
Future Generation Computer Systems 124 (2021) 268–284

D

a
i
m
d
b
m
s
a
i
f
p
t

s
j
g
s

p

h
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Benchmarking parallelism in FaaS platforms
Daniel Barcelona-Pons ∗, Pedro García-López
epartament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Tarragona, Spain

a r t i c l e i n f o

Article history:
Received 28 October 2020
Received in revised form 14 April 2021
Accepted 1 June 2021
Available online 7 June 2021

Keywords:
Serverless
FaaS
Parallelism
Benchmark

a b s t r a c t

Serverless computing has seen a myriad of work exploring its potential. Some systems tackle Function-
as-a-Service (FaaS) properties on automatic elasticity and scale to run highly-parallel computing jobs.
However, they focus on specific platforms and convey that their ideas can be extrapolated to any FaaS
runtime.

An important question arises: do all FaaS platforms fit parallel computations? In this paper, we
argue that not all of them provide the necessary means to host highly-parallel applications. To validate
our hypothesis, we create a comparative framework and categorize the architectures of four cloud FaaS
offerings, emphasizing parallel performance. We attest and extend this description with an empirical
experiment that consists in plotting in deep detail the evolution of a parallel computing job on each
service.

The analysis of our results evinces that FaaS is not inherently good for parallel computations
and architectural differences across platforms are decisive to categorize their performance. A key
insight is the importance of virtualization technologies and the scheduling approach of FaaS platforms.
Parallelism improves with lighter virtualization and proactive scheduling due to finer resource
allocation and faster elasticity. This causes some platforms like AWS and IBM to perform well for
highly-parallel computations, while others such as Azure present difficulties to achieve the required
parallelism degree. Consequently, the information in this paper becomes of special interest to help
users choose the most adequate infrastructure for their parallel applications.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In the path to make the cloud more accessible, new services
ppear to abstract application developers from the underlying
nfrastructure. Serverless architectures are the newest develop-
ent in this line with the objective to eliminate servers from the
eveloper concerns. Serverless computing is mainly represented
y Function-as-a-Service (FaaS) platforms. This ‘‘cloud functions’’
odel has clear benefits: users do not manage servers or re-
ources and only provide their code to the cloud, where it is
utomatically handled and executed on demand. To peak simplic-
ty, user code is provided as code snippets or functions, with a
ocused purpose, that can run anywhere. Even better, users only
ay for individual invocations of those functions, with execution
ime accounted for at millisecond level.

FaaS has picked the interest of many applications due to its
implicity. One of such applications is highly-parallel computing
obs. Elastic scale and on-demand resource availability look like a
ood substrate to run embarrassingly parallel tasks at scale. Con-
equently, it motivated the appearance of several research and
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industry projects that adopt FaaS to run highly-parallel jobs. On
a first take, the ‘‘Occupy the cloud’’ [1] and ExCamera papers [2]
demonstrated inspiring results from using FaaS for data analytics
applications. On their basis, several works [3–7] evolved on the
idea of running compute-intensive parallel workloads on cloud
functions and showed interesting results against traditional IaaS
cluster computation. Some papers [8–10] analyze these efforts
and focus on the challenges and viability to run data analytics
workloads on FaaS platforms. Their conclusions show enticing
results despite some issues (e.g., they discuss open challenges
such as cost efficiency and statefulness). In sum, they convey
that FaaS platforms are a good fit for data-processing parallel
applications [1].

In parallel computing, many compute-intensive tasks or pro-
cesses are executed simultaneously. Simultaneity is important
since these tasks usually collaborate. Data analytics jobs, linear
algebra, and iterative machine learning training algorithms are
some examples. This requires a set of very specific properties
in terms of resources, scale, and latency that allow to run all
tasks at the same time without interleaving for compelling per-
formance. Indeed, the information presented on the above papers
shows that parallel applications on FaaS only make sense when
the platform provides the necessary properties to enable their
parallelism. However, they do not investigate them.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Simple function concurrency is not enough if each function
nvocation does not get its full isolated resources (we refer to
ach unit of resources as function instance). Otherwise, compu-
ation faces throttling and resource interference and becomes
oo slow and expensive compared to traditional clusters. In fact,
ost works on parallel computing atop FaaS presuppose that

unction invocations will run simultaneously, each on isolated
esources [1–3,6]. Consequently, the FaaS service must be able
o provide enough resources at low enough latency to run all
nvocations in parallel.

However, all the aforementioned works base their arguments
xclusively on the performance of AWS Lambda. While AWS
eems to provide compelling values for the discussed proper-
ies [1,11], they are not included in the simple FaaS definition
f cloud functions that we presented above (e.g. [12]). The prop-
rties are, in fact, particular of each implementation of the FaaS
odel and usually detailed on each platform’s documentation.
till, cloud-offered FaaS platforms do not guarantee any of them:
here are no service-level agreements (SLA) for these properties.
ore so, while function resources, timeouts, or even concur-

ency are clearly described by every platform, parallelism is not
arefully addressed by any of them.
This raises an important question: do current FaaS platforms fit

arallel computations? And also: what makes some FaaS platform
better fit for parallel applications than the others? Several

enchmarking papers [11,13–15] compare different FaaS plat-
orms. These papers indicate that indeed not all services provide
he same properties. Unfortunately, existing literature approaches
aaS platforms from a high-level user perspective. They tackle use
ases that resemble the IO-bound, reactive applications FaaS is
repared for, and focus on properties such as latency, cold start,
ost, and configuration capabilities. Some go beyond and explore
lasticity with extra detail. However, they tackle elasticity as the
bility to quickly handle dynamic workloads and disregard actual
arallelism and the implications of the FaaS platform architecture.
hile this methodology is logical due to the black-box nature
f the platforms, it does not allow to evaluate their suitability
or highly-parallel, compute-intensive applications. Indeed, un-
erstanding why each platform behaves as it does when dealing
ith parallelism requires a deeper knowledge on their architec-
ure. And existing literature does not provide a detailed view of
he architectures and management approaches of each platform,
either none of them tackle parallel computations in detail.
To address this, in this paper we carefully investigate the

arallel performance of the four major cloud FaaS platforms.
amely, we analyze the architecture and performance of AWS
ambda (AWS), Azure Functions (Azure), Google Cloud Functions
GCP), and IBM Cloud Functions (IBM). We especially focus on
etails that would affect the ability of the services to provide
good substrate for highly-parallel computations. First, we de-
cribe and analyze the design of each service based on available
nformation. We are interested in how functions are managed, the
irtualization technology used, how invocations are scheduled
nd their approach to scale, the management of resources, and
ther components that directly affect parallelism. To organize all
hese traits, we build a comparative framework that helps the
escription and posterior discussion on the differences between
latforms. Second, we perform an experiment that allows to
learly visualize the parallelism of executions in a FaaS platform.1
he experiment runs a job split into several function invocations
tasks) and produces plots with their execution timeline, drawing
complete view of the parallelism achieved. Combined with the

nformation from their architectures, this visualization allows us

1 The experiment code and results are accessible at https://github.com/
anielBCN/faas-parallelism-benchmark, including extra plots.
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to understand when new resources (function instances) are allo-
cated to process function invocations, and whether resources are
used simultaneously to handle different invocations in parallel.
We can also see if this scheduling and resource management
affects the performance of parallel tasks, such as by throttling in-
vocations or by sharing resources across invocations (interleaving
them).

Our objective is hence to understand their performance, and
be able to spot bottlenecks, limitations, and other issues that can
severely influence applications. In sum, we want to categorize
characteristics of each service that must be considered and may
help users understand the different platforms to choose the one
that better fits their needs.

This paper makes the following contributions:

• We present a detailed architectural analysis of the four ma-
jor FaaS platforms: AWS Lambda, Azure Functions, Google
Cloud Functions, and IBM Cloud Functions. We categorize
their design through a comparative framework with spe-
cial focus on parallelism. Two traits importantly influence
parallelism of the platforms: virtualization technology and
scheduling approach.

• We perform a detailed experiment to reveal invocation
scheduling and parallelism on each platform. The experi-
ment consists in running several function invocations con-
currently and gather as much information as possible to
draw a comprehensive timeline of the execution. This vi-
sualizes the parallelism achieved and reveals issues.

• We analyze the information gathered for the different plat-
forms and their affinity to parallel computations. Generally,
lighter virtualization technologies and proactive scheduling
improve parallelism thanks to faster elasticity and finer re-
source allocation. Thus, platforms like AWS and IBM resolve
parallel computations more satisfactorily than Azure, where
our experiment only reaches a parallel degree of 11%.

Outline. Section 2 summarizes the related work on benchmark-
ing FaaS platforms. Section 3 details the architectures of the
analyzed FaaS platforms. Section 4 describes our experimentation
and Sections 5 through 8 present its results. Finally, we discuss
the overall results in Section 10 and close in Section 11.

2. Related work

The recent popularity of serverless computing has triggered
the appearance of several benchmarks tackling FaaS platforms.
Since most services are offered as proprietary cloud platforms,
these works explore them from a black-box perspective, and
mostly from a high-level user point of view.

