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Abstract: This paper is devoted to the study of the quasi-total strong differential of a graph, and
it is a contribution to the Special Issue “Theoretical computer science and discrete mathematics” of
Symmetry. Given a vertex x ∈ V(G) of a graph G, the neighbourhood of x is denoted by N(x).
The neighbourhood of a set X ⊆ V(G) is defined to be N(X) =

⋃
x∈X N(x), while the external

neighbourhood of X is defined to be Ne(X) = N(X) \ X. Now, for every set X ⊆ V(G) and every
vertex x ∈ X, the external private neighbourhood of x with respect to X is defined as the set
Pe(x, X) = {y ∈ V(G) \ X : N(y) ∩ X = {x}}. Let Xw = {x ∈ X : Pe(x, X) 6= ∅}. The strong
differential of X is defined to be ∂s(X) = |Ne(X)| − |Xw|, while the quasi-total strong differential of
G is defined to be ∂s∗ (G) = max{∂s(X) : X ⊆ V(G) and Xw ⊆ N(X)}. We show that the quasi-total
strong differential is closely related to several graph parameters, including the domination number,
the total domination number, the 2-domination number, the vertex cover number, the semitotal
domination number, the strong differential, and the quasi-total Italian domination number. As a
consequence of the study, we show that the problem of finding the quasi-total strong differential of a
graph is NP-hard.

Keywords: differentials in graphs; strong differential; quasi-total strong differential; quasi-total
Italian domination number

1. Introduction

Given a graph G = (V(G), E(G)), the open neighbourhood of a vertex x ∈ V(G)
is defined to be N(x) = {y ∈ V(G) : xy ∈ E(G)}. The open neighbourhood of a set
X ⊆ V(G) is defined by N(X) =

⋃
x∈X N(x), while the external neighbourhood of X,

or boundary of X, is defined as Ne(X) = N(X) \ X.
The differential of a subset X ⊆ V(G) is defined as ∂(X) = |Ne(X)| − |X| and the

differential of a graph G is defined as

∂(G) = max{∂(X) : X ⊆ V(G)}.

These concepts were introduced by Hedetniemi about twenty-five years ago in an un-
published paper, and the preliminary results on the topic were developed by Goddard and
Henning [1]. The development of the topic was subsequently continued by several authors,
including [2–7]. Currently, the study of differentials in graphs and their variants is of great
interest because it has been observed that the study of different types of domination can
be approached through a variant of the differential which is related to them. Specifically,
we are referring to domination parameters that are necessarily defined through the use of
functions, such as Roman domination, perfect Roman domination, Italian domination and
unique response Roman domination. In each case, the main result linking the domination
parameter to the corresponding differential is a Gallai-type theorem, which allows us to
study these domination parameters without the use of functions. For instance, the differ-
ential is related to the Roman domination number [3], the perfect differential is related to
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the perfect Roman domination number [5], the strong differential is related to the Italian
domination number [8], the 2-packing differential is related to the unique response Roman
domination number [9]. Next, we will briefly describe the case of the strong differential
and then introduce the study of the quasi-total strong differential. We refer the reader to
the corresponding papers for details on the other cases.

For any x ∈ X, the external private neighbourhood of x with respect to X is defined
to be

Pe(x, X) = {y ∈ V(G) \ X : N(y) ∩ X = {x}}.

We define the set Xw = {x ∈ X : Pe(x, X) 6= ∅}.
The strong differential of a set X is defined to be

∂s(X) = |Ne(X)| − |Xw|,

while the strong differential of G is defined to be

∂s(G) = max{∂s(X) : X ⊆ V(G)}.

As shown in [8], the problem of finding the strong differential of a graph is NP-hard,
and this parameter is closely related to several graph parameters. In particular, the theory
of strong differentials allows us to develop the theory of Italian domination without the
use of functions.

In this paper, we study the quasi-total strong differential of G, which is defined as

∂s∗(G) = max{∂s(X) : X ⊆ V(G) and Xw ⊆ N(X)}.

We will show that this novel parameter is perfectly integrated into the theory of
domination. In particular, we will show that the quasi-total strong differential is closely
related to several graph parameters, including the domination number, the total domination
number, the 2-domination number, the vertex cover number, the semitotal domination
number, the strong differential, and the quasi-total Italian domination number. As a
consequence of the study, we show that the problem of finding the quasi-total strong
differential of a graph is NP-hard.

The paper is organised as follows. Section 2 is devoted to establish the main notation,
terminology and tools needed to develop the remaining sections. In Section 3 we obtain
several bounds on the quasi-total strong differential of a graph and we discuss the tightness
of these bounds. In Section 4 we prove a Gallai-type theorem which shows that the
theory of quasi-total strong differentials can be applied to develop the theory of Italian
domination, provided that the Italian dominating functions fulfil an additional condition.
Finally, in Section 5 we show that the problem of finding the quasi-total strong differential
of a graph is NP-hard.

2. Notation, Terminology and Basic Tools

Throughout the paper, we will use the notation G ∼= H if G and H are isomorphic
graphs. Given a set X ⊆ V(G), the subgraph of G induced by X will be denoted by
G[X], while (for simplicity) the subgraph induced by V(G) \ X will be denoted by G− X.
The minimum degree, the maximum degree and the order of G will be denoted by δ(G),
∆(G) and n(G), respectively.

