node. This random selection affects the performance of the final microaggregation
obtained. With the aim to analyze the effect of this non-deterministic behavior, we have
studied the standard deviation of all methods for all values of k and for all datasets.
In addition, we have visually inspected the variability of the results by using box plot

Since the results are quite similar and consistent across all datasets, for the sake of
clarity, we only reproduce here the box plots for the “Census” dataset (see Figure 3), and
we leave the others in Appendix A for the interested reader.
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Figure 3. Information Loss variability for each value of k over the Census dataset.

In Figure 3, we can observe that the Information Loss values increase with k, but all
methods have the same behavior regardless of the value of k. In addition, it is clear that the
most stable methods are (H M)Z—Micro, with Concorde, and MDAV-LK-MHM.

Overall, we observe some expected differences depending on the datasets. However,
the behavior of the best performing methods is stable. Particularly, the datasets with GPS
traces (i.e., Barcelona, Madrid, and Tarraco) show more stable results. In summary, the best
method was our (HM)2-Micro with Concorde, exhibiting the most stable results across
all datasets.

6. Discussion

Over the previous sections, we have presented our microaggregation method, (HM)?-
Micro, its rationale, and its performance against other classic and state-of-the-art methods
on a variety of datasets. In the previous section, we have reported the main results, and we
will discuss them next by progressively answering the research questions that we posed in
the Introduction of the article.

Q1: How to create a suitable ordering for a univariate microaggregation algorithm, when
the records are in RP.

A main takeaway of this article is that, by using a combination of TSP tour construction
heuristics (e.g., Concorde) and an optimal univariate microaggregation algorithm, we are
properly ordering multivariate datasets in a univariate fashion that leads to excellent
multivariate microaggregation solutions. Other approaches to order R? points might
consider projecting them over the principal component. However, the information loss
associated with this approach makes it unsuitable. In addition, other more promising
approaches, like the one used in MDAV-LK-MHM, first create a k-partition and set an
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order based on maximum distance criteria. Although this approach might work well in
some cases, we have clearly seen that Hamiltonian paths created by TSP-heuristics, like
Concorde, outperform this approach. Hence, based on the experiments of Section 5, we
can conclude that TSP-heuristics, like Concorde, provide an order for elements in R” that
is suitable for an optimal univariate microaggregation algorithm to output a consistent
multivariate microaggregation solution with low Information Loss (i.e., high data utility).
Moreover, from all analyzed heuristics, it is clear that the best performer is Concorde,
followed by insertion heuristics.

Q2: Are the length of the Hamiltonian path and the information loss of the microaggrega-
tion related?, or Do shorter Hamiltonian paths lead to microaggregation solutions with
lower information loss?

When we started this research, our intuition was that good heuristic solutions of
the TSP (i.e., those with shorter path lengths) would provide a Hamiltonian path, that
could be used as an ordered vector for the HM optimal univariate microaggregation
algorithm, resulting in a good multivariate microaggregation solution. From this intuition,
we assumed that shorter Hamiltonian paths would lead to lower Information Loss in
microaggregated datasets.

In order to validate (or disproof) this intuition, we have analyzed the Pearson correla-
tion between the Hamiltonian path length obtained by all studied heuristics (i.e., Nearest
Neighbor, Repetitive Nearest Neighbor, Nearest Insertion, Farther Insertion, Cheapest In-
sertion, Arbitrary Insertion, and Concorde) and the SSE of the resulting microaggregation.
We have done so for all studied datasets and k values. The results are summarized in
Table 8, and all plots along with a trend line are available in Appendix B.

Table 8. Summary of the Pearson correlation between Path Length and SSE.

Dataset k=3 k=14 k=5 k=6
Census 0.48 0.39 0.32 0.28
EIA 0.62 0.67 0.74 0.76
Tarragona 0.70 0.72 0.82 0.71
Barcelona 0.83 0.81 0.81 0.80
Madrid 0.84 0.81 0.80 0.78
Tarraco 0.80 0.82 0.82 0.80

From the correlation analysis, it can be concluded that there is a positive correlation
between the Hamiltonian path length and the SSE. This is, the shorter the path length the
lower the SSE. This statement holds for all k and for all datasets (although Census exhibits
a lower correlation). Hence, although this result is not a causality proof, it can be safely
said that good solutions of the TSP problem lead to good solutions of the multivariate
microaggregation problem. In fact, the best heuristic (i.e., Concorde) always results in the
lowest (best) SSE.

Interested readers can find all plots in Appendix B. However, for the sake of clarity,
let us illustrate this result by discussing the case of the Madrid dataset with k = 6, depicted
in Figure 4. In the figure, the positive correlation is apparent. In addition, it is clear that
heuristics tend to form clusters. In a nutshell, the best heuristic is Concorde, followed
by the insertion family of methods (i.e., Nearest Insertion, Furthest Insertion, Cheapest
Insertion, and Arbitrary Insertion), followed by Repetitive Nearest Neighbor and Nearest
Neighbor.

Although Figure 4 clearly illustrates the positive correlation between the path length
and the SSE, it also shows that heuristics tend to cluster and might indicate that not only
the path but the heuristic (per se) plays a role in the reduction of the SSE. This indication
leads us to our next research question.
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Figure 4. Relation between SSE and Path Length for Madrid and k = 6.