Some papers and websites analyze the cold start of functions
across platforms [15,16]. Invocation latency and CPU performance
are also extensively explored in literature [13,17]. Recently, new
benchmarks [15] include the invocation throughput that plat-
forms are able to provide and an evaluation of the invocation
costs. Concurrency is also explored on different works [13,18–20],
but they only perform large-scale benchmarks from a high-level
point of view. The measurements on a recent paper [21] regarding
the QoS of different platforms also show special emphasis on their
concurrency and explore different issues with resource allocation
and function scheduling.

A very interesting topic in FaaS benchmarks is service elas-
ticity [11,19,22,23]. However, their experiments do not evaluate
computation parallelism and performance. They generate a dy-
namic workload of many invocations to observe how the platform

behaves when there are changes in the demand scale. Then,

https://github.com/danielBCN/faas-parallelism-benchmark
https://github.com/danielBCN/faas-parallelism-benchmark
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hey analyze the capacity of each system to accept incoming re-
uests rapidly. Also, the workloads are usually IO-bound, like re-
ctive web applications. In this benchmark, we focus on compute-
ntensive workloads in parallel computing. These applications
eed stronger guarantees on execution parallelism and resource
solation to achieve good performance, but this is not evaluated in
iterature benchmarks. Indeed, they do not differentiate between
esolving invocations concurrently and actually handling them in
arallel to provide the necessary performance. We explore the
ehavior of each platform with deeper detail to determine these
haracteristics.
Also, while the results of all these benchmark papers evidence

erformance variation across platforms, they usually disregard its
auses and do not explore in detail the architecture of each plat-
orm for properties that affect performance. Some papers partially
ig into the internals of platforms [13], but do not study its effects
n parallelism. We find extensive analysis of open-source FaaS
latforms [24,25], but such evaluations are not possible for the
ajor platforms offered in public clouds.
A few papers explore more complex applications. An imple-

entation of MapReduce [7] is evaluated for large computations
n AWS Lambda following the observations of PyWren [1] and
xCamera [2]. gg [4] and Pocket [26,27] also perform several

analysis of large computations atop this particular platform. The
platform proves a good fit for batch computations, but other
platforms are not studied nor their design regarding parallelism.
Other benchmarks perform their evaluation from an even higher
level, and focus on orchestration tools atop FaaS [14,28]. They
show that some platforms do not achieve good parallelism, but do
not explore why in detail. A recent paper from Azure [29] offers
some insights on how Azure Functions works and an analysis of
the platform usage from the cloud provider perspective. However,
it disregards function parallelism and focuses its exploration on
optimizing latency in cold starts and reduce resource waste.

None of the existing works investigates the architecture design
of each FaaS platform, and how it affects their performance.
Especially for highly-parallel computations.

3. Architecture analysis

In this section we describe the architecture of each FaaS plat-
form. For an easy comprehension of the differences between
services, we first create a comparative framework. We use it
to outline the general organization, configuration possibilities,
and documented limitations, and we put them in context with
a description of their deployment model. Our interest is spe-
cially focused on resource provisioning and scalability to meet
n-demand requests. Thus, we make emphasis on work distribu-
ion in terms of concurrency and parallelism. The descriptions on
his section are all based on official information available online,
nless indicated otherwise.
Fig. 1 shows an abstract FaaS architecture with the main

omponents we analyze in this section: function instances and
nvocations, the scale controller, the invocation controller, and
nvocation sources. We draw this schema based on open-source
latforms and the literature [24,25,30,31].
There is an important distinction in a FaaS platform: function

invocations and function instances. Invocations are each one of the
function executions in response to a request. Instances refer to
the resource units that are provided to run invocations. If two
function invocations are run on the same resource entity, we con-
sider they run on the same function instance. This can happen by
reusing a container, or by running several invocations in the same
VM. While an invocation is easily identified on all platforms, each
service manages instances differently. As we will see, function
instances are usually determined by the virtualization used on
each architecture.
270
Fig. 1. Abstract FaaS architecture.

The scale controller represents the logic that decides when
to create or remove instances. The invocation controller is the
logic that decides where to run each invocation that comes from
invocation sources. In practice, this components may be merged
into a single one; or be part of another component.

3.1. Comparative framework

For a handy comparison between FaaS platforms, we design
a comparative framework to collect the most relevant character-
istics of each one. It explores two items: (1) the general model
of function deployment and management, and (2) the architec-
tural approach to scale and resource management. Our focus is
specially on the second one, since it conditions scalability and
parallelism for each service, while the first provides important
context. In this sense, we expand the second item by reviewing
the following six traits:

Technology. In this category we discuss the virtualization tech-
nology used to build function instances. Instances need to be
isolated resource units to provide multi-tenant properties. This is
usually achieved with virtualization, but the chosen technology
is very important for the design of a FaaS platform. Traditional
VMs are heavier than containers, what makes the latter better
for the irregular, low-latency FaaS scaling. But we also have mi-
croVMs, light as containers but with kernel-based virtualization.
Some providers may combine technologies to efficiently handle
isolation and performance.

Approach. This category analyzes the job of the invocation con-
troller logic; i.e. the scheduling approach used to distribute work
(invocations) across resources (instances). In particular, we cate-
gorize two kinds: push-based and pull-based. We refer as push-
based to architectures that follow a proactive policy where a
control plane takes the role of the invocation controller: the
controller pushes invocations to instances. A pull-based architec-
ture is more loose and reactive; the invocation controller logic
is delegated to instances, which obtain work from the event
sources: instances pull invocations from queues.

Scaling. This describes the scale controller. The scheduling ap-
proach heavily influences this component: push-based architec-
tures usually merge the scale and invocation controller logic to
balance load on demand, while pull-based ones use a dedicated
scale controller to manage the instance pool. Here we also focus
on the decisions of this component. For example, when does the
controller create or remove instances?

Resources. Most platforms let users configure the resources that
each function gets. We determine the minimum guaranteed re-
sources for a single invocation with a particular function con-
figuration. This is a product of the platform architecture and
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Fig. 2. AWS Lambda architecture.

he tuning set by the provider. On one hand, how an archi-
ecture manages resources may introduce interferences across
nvocations. On the other hand, the service provider may set up
ome limits on the system that affect this category. For instance,
esources could be restricted to ensure the proper functioning of
he system or the economic viability of the service.

arallelism. This category analyzes all information relative to
unction concurrency and parallelism. Particularly, we want to
uantify the maximum amount of parallelism that a platform
an achieve. It is important to remember that this is just an
mposed limit and the service does not guarantee (through an
LA) to reach such parallelism.

ate limits. Providers protect their systems with use rates that
block excessive request bursts and can limit parallelism. We
illustrate it with the number of invocations per second the system
accepts, but also discuss other limits related to parallelism.

3.2. AWS Lambda architecture

All AWS Lambda specification, configuration, and limitations
re described in its documentation [32,33]. Additionally, a recent
WS whitepaper [34] sketches its internals with more detail. An
rchitecture overview is depicted in Fig. 2. The service is split
nto the Control and Data planes. The Control plane handles the
anagement API, such as creating or updating functions, and also

ncludes integrations with other cloud services (e.g., forwarding
3 events or polling SQS queues). The Data plane manages re-
ources and function invocations. The Invoke service is the main
ontrol component taking the logic of the invocation and scale
ontrollers. Event-triggered invocations go directly to the Invoke,
here they may be queued; synchronous invocations, which need
xtra management to respond to callers, are handled by a load
alancer.

.2.1. Fuction deployment
In AWS Lambda, the user deploys functions individually. The

anagement API, enables function creation and configuration
e.g., runtime and memory). The function code is uploaded to
he service in compressed packages and the configuration is
pdated with HTTP requests. Functions may be invoked with
n HTTP request, but the usual approach is to bind them to
unction triggers. Triggers set up links with other cloud services
hat produce events, and allow enabling invocations in response
o those events. Configuration includes other features, such as

imiting function concurrency and pre-provisioning resources.

271
3.2.2. Resources and scale
Technology. Lambda uses several virtualization levels in its archi-
tecture [34] (see Fig. 2). The general structure changed recently
with Firecracker [35], which enhances performance and man-
agement. We focus on the new model. The first level contains
Lambda Workers, which are metal EC2 machines running a Fire-
cracker hypervisor. This technology allows to populate Lambda
Workers with microVMs that are quick to spawn and provide
strong isolation. MicroVMs draw tenant boundaries, being each
of them exclusive to a user. Within a microVM, the service cre-
ates execution environments to run the invocations. Execution
environments are the function instances, created with the help
of cgroups and other container technologies. Each of them is
created especially for a function deployment, containing the ap-
propriate runtime and function code, and can be reused for sub-
sequent invocations. MicroVMs are not tied to a single function
deployment and may hold several execution environments of the
same user. With Firecracker, each microVM only contains a single
execution environment at a time.

Approach. An official AWS whitepaper [34] depicts Lambda fol-
lowing a push-based scheduler. The Invoke service proactively
designates the instance for each invocation. Upon a request, this
component creates an execution environment (instance) inside a
microVM or chooses an existing idle one. To perform such deci-
sion, this component must monitor all system resources. Then,
the service pushes the invocation payload to the instance, where
it is run.

Scaling. The Invoke service controls the scale at a multi-tenant
level. It identifies the instance for each invocation among the
cluster of Lambda Workers, which is common for all users. Since
multi-tenancy is achieved at microVM level, the service can easily
fill Lambda Workers. If the user performing a new invocation has
no microVM available, the Invoke service finds the resources for
a new one in the cluster. If there is already a microVM running, it
can be reused for two cases: the existing execution environment
is for the same function that is being invoked (and it is simply
unfrozen and run with the new payload), or it is for another
function (and a new container is created).

Resources. Users configure function memory from 128 MiB to
10 GiB. Then, instances will grant exactly that much memory for
each invocation. To achieve so, a function instance only processes
one invocation concurrently. With memory, Lambda scales other
resources proportionally. In particular, 1792 MiB corresponds to
the equivalent to one vCPU [32].

Parallelism. The service imposes a limit of 1000 concurrent ex-
ecutions per user—which can be increased under request [33].
Since there is no per-instance concurrency, the achievable par-
allelism shares this limit.

Rate limits. The request per second rate is very ample: 10 times
the concurrent executions limit for synchronous and unlimited
for asynchronous invocations. However, instance creation is con-
trolled by a burst limit [36]. Depending on the region, the service
creates from 500 to 3000 instances without any limitation in a
burst phase. Reached that point, the number of instances created
is limited to 500 each minute.

3.3. Azure Functions architecture

An architecture overview of Azure Functions is shown in Fig. 3.
A description of it is available in its documentation [37]. In the
service, a set of function instances run invocations in response to
events from different sources. The scale of this set is regulated by
a long-running component that monitors the state of the service:

the Scale Controller.
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Fig. 3. Azure Functions architecture.

3.3.1. Fuction deployment
In Azure Functions, a Function App is the general unit of

management and deployment. Each Function App works as a
bundle that may contain many function definitions and manages
a pool of resources (function instances). The application package
the user uploads includes their code, dependencies, and con-
figuration. Each function definition is a piece of code correctly
annotated as an Azure Function. The next part of configuration
is function triggers and bindings, which define the events that
will result in function invocations and enable functions to operate
input and output streams. Advanced configuration parameters
allow to tune some extra features.

3.3.2. Resources and scale
Technology. Azure Functions is built atop Azure WebJobs, a Web
App PaaS service that auto-scales a VM cluster based on load.
Function instances are therefore VM hosts with fixed resources
and the whole Function App deployment package installed. The
set of instances is managed by Azure WebJobs within each Func-
tion App. Differently from all other platforms, Azure uses Win-
dows hosts by default, instead of Linux.

Approach. The documentation of Azure Functions depicts a pull-
based scheduling approach [37]. Function instances poll event
sources to process function invocations. When an instance finds
an unprocessed request in one of its bound triggers, it runs it.
An instance can run any function definition in the Function App
and several invocations may be taken by the same instance con-
currently. This means that different invocations (same Function
App) may share resources.

Scaling. The Scale Controller manages the number of Function
Instances in a Function App. This component monitors the event
rates and instance usage to determine when to create or remove
VMs. The actions of this manager are dictated by a set of internal
policies. For example, it only creates one instance per second if
invocations are by HTTP request [37].

Resources. The available resources on each instance depend on
the plan the Function App is deployed on: Consumption plan or
Premium plan [37]. We focus on the Consumption plan, since it is
the serverless one. It presents the typical FaaS properties of fine-
grained pay-per-use and scale to zero. But differently from other
platforms, resources are not configurable and all instances have
1.5 GiB of memory and one CPU. This means that an invocation
may get at most these resources. Remember that each instance
ay take several invocations concurrently, so there is no guar-
nteed resources for each invocation. The Premium plan allows
ncreased performance by pre-provisioning resources. The user
efines a lower and upper limit to the number of instances, that
o not scale to zero.
272
Parallelism. The documentation of Azure Functions depicts the
service clearly not focused on parallelism. The number of in-
stances per Function App is limited to 200 and cannot be in-
creased [37]. However, it seems to be built for small IO-bound
tasks that benefit from concurrency. A single instance may chose
to fetch several invocations from the event sources at the same
time, allowing unlimited invocation concurrency by sharing in-
stance resources, a good fit for IO operations. The actual paral-
lelism is thus limited to the number of instances since they only
have one CPU each. To avoid resource interference, a necessity
for compute-heavy tasks, concurrency can be configured by the
user by setting a per instance limit [38]. There is a different limit
for each trigger type and they are managed by the instances
autonomously. For example, HTTP requests have a default limit
of 100 concurrent invocations per instance, which after scal-
ing to the maximum 200 instances could offer 20K concurrent
invocations. This does not improve parallelism.

Rate limits. There is no service limit on the number of invocations
processed per second. It depends on the functions themselves
(user code) and how many of them the available instances can
process following the service polices (at which rate they pull from
queues). Note that there is a limit on the instance creation rate:
one per second based on HTTP trigger load, and one every 30
seconds for other triggers [37].

3.4. Google Cloud Functions architecture

The general concepts of the architecture of Google Cloud Func-
tions are detailed in its documentation [39]. However, it does
not specify its internal components with clarity; such as which
component runs the invocation and scale control logic. Conse-
quently, we do not present an overview scheme for this platform.
This only affects the scheduling approach and scaling categories
of our comparative framework. The documentation gives enough
information for the other categories.

3.4.1. Fuction deployment
In Google’s FaaS, the unit of deployment is a single function.

The system manages each function separately, even if deployed
on the same package, and scales them individually. To deploy a
function, the CLI uploads the code directory and detects functions
based on project structure conventions. The configuration is up-
dated through HTTP calls to the service API. Functions may always
be invoked with HTTP requests, but the user may also associate
them with triggers to generate invocations in response to events
from other services.

3.4.2. Resources and scale
Technology. To isolate executions across tenants, Google Cloud
Functions uses gVisor microVMs [40]. gVisor [41] is a kernel-
based virtualization tool used to securely sandbox containers.
These containers are the function instances that run user code,
taking only one invocation at a time [39]. MicroVMs allow to
strongly isolate real resources between tenants; however, there
is no information about how many containers can be packed in
the same microVM or how the service ensures each of them has
the resources configured for the function.

Approach. There is no information available about the internals
of the service that enables us to make any detailed evaluation of
its scheduling policy. Documentation points to a push-based ap-
proach [39], where a controlling component manages invocations
and scale.
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caling. Following the previous category, we sketch the existence
f a controller component in the system that collects system
nformation and decides when to scale in or out. The reasons
ehind scaling decisions are listed in the documentation [42] and
nclude the usual running time (short functions scale more), the
old start time, the rate limits of the service, function error rates,
nd the load of the servers at the time.

esources. Users configure memory for their functions. The ser-
ice offers 5 possible sizes from 128 MiB to 2 GiB, and assigns
PU therefrom [43]. Note that this relation is not proportional:
or instance, 256 MiB functions are given 400 MHz of CPU, while
GiB, 2.4 GHz. The documentation states this numbers as ap-
roximations and not guaranteed resources. Thus, we expand this
nformation with a simple exploratory work. Inspecting system
nformation (/proc), we see that all containers run in VMs with
GiB of memory and 2 CPUs at 2.3 or 2.7 GHz. This happens

rrespective of the function configuration, which tells us that all
icroVMs are equally sized. Again, it is unknown if different
ontainers are packed in the same VM.

arallelism. There is no limit on invocation concurrency for func-
ions called with HTTP requests [42]. Event-triggered invocations
re limited to 1000 concurrent executions per function (not in-
reasable). Advanced configuration also allows users to limit the
umber of concurrent instances. Since each instance only allows
ne invocation at a time, parallelism is also bound by these
imits. Thus, maximum parallelism is unbound for HTTP-triggered
unctions.

ate limits. Google Cloud Functions sets a per region limit of
00M function invocations per 100 seconds [42]. Additionally,
he CPU usage is limited by other rates. These quotas are fairly
enerous for the majority of applications.

.5. IBM Cloud Functions architecture

IBM Cloud Functions is a cloud-managed Apache OpenWhisk
30] deployment, an open-source FaaS started by IBM and do-
ated to the Apache Software Foundation. Its design is expounded
n both documentations [44]. Fig. 4 overviews the platform, with
main components: the Controller acts as a load balancer and
anages instance resources; the Invoker machines are VMs that

un several containers (the function instances, usually Docker); a
afka deployment communicates them at scale; and a database
CouchDB) stores function information, request data (payload and
esults), and logs.

.5.1. Fuction deployment
In IBM Cloud, functions are called ‘‘Actions’’ and deployed indi-

idually to the service. Actions must be contained in a namespace,
hich belongs to a resource group, and may be organized in pack-
ges. Action definitions (code and configuration) are registered
n the database through the Controller, that exposes an HTTP API.
ike Actions, the user defines Triggers and Rules. Triggers identify
vent sources to monitor, while Rules are event filters to map
riggers to Actions. Actions can always be invoked directly with
TTP requests.

.5.2. Resources and scale
echnology. Function instances are containers that are run on
cluster of Invoker machines, which are VMs. Each Invoker
anages its local pool of containers, while the Controller is re-
ponsible for the pool of Invoker machines. Thus, IBM’s FaaS
latform has two levels of virtualization that we can analyze.
273
Fig. 4. IBM Cloud Functions (OpenWhisk) architecture.