Q3: Is the length of the Hamiltonian path the only factor affecting information loss or
does the particular construction of the path (regardless of the length) affect the informa-
tion loss?

In the previous question, we have found clear positive correlation between the path
length and the SSE. However, we have also observed apparent clusters suggesting that
the very heuristics could be responsible for the minimization of the SSE. In other words,
although the path length and SSE are positively correlated when all methods are analyzed
together, would this correlation hold when heuristics are analyzed one at a time? In order
to answer this question, we have analyzed the results of each heuristic individually, and
we have observed that there is still positive correlation between path length and SSE, but it
is very weak or almost non-existent (i.e., very close to 0), as Figure 5 illustrates.
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Figure 5. Correlation between path length and SSE for each individual method (from top to bottom:
Cheapest Insertion, Concorde, and Nearest Neighbor) for k = 3 over the Madrid dataset.

The results shown in Figure 5 are only illustrative, and a deeper analysis that is out
of the scope of this paper would be necessary. However, our initial results indicate that,
although there is positive correlation between path length and SSE globally, this correlation
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weakens significantly when analyzed on each heuristic individually. This result suggests
that it is not only the length of the path but the way in which this path is constructed what
affects the SSE. This would explain why similar methods (e.g., those based on insertion)
behave similarly in terms of SSE although their paths’ length varies.

Q4: Does (HM)?-Micro provide better solutions (in terms of information loss) than the
best performing microaggregation methods in the literature?

This question has been already answered in Section 5.3. However, for the sake of
completeness, we summarize it here: The results obtained after executing more than
12,000 tests suggest that our solution (HM)?-Micro obtains better results than classic
microaggregation methods, such as MDAV and V-MDAV. Moreover, when (HM )2-Micro
uses the Concorde heuristic to determine the Hamiltonian path, it outperforms the best
state-of-the-art methods consistently. In our experiments, (HM )?-Micro with Concorde
was the best performer 79% of the times and was the second best in the remaining 21%.

Qb5: Do TSP-based microaggregation methods perform better than current solutions on
trajectories datasets?

(HM)2-Micro with Concorde is the best overall performer. Moreover, if we focus
on those datasets with trajectory data (i.e., Barcelona, Madrid, and Tarraco), the results
are even better. It is the best performer in 83% of the tests and the second best in the
remaining 17%. This good behavior of the method could result from the very foundations
of the TSP; however, there is still plenty of research to do in this line to reach more solid
conclusions. Location privacy is a very complex topic that encompasses many nuances
beyond k-anonymity models (such as the one followed in this article). However, this
result is an invigorating first step towards the analysis of novel microaggregation methods
applied to trajectory analysis and protection.

7. Conclusions

Microaggregation has been studied for decades now, and, although finding the op-
timal microaggregation is NP-Hard and a polynomial-time microaggregation algorithm
has not been found, steady improvements over microaggregation heuristics have been
made. Hence, after such a long research and polishing process, finding new solutions that
improve the best methods is increasingly difficult. In this article, we have presented (HM)?-
Micro, a meta-heuristic that leverages the advances in TSP solvers and combines them
with the optimal univariate microaggregation to create a flexible and robust multivariate
microaggregation solution.

We have studied our method and thoroughly compared it to classic and state-of-the-art
microaggregation algorithms over a variety of classic benchmarks and trajectories datasets.
Overall, we have executed more than 12,000 tests, and we have shown that our solution
embodying the Concorde heuristic outperforms the others. Hence, we have shown that our
TSP-inspired method could be used to guarantee k-anonymity of trajectories datasets whilst
reducing the Information Loss, thus increasing data utility. Furthermore, our proposal is
very stable, i.e., it does not change significantly its performance regardless of the random
behavior associated with initial nodes selection.

In addition to proposing (HM )?-Micro, we have found clear correlations between the
length of Hamiltonian Paths and the SSE introduced by microaggregation processes, and
we have shown the importance of the Hamiltonian Cycle construction algorithms over the
overall performance of microaggregation.

Despite these relevant results, there is still much to do in the study of microaggre-
gation and data protection. Future work will focus on scaling up (HM)2-Micro to high-
dimensional and very-large datasets. Considering the growing importance of Big Data
and Cloud Computing, adapting our solution to distributed computation environments is
paramount. Moreover, adjusting TSP heuristics to leverage lightweight microaggregation-
based approaches is an interesting research path to follow. In addition, although the values
of the privacy parameter k are typically low (i.e., 3, 4, 5, 6), we plan to study the effect of
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larger values of k on our solution. Last but not least, since microaggregation is essentially a
data-oriented procedure, we will study how our solution adapts to data structures from
specific domains, such as healthcare, transportation, energy, and the like.

All in all, with (HM)?-Micro, we have set the ground for the study of multivariate
microaggregation meta-heuristics from a new perspective, that might continue in the years
to come.
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Figure A1. Information Loss variability for each value of k over the Census dataset.
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Appendix B. Correlation Analysis between “Path Length” and “SSE”
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Figure A7. Relation between SSE and Path Length for Census and k € {3,4,5,6}.
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