Approach. OpenWhisk follows a push-based scheduling approach
[44]. The invocation control logic is split between two compo-
nents. The Controller, upon a request, forwards it to a designated
Invoker machine. The Invoker then creates or reuses an idle
container (instance) to run it. This one-to-one communication is
performed asynchronously through Kafka. The Controller acts as
a load balancer while monitoring the state of all Invoker VMs.
Thus, the Controller proactively pushes function invocations to
the instances that run them.

Scaling. The scale control logic is also split. Each Invoker ma-
chine locally manages its containers. With a fixed set of memory
assignable to containers on the machine and the functions’ mem-
ory configuration, the Invoker responds to requests by creating
containers with the right resources and informs the Controller
of its usage levels. The Controller manages the general pool of
Invokers, and sends requests to them prioritizing the ones that
already have warm, but idle containers. If none is available, it
chooses one Invoker with enough free resources to create a new
instance. There is no information on when or how Invokers are
created or removed, or if the set is fixed.

Resources. Users configure function memory, and each instance
provides those resources to each invocation. The service does
not ensure any CPU resources for a given memory, but it claims
to scale resources proportionally. To collect more specific in-
formation, we empirically study the platform (more details in
Section 8.2). Inspecting system information (/proc) we see that
all explored machines (Invokers) run 4-core CPUs and 16 GiB of
RAM. However, in our experiments, a single Invoker seems to
dedicate only up to 8 GiB for container hosting. If resources scale
proportionally, this CPU-memory relation tells us that we could
ensure a full CPU core with 2 GiB functions.

Parallelism. The service has a limit of 1000 executing or queued
concurrent invocations per namespace—increasable under re-
quest [45]. Each instance only takes one invocation at a time,
meaning that the maximum parallelism of the platform is the
same as this imposed limit. In fact, OpenWhisk offers a con-
figuration parameter to manage per-instance concurrency [46],
with which a single instance could take several invocations at the
same time (unavailable on the IBM Cloud). While this increases
concurrency, it does not improve parallelism.
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able 1
raits of FaaS platforms (October 2020). See Section 3.1.

Technology Approach Scaling

AWS microVM push-based Control plane
Azure VM pull-based Scale Controller
GCP microVM push-based Controller
IBM VM + Container push-based Controller

Resources Parallelism Rate limit

AWS 1792 MiB = 1 CPU (ext.) 1000 3000 + 500/min
Azure 1 CPUa 200 unbound
GCP 2 GiB = 2.4 GHz unbound 100M/100 s
IBM 2 GiB = 1 CPU (ext.) 1000 5000/min

aWith function instance concurrency limited (Section 3.3).

Rate limits. No more than 5000 invocations can be submitted
er namespace per minute—also increasable [45]. It does not
irectly affect parallelism, since the concurrency limit is smaller.
owever, for applications that run many small tasks, it can be
asy to reach. Examples are parallel computations with dynamic
oad balancing and consecutive batches of tiny tasks.

.6. Discussion

Table 1 summarizes all traits collected above for the four FaaS
latforms. These are obtained directly from their documenta-
ion and official publications as of October 2020. The exceptions
re Google’s scheduling approach and scaling, which are not
learly described; and the guaranteed resources at IBM, which we
mpirically assess. We discuss all traits next:

echnology. Each provider uses a different virtualization tech-
ology. AWS and Google use several virtualization levels and
nclude microVMs. This allows finer resource management with
mall start-up times and increased security. IBM also has several
irtualization levels, but does not use microVMs. Consequently,
acks of containers run on each VM, requiring a different ap-
roach to security. Azure only has one level of virtualization,
implifying resource management at the cost of elasticity. In sum,
he schema of virtualization technologies is really important for
he architecture, as it influences several factors that must be
onsidered for scheduling and managing the service, e.g., security
nd the time it takes to start an instance.

pproach. Only Azure clearly uses a pull-based approach to
cheduling work. The other providers build push-based archi-
ectures that create instances more eagerly. This benefits paral-
elism, as they are faster to create instances. From the table, the
cheduling approach seems tightly related to the virtualization
echnologies used. Azure manages a single VMs level and takes a
onservative approach to scale. Meanwhile, the others use lighter
echnologies and spawn instances with more liberty.

caling. There is always a controlling component that manages
cale in the system. In push-based platforms, scale and invocation
istribution logics are dealt by the same control component. In
he pull-based, the controller manages scale based on the state
f the system, but does not deal with invocations.

esources. Instances usually have fixed resources, based on func-
ion configuration. Most providers let users configure function
emory and scale other resources, like CPU, proportionally. Azure
oes not allow configuring resources, but monitors usage during
xecution to adjust billing [47]. Even with their different config-
ration options, all providers offer at least 1 vCPU with around
GiB of memory. They allow users to ensure certain amounts of
esources.
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Parallelism. The achievable parallelism is quite good for AWS,
GCP and IBM, with generous limits on concurrency. Azure, how-
ever, has restricted parallelism due to its scheduling approach,
strict limits, and system tuning.

Rate limit. Invocation rate limits do not generally restrict paral-
lelism in any platform. 5000 invocations per minute at IBM is the
most restrictive; but it can be increased under request.

With this, we have a summary of the four platforms and
several aspects that heavily affect the parallelism they offer.
Combined with some reasoning, we can start to shape our ex-
pectations for the different services. However, none of them
guarantee these properties through a Service Level Agreement.
For example, the instance resources described in the documen-
tation should be taken as approximations and the maximum
parallelism as just an upper limit. For this reason, we empirically
assess these properties in the next sections.

4. Experiment methodology

We explore the different architectures by empirically evaluat-
ing a real parallel workload. For this, we design an experiment
to show how multiple simultaneous function invocations are
distributed across instances. This validates the performance of
parallel tasks on each FaaS platform.

The general methodology consists in running many concurrent
requests to a function while gathering execution information. We
use this information to draw an execution chart. In particular, we
plot parallelism clearly by depicting the invocations on a timeline
that identifies function instances.

This section starts by setting up a set of questions that moti-
vate the experiment. Followed by a description of the test func-
tion and its different configurations, including a big scale setup.
We discuss several considerations regarding the execution of this
evaluation and define a common notation for the experiment
parameters. Then, we present a set of metrics that characterize
each platform for parallel computations. The section ends with
the description of the plot resulting from the experiment.

4.1. Questions to answer

The benchmark is designed with the following questions in
mind, which define our goals for evaluation. We analyze them
on a per-platform basis through Sections 5 to 8.

Q1. Does the service scale function instances elastically to fit parallel
tasks? Related to the technology and scheduling approach of each
platform, this question validates if the design is useful to reach
parallelism in practice. In essence, do concurrent invocations
actually get different instances? Coincidentally, we also identify
the maximum parallelism achieved in practice, in contrast to the
upper bound described before.

Q2. Does the service ensure instance resources so that there is no
interference across function invocations? This question validates
the actual resources gotten on each platform and if there are
any issues, such as resource interference, when running a par-
allel workload. The objective is to verify the information about
instance resources from the documentation (Section 3).

Q3. What can we deduce from the scheduling of the system and
its general performance? This last question embraces general in-
formation that can be learned from the experiments. Including:
invocation latency and how it changes with scale; possible per-
formance issues; tendencies in cold starts; insights on internal
policies and tuning for resource management and scheduling; and

any other useful information.



D. Barcelona-Pons and P. García-López Future Generation Computer Systems 124 (2021) 268–284

T
F

t
t
t
i
i
e
i
i
d
t
o
F
a
t
/
a
d
i

s
l
1
l
t
e
a
a
C
a
c

r
w
d

w
o
n

s
t
e
s
c
i

4

e
f
e
a
–

able 2
unction configuration for the different platforms.

Memory (MiB) CPU Region

AWS 256, 2048 1/7, 8/7 CPU us-east-1
Azure 1536 1 CPU France Central
GCP 256, 2048 0.4, 2.4 GHz us-central1
IBM 256, 2048 1/8, 1 CPU Washington DC

4.2. Function definition

The questions above determine the information that we need
o collect in our experiments. Next, we detail the definition of
he function that will run our benchmark to collect that data on
he different FaaS platforms. The function has two jobs: gathering
nformation and performing work. We obtain as much execution
nformation as possible for each platform, which means differ-
nt code and resulting plots. Nonetheless, there are three basic
tems that we require: (1) client-side execution times for each
nvocation, (2) intra-function execution times (actual invocation
uration), and (3) function instance identification. Client-side
imes can be acquired irrespective of the platform. However, the
ther two items may be obtained differently on each service.
unction instance identifiers are never exposed by the services
nd we use different techniques to obtain them (detailed on
heir respective sections). We complement the data by inspecting
proc when available, since it can offer valuable information
bout the virtualization level and system configuration. Extended
iscussion on how to obtain execution information can be found
n the literature [13,48].

As for workload, we experiment with two kinds of tasks: a
imple sleep and a compute-intensive job. The sleep is a base-
ine to explore the scheduling pattern of the service. We use a
-second sleep, which is enough to plot a comprehensive time-
ine, while longer tasks could complicate the information due
o concurrency. The compute task is intended to mimic a real
mbarrassingly parallel workload and reveal issues with resource
vailability and interference. For easy reasoning, this task has
clearly-defined time duration. In particular, we run a Monte
arlo simulation where an invocation performs x iterations to
pproximate π . x is configured and evaluated to represent a
onsistent amount of time, close to 1 second.
In detail, the function does the following: (1) get the cur-

ent time, (2) identify invocation and instance, (3) perform the
orkload, (4) get the current time, and (5) return the collected
ata.
We obtain the initial time right from the start to represent

hen user code starts to run in the cloud. We checked that the
verhead of the second step is consistent across invocations and
ot significant against the actual workload under test.
The invocations are run with a Python script that performs

ynchronous HTTP requests concurrently with asyncio. We use
he httpx client with the authentication methods required by
ach platform. For AWS, we use the aiobotocore client: a
imple wrapper for signed HTTP calls. The information collected is
omplemented with client-side data and appended to a file, that
s later used to draw the execution plot.

.3. Function configuration

Table 2 summarizes the function configuration parameters for
ach platform. The default timeouts on all platforms are enough
or our one-second functions (5 min on Azure and 1 on the oth-
rs). We test two memory configurations to assess performance
nd resource management for different function sizes. One (big
2048 MiB) intends to reach a full CPU on all platforms; the
275
Table 3
Compute-intensive task on each platform.

Runtime Iterations 2048 MiB 256 MiB

AWS Python 5M 1.1 s 7.7 s
Azure C# 20M 1.2 s (1.5 GiB)b
GCP Python 5M 1.3 s 3.5 sc

IBM Python 5M 1.3 s 1.3 sd

bSince Azure does not allow resource configuration, we only show one time.
cResults from cold starts. Warm containers are slower. See Section 7.
dWe discuss IBM’s equal performance for both configurations in Section 8.

other (small – 256 MiB) is small enough to reveal the scheduling
of the system.2 In Table 2, we include the presumed CPU for each
platform and memory configuration; refer to Section 3 for details
on memory and CPU mapping. Regions are chosen based on what
they offer (availability zones, better network, more services, etc.)
to ensure best function performance and parallelism. Different
regions may affect request latency, but not the service parallelism
we analyze. The function is written in Python for all platforms
but Azure (C#), whose support for the language was in preview
during the experiments. This does not affect the benchmark since
we execute 1 second of computation on all platforms either way.
To that end, the compute-bound task performs 5M iterations on
Python and 20M on C#. See Table 3 for a complete relation of task
duration on each platform and configuration. While different lan-
guages may affect cold start time, configuration is consistent for
each execution and the parallelism in the plots is unaffected. We
take this into consideration when comparing across platforms.
All functions are triggered by HTTP requests and have logs and
monitoring services active.

4.4. On a bigger scale

We want to confirm our conclusions by assessing large scale
executions of the benchmark. Our detailed plot (Section 4.7)
becomes too noisy for analysis when targeting such configura-
tions. For this reason, we complement our results with an extra
execution of 1000 invocations that uses a simplified plot. This plot
includes the function execution time bars in a timeline together
with a curve representing the number of function instances run-
ning at each instant, showing the evolution of the experiment
concurrency. In addition, we add a complementary histogram
of the invocation execution time that helps identify resource
interference between invocations.

With that many invocations, synchronous HTTP requests are
inconvenient for parallel executions, so we opt for asynchronous
invocations instead. This difference may result in different strate-
gies for the platforms to scale resources and we will keep this in
mind when analyzing these executions. In any case, the results
are in line with the tendencies observed in the more detailed
experiments, which tells us that the invocation method may not
affect parallel performance.

This experiment runs a CPU-intensive task. Specifically, each
task computes several matrix multiplication calculations that last
around a minute in total. Function memory is fixed to 1024 MiB
for each FaaS service. This implies that the portion of CPU as-
signed to a function varies between cloud providers. The scale is
1000 invocations of this task. This means that the same workload
performed on a single core would take approximately 16 hours.
In this case, the use of asynchronous triggers requires the result
to be sent to the object storage available in the cloud provider
(e.g., S3 for AWS Lambda) and retrieved from the client after com-
pletion. Note that the times displayed in the plot only represent
the function execution time and not the overhead produced in
uploading the result to object storage.

2 This does not apply for Azure, since resources are not configurable.
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.5. Experiment execution

The benchmark was run during May 2020 from a single client
achine (a laptop with a 4-core CPU @2.6 GHz) invoking func-

ions to the different platforms. The consequent invocation la-
ency reflects only in the time between the client timestamp and
he function start, and thus does not influence the display of
arallelism in the plots.
Executions were run during different days and hours. All con-

igurations were tested several times and all showed similar
esults. The complex nature of the plots (detailing a single execu-
ion to show its work distribution) makes it difficult to show all
he data in an aggregated format that is readable and informative.
herefore, we selected some of the executions to give the reader
he general idea of the behavior of each platform.

The executions may find arbitrary numbers of warm and cold
nstances as they are executed in succession. This is because
arm starts depend on the platform and its particular policies

or recycling instances. Consequently, it is not possible to ensure
consistent number of warm instances across executions. How-
ver, we can collect this information afterwards and compare it
ith the number of instances available in the previous execution.
ince we consider it important for evaluating parallelism, we
nclude data on the number of warm starts experienced on each
xecution. For example, when running an execution first with 10
nvocations and then with 50, if the platform creates 10 instances
or the first run, the second one is expected to usually find 10
nstances warm.

To account for all the different configurations and system
tate, we use a simple notation system throughout the evalu-
tion to describe the complete setup of each experiment. The
otation is: I/W/T/M . Where I is the number of invocations in
hat experiment, W is the expected number of warm instances
taying from a previous execution, T is the workload type for
he function (S–sleep or C–compute), and M is the memory size
or the functions (s–small or b–big, as introduced above). For
xample, the notation 200/50/C/b indicates an execution with
00 invocations, that expected 50 warm instances, and performed
he compute-intensive task on big (2048 MiB) functions.

.6. Metrics

To summarize the results of our benchmark, we establish
he following metrics that characterize the capabilities of the
ifferent FaaS platforms to host parallel computations:

old start. Instance creation overhead is a direct result of the
virtualization technology and the scheduling approach. Other
benchmarks [13,15,16] show that the cold start depends on the
function runtime configuration and analyze it in detail. We do
not consider our values for cross-platform comparison due to
different latencies to each cloud. Hence we only point out general
tendencies and its effects to the system in its behavior.

Completion time. This is a good indicator of the achieved paral-
elism, and specially of the simultaneity of invocations. With this
etric we quantify approximately how long it takes to run 200
ig compute tasks on each platform. Each task individually takes
ne second. Hence a perfect system would run any number of this
ask within that second. However, platforms add overhead to the
xecution, such as invocation delay.

arallel degree. We define the parallel degree of a platform in
n experiment as the maximum number of instances used at
he same time throughout the experiment. We also include the
ercentage that this represents out of the total number of invoca-
ions. We account this for the same setup as the previous metric,
o 100% parallelism means the use of 200 instances at the same

ime.
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Failed requests. These are a hassle for parallelism, as they become
stragglers, need retrying, and heavily impact total computation
time. With synchronous invocations, like our case, the platform
delegates retries to the caller, making the process slower and
increasing complexity for the user.

4.7. Plot description

The information gathered by all invocations in an experi-
ment is represented in a Gantt-like plot showing the execution
period of each function invocation in a global timeline of the
run. Using different colors, the plot shows on which function
instance each invocation has run. This allows to see the real paral-
lelism achieved and spot concurrency problems (like per-instance
concurrency or invocation throttling).

In the plots, the horizontal axis is the timeline. Our time zero
is the minimum timestamp playing in the experiment: the first
client invocation (red X). All other times are deltas to this one.
The vertical axis stacks the function invocations. Each invocation
is drawn as a horizontal bar indicating its time-span, i.e. the
time it has been running in the cloud. The yellow Xs indicate
the client-side invocation timestamp and the black ones, the
request return. Bar colors differentiate the instance where each
invocation has been run. Although colors are limited to four, since
the plot groups invocations by instance, instances sharing a color
are always separated by instances with other colors, making the
distinction clear.

5. Experiments on Amazon Web Services

We deploy and update our function with the AWS CLI. The
invocation ID is obtained through the function context object.
The instance ID is the randomly generated identifier present at
/proc/self/cgroup, starting with sandbox-root [13].

5.1. Results

Experiments with sleeping functions. We start with the small
(256 MiB) functions and the sleeping task. A first run with
10/0/S/s shows how the system creates a different container
for each invocation, allowing full parallelism. A subsequent ex-
ecution with 50/10/S/s results in Fig. 5a. Note that the cold
start increases invocation latency by ≈ 200 ms. Still, the service
achieves full parallelism. Fig. 5b shows 500/500/S/s; the service
still creates different containers for each invocation.

Experiments with computing functions. Still with small functions,
we move to the compute-intensive task. Running a single invoca-
tion, the computation takes 7.7 s average with this configuration.
Figs. 5c and 5d show subsequent invocations of this experi-
ment with different parallelism. The variance of execution time
is within one second.

With the big functions, which have a full CPU, execution time
for the individual run reduces to 1.1 s average. Figs. 5e and 5f
show the experiment with different parallelism. Execution time is
never far from the individual execution with a bit more variance
than with the small configuration.

On a bigger scale. Fig. 6 shows the results of executing the larger
configuration with 1000 parallel requests. Full parallelism is ful-
filled even for big scale executions on AWS Lambda. The his-
togram shows that all invocations do not vary much from around

65 s run time, confirming resource homogeneity.
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Fig. 5. Experiment on AWS.

Fig. 6. Large-scale experiment on AWS.

.2. Answers to questions

1. All experiments show good parallelism, scaling rapidly to the
umber of requests. The overhead is small and all invocations
un in different instances at the same time. In particular, the
xperiment with 500 concurrent requests shows that the server
an keep dealing invocations at the pace the client is able to
reate. Our larger configuration confirms that AWS Lambda scales
o thousands with asynchronous invocations [1].

2. CPU resources scale with memory as documented [32]. Func-
ion performance is constant with little variance (i.e., there is no
nterference). This suggests that provisioning and isolation are
trict, not only for memory but also for other resources. We can
learly see this from the compute-intensive experiments. Our task
akes ≈ 1.1 s with the full CPU (big functions) and ≈ 7.7 s with
the small functions. Since a full CPU is reached at 1792 MiB, our
256 MiB functions are 7 times smaller and should have 1/7 of
CPU. Accordingly, our small functions take 7 times more than the
big ones.
277
Q3. The experiments also reveal these conclusions: (i) Schedul-
ing allows generous resource allocation in burst. Containers are
immediately created when none are available. (ii) Instances are
set up for processing quite fast, probably a result of using a mi-
croVM technology. (iii) Even with cold starts, invocation latency
is usually below 300 ms, including client-cloud latency.

6. Experiments on Microsoft Azure

The development and deployment of Function Apps is man-
aged with the Visual Studio Code extensions, as recommended in
the documentation [49]. The invocation ID is obtained through
the function context object available as an optional function
parameter (inherited from WebJobs). For the instance ID, an en-
vironment variable (‘‘WEBSITE_INSTANCE_ID’’) is present from
Azure WebJobs and identifies a function instance [50]. We also
use Live Metrics, an Azure service that shows real time detailed
information for a Function App, such as the number of active
servers (instances), or CPU and memory usage, among others.

6.1. Results

Experiments with sleeping functions. We start with the default
configuration and the sleeping task. A first execution with 50
parallel requests results in Fig. 7a, which shows a cold start.
With this run, the service ends with 4 instances. A subsequent
execution of the same experiment results in Fig. 7b. In this case,
the 4 hosts where already running, and start processing invoca-
tions right away. Figs. 7c and 7d show the same experiment with
100 parallel requests, both without previously running instances.
They demonstrate that two executions with the same parameters
can be scaled differently in this platform.

Experiments with computing functions. Now, we switch to the
compute-intensive tasks. Running 50 or 100 parallel requests
do not get more than a single instance, thus we increase the
workload. Repeating the same experiment (50 and 100 parallel
requests) several times in quick succession does not alter results.
We then run 200 parallel requests, which results in Fig. 7e. The
system finally creates new instances (up to 7 as confirmed with
Live Metrics). Right away, we run the experiment again, which
we plot in Fig. 7f. We see that requests only run on 4 instances
at first, but then scale out to 9. In this case, Live Metrics tells us
that the service created up to 12 servers, but some of them did
not get any work.

Limiting function invocation concurrency per instance. Since the
default configuration is a bad fit for compute-intensive tasks,
we run the experiments limiting per-instance invocation concur-
rency as explained in Section 3.3.

Due to the CPU-intensive nature of our tasks, our experiment
benefits from limiting concurrency to 1 to avoid resource inter-
ference. Now invocations take the expected time (≈ 1.2 s). In the
previous executions, resource sharing was extending execution
time by 40x. Like before, with larger experiments the system
does not create more than 4 instances (Fig. 7g) until reaching
200 concurrent requests. For instance, Fig. 7h shows an exe-
cution where 13 instances were already up and ends with 18
servers processing invocations. As a note, this last experiment
runs 200 tasks (embarrassingly parallel), each of them with an
expected duration of 1.2 s. Such computation should take 1.2 s
plus some system overhead (all tasks are parallel). However, the
whole experiment takes more than 30 seconds with a maximum
parallelism of 18.
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Fig. 7. Experiment on Azure.
Fig. 8. Large-scale experiment on Azure.

evisited. Due to the poor parallelism experienced, we decide to
evisit this experiment on March 2021. The configuration is the
ame but for the region of deployment. Since the experiments on
he other platforms were performed on US regions, we move to
‘Central US’’. This way, we discard the datacenter from causing
his problems and avoid peak hours on that region in case heavy
raffic of other users may have affected performance. However,
e find the same behavior experienced months before. Indeed,
he low parallelism seems related to the Scale Controller compo-
ent and its policies for spawning new instances and not to the
oad in a specific datacenter.

n a bigger scale. Fig. 8 shows the results of executing the larger
onfiguration with 1000 parallel requests. In line with the previ-
us runs, concurrency is very limited with just a few instances,
ffecting the total execution time. The histogram shows fairly
onsistent run times, meaning that, when limiting per instance
oncurrency, the resources for each invocation are well ensured.
zure, having always a full vCPU regardless of configuration, has
aster execution times than the other platforms (in this experi-
ent the others have less than a vCPU).

.2. Answers to questions

1. Azure Functions is not designed for high parallelism or heavy
omputation. Our experiments clearly show that the service is
eluctant to scale and function invocations are queued on a few
nstances. Also, instances take invocations at irregular intervals,
ven when processing other invocations. In general, but most
oticeable with computing tasks, the service does not create in-
tances until there is high load, meaning that, in some cases, 100
equests end up being handled by the same instance. Changing
onfiguration to limit instance concurrency confirms that the
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system needs considerable load to spin up new instances. In
particular, only a parallelism of 18 is achieved when running
200 concurrent invocations. We should note that the service does
not target this kind of applications, and that their approach is
resource-efficient for IO tasks.

Q2. More than one invocation is assigned to each instance con-
currently, producing the stairs-like shape in the plots. This hap-
pens for both sleeping and computing tasks, which unlinks its
cause from the resource usage of a task. The consequence is an
important interference that, although sleeping functions obvi-
ously do not notice, it heavily affects computing tasks. Invocations
that should take 1.2 s span out to minutes with 200 concurrent
requests (Fig. 7f). We find a solution for this issue in limiting
per-instance concurrency. Although we still do not reach the
desired parallelism for the job, execution time is much better and
consistent with this limit.

We also see that responses to the client are throttled when
there is high concurrency in an instance, perceived on client
times (black Xs). On less busy instances, responses are almost
immediate (Fig. 7b). This hints to more interferences.

Q3. In the cases that include cold starts, host creations are at
least a second apart, in line with the documentation [37]. How-
ever, we also see that the delay in host creation can be significant
and function requests are assigned to new instances even before
they can process them, resulting in important delays. For exam-
ple, in Fig. 7a most of the invocations are resolved in the first 6 s
by 3 fast-spawning hosts, but some of them were assigned to a
fourth instance that took almost 20 s to start, delaying invocations
that could have run earlier on the other hosts.

Azure Functions is generally conservative with resources. For
example, we do not see much scale until reaching 200 parallel
requests, and it is restricted by the one ‘‘instance per second’’
limit. This prudent scheduling configuration is what mainly dif-
ferentiates Azure from other providers. While others create new
instances quite eagerly, Azure tends to pack as many invoca-
tions as possible to reduce resource consumption. The approach
works really well for the IO-bound tasks the service primarily
targets, since it makes better use of resources, reduces costs, and
facilitates management.

7. Experiments on Google Cloud Platform

We deploy and update our function with the GCP CLI. The
invocation ID is obtained from one of the request headers in the
function. It is also available for the client in the HTTP response.
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ifferently from other providers, Google erases all information
hat could identify a container for the instance ID. To check if
he container is the same, we use global code that generates an
dentifier during a cold start. This is reliable since the Python file
s only loaded once per container.

.1. Results

xperiments with sleeping functions. With the small functions
256 MiB) and the sleeping task, an execution with 50/10/S/s
results in Fig. 9a. Each invocation runs on a different container.
Note how the run only keeps 2 instances warm from a previous
execution of 10. Fig. 9b shows 200/200/S/s. It is the second
consecutive execution with this configuration, so we expect all
instances warm; however, most hit a cold start. Still, the service
runs each request on a different container.

Experiments with computing functions. Still with small functions,
we test the compute-intensive tasks. We start running the func-
tion individually, and assess that the computation takes 5.5 s
with this configuration. Figs. 9c and 9d show invocations of
this experiment with different parallelism, where we clearly see
the performance difference between cold and warm containers.
On cold invocations, the computation takes 3.5 s, while warm
executions take up to 10 s. Also, warm containers are recycled
very quickly. For instance, the 200-requests execution, run right
after a 100 one, only finds 84 warm containers.

With 2 GiB functions (big configuration), the maximum mem-
ory configurable for GCP, function time for the individual execu-
tion reduces to 1.3 s. Figs. 9e and 9f show subsequent invocations
of this experiment with different parallelism. Like previously, the
system keeps full parallelism. However, execution time still varies
significantly from 1.3 to 4 s.
279
Fig. 10. Server errors on GCP. The red bars are rejected requests.

Fig. 11. Large-scale experiment on GCP.

These are the best scenarios experienced. However, the sys-
tem seems to throttle big functions, queueing some invocations
and even rejecting them. Fig. 10 shows samples of such cases,
experienced after performing less than 1000 requests.

On a bigger scale. Fig. 11 depicts the results when running the
larger configuration with 1000 asynchronous invocations. We
see that, despite requesting 1000 invocations at once, only 550
functions run in parallel at first, and then another batch of 450
functions are run later. With the help of the histogram, we also
notice a wide variety of function execution times. This behavior
seems to confirm the differences between cold and warm in-
vocations seen before, but also evinces further interferences in
resources and/or heterogeneity of resources.

7.2. Answers to questions

Q1. Mostly, all invocations get a new instance, which allows
good parallelism. However, the scheduling looks more compli-
cated than in other platforms and imposes several rate limits. For
instance, functions with more memory are less elastic. We expe-
rienced a lot of throttling with 2 GiB functions and even failed
requests. Given the size of our experiments, this suggests a more
restrictive rate limit than stated in the documentation [42]. While
this does not affect functions at small scale, it is an issue for large-
scale embarrassingly parallel tasks. Also, the service removes idle
containers very quickly and subsequent runs of the experiment
do not all find warm containers, and there are always cold starts.
This can be an important issue for latency-sensitive applications,
and also hinders parallelism. As an example, although invocations
run on different instances, not all of them are running in parallel,
simultaneously. E.g., from 200 requests less than 100 run in
parallel and the big scale experiment only found a concurrency
of 550.

Q2. With the information gathered from the environment, we
see that all invocations run on a 2 GiB microVM. This is different
from AWS, where each microVM is configured with its memory
corresponding to the function configuration. The microVMs also
have 2 vCPUs, which in most instances run at 2.7 GHz, and some
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Fig. 12. Guessing the VM on IBM for an execution with 200 requests.

at 2.3 GHz. Since all functions run on equally-sized microVMs,
the different CPU limits in the documentation [43] are probably
imposed through CPU slices.

However, in experiments with the compute task, execution
ime is not consistent across invocations, suggesting that the limit
s not well ensured. For instance, the 256 MiB functions complete
n 2 and up to 10 s. Even with 2 GiB functions (corresponding
o a full microVM), performance is inconsistent, ranging from
.3 to 4 s. The most surprising finding is that there seems to
e a significant performance difference between warm and cold
nvocations, being cold ones much faster.

3. We can add the following conclusions: (i) Scheduling is
ased on several parameters (e.g., function size, invocation rate,
unction run time, etc.), and it affects scalability. (ii) Cold starts
sually induce a delay around 3 seconds, but it increases with
arallelism and memory size.

. Experiments on IBM Cloud

We deploy and update our function with the IBM Cloud CLI
n the default package in a simple namespace, by directly up-
oading the source code. The invocation ID is at the environment
ariable ‘‘__OW_ACTIVATION_ID’’. The most reliable way to iden-

tify a container is through the randomly generated identifier
present at /proc/self/cgroup; Docker writes the container
ame there [51]. We obtain the system uptime to identify the VM
here each container runs. Even collected from a container, the
ptime corresponds to the container host, which is the Invoker
M. Although not fully reliable, it can help us guess container
o-residency.

.1. Results

uessing the VM from the system uptime. The plot for a 200-
equests execution would look like Fig. 12a. Each invocation is
unning on a different container, but some of them could be
n the same VM. By getting the system uptime, we can display
ontainer co-residency.3 We represent the system uptime gotten
t each function instance in Fig. 12b. If the uptime gotten by
ifferent invocations is similar, they are likely co-residents of the
ame VM. Since invocations are not exactly simultaneous (they do
ot read the uptime at the same instant), never two of them will
et the exact same uptime. However, since the whole experiment
asts 3 seconds, two co-resident invocations will get an uptime
ifferent by at most 3 seconds (usually in the same second since it
s collected near function start). The CDF gives a very precise view.
ach step in the curve is all the invocations that got a similar
ptime, and thus co-residents. With the information from the

3 A detailed description of a similar method for machine identification was
ntroduced by Lloyd et al. [48].
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Fig. 13. Experiment on IBM.

histogram we can count howmany invocations run on each VM. If
two VM uptimes are too close, the accompanying histogram may
pack invocations from different machines in the same bar, but
we can still distinguish them with the CDF. Since we know that
all invocations run concurrently, this gives us the VM maximum
concurrency. For instance, we see that most histogram bars count
32. One reaches 64, but we see in the CDF that it comprises two
steps, thus being in fact two VMs. This means that it is very likely
that each machine holds a maximum of 32 containers in this
experiment.

We merge this data into our plot to build Fig. 13b. The color
blocks at the sides indicate the guessed VM based on the system
uptime. There is also a black line that separates VMs for clarity.
Additionally, the service collects the time the invocation has been
waiting in the system. We plot it as black diamonds to indicate
when the system received the request.

Experiments with sleeping functions. With 256 MiB functions and
the sleeping task, we first run a cold execution with 10 parallel
requests. A subsequent execution with 50 requests results in
Fig. 13a. Fig. 13b shows 200/200/S/s.

Fig. 14a shows a cold start for 500 parallel invocations. In this
case, two side blocks are twice as big as the others. However,
in the CDF (Fig. 14b) it is clear that each step is in fact of 32
containers. This case uses more VMs than the previous, and it
is easier to find several machines with very similar uptime. This
experiment also shows an interesting behavior of cold starts in
OpenWhisk. Each VM has one invocation that runs almost as in
a warm start, while the others take some extra seconds. This
corresponds to the fact that OpenWhisk starts an empty container
on each Invoker machine before receiving any request. It also
validates that the bigger side blocks are in fact two VMs since
they have two of these early invocations.
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Fig. 14. 500/0/S/s on IBM.

Fig. 15. Large-scale experiment on IBM.

Experiments with computing functions. Still with small functions,
we switch to the compute-intensive task. An individual execution
assesses that the computation takes 1.3 s. Figs. 13c and 13d show
subsequent invocations with different parallelism. We see clearly
that execution time is affected and increases as the VMs fill up
with containers. Our 1.3 s tasks take from 8 to 15 s on machines
full with 32 containers.

With 2 GiB functions, which should have a full CPU as per
our calculations, an individual execution still takes 1.3 s. Figs. 13e
and 13f show subsequent invocations with different parallelism.
In this case, function run time is more consistent and maintains
around 1.3 s. However, some executions span for up to an ad-
ditional second, which hints us to other resource interferences.
Here, the 200 execution requires more VMs than any previous
experiment, leading to a similar situation than with the previous
500 execution (Fig. 14a). In its uptime distribution (omitted), we
identify 50 steps, which proves that each VM holds four 2 GiB
containers.

On a bigger scale. The plot for the configuration with 1000 invo-
cations appears in Fig. 15, showing full parallelism from the start.
However, several invocations take significantly longer to fin-
ish computation, doubling total completion time. The histogram
shows this wide distribution of function run time. Resource het-
erogeneity and the interferences we perceived in previous exper-
iments are possible causes of this variability.

8.2. Answers to questions

Q1. Generally, IBM Cloud Functions shows compelling paral-
lelism with all new invocations starting a new container if there
is none immediately available. This allows high-level parallelism
as invocations come and enables full parallelism in all our ex-
periments. This behavior presents a good fit for parallel tasks.
Nonetheless, we have seen two unusual exceptions were an
invocation got delayed in the system and reused a container.

Q2. We can infer function resource management and VM distri-
bution from the experiments. Gathering system information, each
machine presents 4 CPUs and 16 GiB of RAM. However, only 8 GiB
281
Table 4
Summary of experiment results. Parallelism metrics from Section 4.6.

AWS Azure GCP IBM

Cold start (≈) 300 ms 2–20 s 2–6 s 1–4 s
Completion time 1.5 s 31 s 12.5 s 3.5 s

Parallel degree 200 18 <100 200
100% 11% <50% 100%

Failures None None Rejects None

are assigned to functions on each machine. We deduce this by
seeing that a single VM only allocated 32 instances of 256 MiB,
or 4 of 2048 MiB.

The compute tasks show that CPU is not strictly limited by the
system, but the amount of memory given to each container will
determine how much interference with others there will be, and
thus how much CPU can be guaranteed to each one. This resolves
that each container with 2 GiB of memory will get a full CPU,
but could use up to four if the remaining of the VM is not used.
256 MiB containers will get at least 0.125 CPU in a congested
machine, but could also get all 4 CPUs in a free machine. It is
a generous policy where the provider gives users more resources
than requested.

We have seen this resource interference clearly in our ex-
periments. With small functions, an individual invocation takes
he same as in a 2 GiB function: 1.3 s. However, with parallel
equests, the functions run in groups of 32 per VM and get 0.125
f CPU each, which means a time increase of 8×: 10.4 s. We see

this behavior in the plots, although with considerable variance
(10–15 s). In contrast, the invocations that run on less crowded
machines run much faster (see Fig. 13d)

Q3. The experiments also sketch that: (i) Scheduling is straight-
forward: if upon request arrival there are no containers idle, a
new one is created. (ii) Cold starts can be as low as 1 or 2 s,
but grow with parallelism. (iii) We see that each VM provides
a container pre-warmed. Although it can be helpful for certain
applications, it is not that important for parallel workloads. (iv)
The non-strict resource assignment is a good advantage, but the
user should be conscious of it to avoid unexpected behavior.

9. Experiment summary

Table 4 summarizes the metrics defined in Section 4.6 as
perceived in Sections 5 through 8. We discuss them next:

AWS Lambda. Currently, cold starts tend to stay around
00 ms [15,16]. Our experiments (see Section 5) match this ten-
ency consistently, without substantial changes with increased
oncurrency. AWS Lambda completes the 200 requests in just
.5 s (Fig. 5f), which is the fastest with just half a second of
verhead. This is possible because all invocations run on different
nstances and instantiation is quick, hence the parallel degree of
00 (100%). We did not experience any failure.
Azure Functions. Instances generally start in 2–6 s [15,16].

owever, we find much larger delays (Section 6), sometimes
ver 20 s. This could be explained by increased delay in finding
esources or the scale controller delaying instantiation and not
irectly by the overhead of creating an instance. The 200 requests
xperiment is completed in about 31 s (Fig. 7h). This is precisely
ecause the service only used a maximum of 18 instances, which
s only an 11% of the total invocations. However, none of the
nvocations failed or were rejected.

Google Cloud Functions. Other benchmarks [15,16] place
oogle’s cold starts around 3 seconds. Our experiments (Sec-
ion 7) show a similar trend: small instances starting in 4 s and
ig ones in 2 s. However, they experience increasing delay with
arallelism; up to 8 s (Fig. 9e). The completion time for the
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00 requests is at 12.5 s (Fig. 9f). Although all invocations run
n different instances, Google did not keep all of them warm,
nd only 84 are available from the start. The presence of cold
tarts delays some invocations and expands completion time.
ncidentally, the number of instances used at the same time never
eaches 100, leaving parallelism below 50%. Additionally, many
equests are throttled or rejected with the big setup, as shown in
ig. 10.
IBM Cloud Functions. We typically see cold starts ranging

from 1 to 2 s, and the experiments (Section 8) indicate it in-
creases with scale, reaching up to 5 s with 500 requests. The
200-request experiment finishes in 3.5 s. All invocations run on
different instances, achieving the maximum parallelism of 200
(100%), which leaves all overhead to instance creation delay. All
invocations completed without failures.

10. Do FaaS platforms fit parallel computation?

With the analysis of the architectures in Section 3, the empiri-
cal study in Sections 4 to 8, and the metrics summary in Section 9,
we can finally answer the main question proposed in this paper:
Do FaaS platforms fit parallel computation?. We do so through the
iscussion of our main conclusions next.
Not all FaaS platforms follow the same architecture, which has

igh impact on parallel performance. Two aspects directly influ-
nce their support for parallel computations:

irtualization technologies. They establish how secure and iso-
lated are function instances and how much it takes to start them.
As discussed in Section 3, Table 1 shows a relation between the
technology and the general architecture design, both impacting
invocation latency. Table 4 reveals that platforms with lighter
technologies generally provide better cold starts. AWS Lambda
shows the best latency with its Firecracker microVMs.

Scheduling approach. It defines resource management and how
invocations traverse the system. We identified two approaches in
Section 3. The push-based approach is generous with resources
since it can rush decisions and immediately spin up instances
when none is available. AWS and IBM clearly show this on
Figs. 5 and 13. It improves parallelism, but to be efficient for the
provider, resources need to be managed at fine granularity and
instances spawn very quickly. The pull-based approach utilizes
resources more efficiently, packing more invocations on the same
instances. Usefully, it can enhance management for the provider,
and reduce costs for the users. A downside is that its reactive
elasticity is slower to adapt to current demand and is very
dependent on its tunning. Azure is fairly restrictive in that way,
as experienced in Section 6.

Azure Functions stands out from the other platforms when deal-
ng with parallelism. Its behavior is very different due to its
articular scheduling (how invocations are sent to instances) and
esource management (how instances are created and removed).
hese characteristics, described in Section 3.3 and visualized in
ection 6, explain the poor elasticity experienced by Kuhlenkamp
t al. [11], and the limited request throughput assessed by Mais-
en et al. [15], among other works [13,22]. The service is tuned
or efficiency in cost and resource management. It packs invo-
ations on a few instances to maximize resource utilization and
educe costs for the users and management for the provider. This
onfiguration makes sense, since the service is built atop Azure
ebJobs, focused on web applications, and it is great for short

O-bound tasks where the high per-instance concurrency is a
ig ally. However, it does not work well for parallel, compute-
ntensive tasks (see, e.g., Fig. 7f), since scaling is degraded in favor
f instance concurrency. Even when limiting instance concur-
ency to enhance compute-bound applications, the service prefers
282
queueing invocations to a few instances before starting new ones,
incurring in significant delays (Fig. 7h).

Performance for parallel computations changes considerably be-
tween platforms, since none was, at least initially, designed for
this kind of applications. AWS and IBM’s services are able to
provide full parallelism for parallel workloads, as demonstrated
by PyWren [1] and IBM-PyWren [52]. Our experiments show
in detail how each invocation is dealt by a different instance
and invocation latency is kept low, enabling all tasks to run in
parallel. Google’s platform also shows similar scaling behavior in
our detailed tests. However, as discussed earlier (Section 9), we
start to see failed invocations with relatively small parallelism
(the aforementioned papers run thousands of parallel functions).
Finally, we already discussed above how Azure Functions is not
prepared for these tasks (Table 4), and would struggle to support
them.

Our conclusions help explain several benchmarking works in
the literature [11,13,15,20,22]. Indeed, they already point to the
good performance of AWS and IBM or the sometimes strange
behavior in GCP. And most importantly, the difference in per-
formance for Azure was already sketched in the literature [23].
However, in this paper we analyzed the different platforms from
the perspective of parallelism and took a deep look into the
different architecture designs, which adds new information and
helps to understand the causes of these behaviors.

In sum, FaaS is not inherently good for parallel computations
and performance strongly depends on the platform design and
configuration by the provider. Consequently, users must be aware
of the parallel capabilities of the platform they choose in order to
understand how their applications will behave.

11. Conclusion and future insights

In this paper, we have analyzed the architectures of four major
FaaS platforms: AWS Lambda, Azure Functions, Google Cloud
Functions, and IBM Cloud Functions. Our research focused on the
capabilities and limitations the services offer for highly parallel
computations. The design of the platforms revealed two impor-
tant traits influencing their performance: virtualization technol-
ogy and scheduling approach. We further explored the platforms
with detailed experiments to plot parallel executions and show
task distribution in the platform. The experiments evidenced
that the different approaches to architecture heavily affect how
parallelism is achieved. AWS, IBM, and GCP run different func-
tion instances for each function invocation, while Azure packs
invocations in a few instances. In consequence, parallelism is
thwarted on the latter (only 18% of invocations run in parallel)
and parallel computations suffer big overhead (a 1 s computation
takes 31 s). AWS and IBM always achieve good parallelism (100%).
However, although GCP’s approach is also prone to parallelism,
our experiments show conflicting performance. The appearance
of failed invocations produces stragglers in the computation and
increases complexity for the user, who must manage the errors.

In the future, we see FaaS platforms improving on two as-
pects. On one hand, virtualization technologies are one of the
ost important factors for parallel computing in the serverless
odel. This is because they establish the granularity of resource
anagement, the quickness to create instances, and the complex-

ty of scheduling. In other words, it takes an important role in
nvocation latency and overall cost (for the user and the provider).
e already see AWS improving this aspect with Firecracker,

nd we expect further improvements in this line from the other
roviders as well. On the other hand, the scheduling approach is

also a key component. Our exploration revealed that a reactive
model is too slow to scale, so a proactive push-based architectural
approach is more adequate. Achieving high levels of parallelism
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equires being able to provide resources rapidly. Then it is critical
o be efficient when dealing with incoming invocations, and
roactive approaches are faster than reactive ones. We expect
aaS platforms to move in this direction and further improve their
cheduling mechanisms.
An example of this evolution is granular computing [53],

here microsecond-scale tasks come into place. Such short tasks
eed even smaller overhead, and hence scheduling time needs
o decrease in orders of magnitude. Likewise, tiny tasks only
eed few resources, so the system should be able to provide
hem at finer granularity. Granular computing is very akin to
aaS parallel computing as it benefits from the same properties.
owever, it requires new lightweight virtualization technologies
nd improved scheduling to appear in the next years.
Hopefully, better virtualization technologies are likely to also

mprove scheduling. A faster start up time reduces invocation
atency and thus the weight of creation penalty in the sched-
ler decision-taking. Finer granularity also allows to securely run
nvocations of different tenants in fewer machines, increasing
esource utilization and reducing cost.

We envision that FaaS platforms will continue to evolve in this
irection for the future years, all in all, enhancing performance of
aaS services for parallel workloads, but also enabling new kinds
f applications and use cases.
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