A leaf of G is a vertex of degree one. A support vertex of G is a vertex which is adjacent
to a leaf, while a strong support vertex is a vertex which is adjacent to at least two leaves.
The set of leaves, support vertices and strong support vertices of G will be denoted by
L(G), S(G) and Ss(G), respectively.

A dominating set of G is a subset D ⊆ V(G) such that N(v) ∩ D 6= ∅ for every
v ∈ V(G) \ D. Let D(G) be the set of dominating sets of G. The domination number of G
is defined to be,

γ(G) = min{|D| : D ∈ D(G)}.
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The domination number has been extensively studied. For instance, we cite the
following books [10–12].

We define a γ(G)-set as a set D ∈ D(G) with |D| = γ(G). The same agreement will
be assumed for optimal parameters associated to other characteristic sets of a graph. For
instance, a ∂s∗(G)-set will be a set X ⊆ V(G) such that Xw ⊆ N(X) and ∂s(X) = ∂s∗(G).

As described in Figure 1, X = {a, b, x, y} is a ∂s∗(G)-set while X′ = {u, v, x, y} is not
a ∂s∗(G)-set, as X′w = {u, v} 6⊆ N(X′). In contrast, both X and X′ are ∂s(G)-sets. Another
∂s∗(G)-sets are Y = {a, b, u, v, x, y} and Y′ = {a, b, v, x, y}.

a b
u v

x

y

Figure 1. Let X = {a, b, x, y} and X′ = {u, v, x, y}. In this case, Xw = {a, b} ⊆ N(X) and ∂s(X) =

∂s∗ (G) = 7, so that X is a ∂s∗ (G)-set. In contrast, X′ is not a ∂s∗ (G)-set, although ∂s(X′) = ∂s∗ (G).

A total dominating set of G is a subset D ⊆ V(G) such that N(v) ∩ D 6= ∅ for every
vertex v ∈ V(G). Let Dt(G) be the set of total dominating sets of G. The total domination
number of G is defined to be,

γt(G) = min{|D| : D ∈ Dt(G)}.

The total domination number has been extensively studied. For instance, we cite the
book [13].

A k-dominating set of G is a subset D ⊆ V(G) such that |N(v) ∩ D| ≥ k for every
vertex v ∈ V(G) \ D. Let Dk(G) be the set of k-dominating sets of G. The k-domination
number of G is defined to be,

γk (G) = min{|D| : D ∈ Dk(G)}.

For a comprehensive survey on k-domination in graphs, we cite the book [10] pub-
lished in 2020. In particular, there is a chapter, Multiple Domination, by Hansberg and
Volkmann, where they put into context all relevant research results on multiple domination
concerning k-domination that have been found up to 2020.

In particular, the following result will be useful in the study of quasi-total strong
differentials.

Theorem 1 ([14]). Let r and k be positive integers. For any graph G with δ(G) ≥ r+1
r k− 1,

γk (G) ≤ r
r + 1

n(G).

A semitotal dominating set of a graph G with no isolated vertex, is a dominating set
D of G such that every vertex in D is within distance two of another vertex in D. This
concept was introduced in 2014 by Goddard et al. in [15]. Let Dt2(G) be the set of semitotal
dominating sets of G. The semitotal domination number of G is defined to be

γt2(G) = min{|D| : D ∈ Dt2(G)}.

By definition,
γ(G) ≤ γt2(G) ≤ min{γt(G), γ2(G)}.

A set C ⊆ V(G) is a vertex cover of G if every edge of G is incident with at least one
vertex in C. The vertex cover number of G, denoted by β(G), is the minimum cardinality
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among all vertex covers of G. Recall that the largest cardinality of a set of vertices of G, no
two of which are adjacent, is called the independence number of G and it is denoted by
α(G). The following well-known result, due to Gallai, states the relationship between the
independence number and the vertex cover number of a graph.

Theorem 2 (Gallai’s theorem, [16]). For any graph G,

α(G) + β(G) = n(G).

The concept of a corona product graph was introduced in 1970 by Frucht and Harary [17].
Given two graphs G1 and G2, the corona product graph G1 � G2 is the graph obtained
from G1 and G2, by taking one copy of G1 and n(G1) copies of G2 and joining by an edge
every vertex from the ith-copy of G2 with the ith-vertex of G1. Notice that n(G1 � G2) =
n(G1)(n(G2) + 1) and γ(G1 � G2) = n(G1).

The following result will be one of our main tools.

Theorem 3 ([8]). For any graph G, the following statements hold.

(i) There exists a ∂s(G)-set which is a dominating set of G.
(ii) n(G)−min{2γ(G), γ2(G)} ≤ ∂s(G) ≤ n(G)− γ(G)− |Ss(G)|.

For the remainder of the paper, definitions will be introduced whenever a concept is
needed. In particular, this is the case for concepts, notation and terminology that are used
only once or only in a short section.

3. General Results

To begin this section we present some bounds on the quasi-total strong differential of
a graph, and then we discuss the tightness of the bounds.

Theorem 4. For any graph G, the following statements hold.

(i) ∂s(G)− γ(G) ≤ ∂s∗(G) ≤ ∂s(G).
(ii) n(G)−min{3γ(G), γ2(G)} ≤ ∂s∗(G) ≤ n(G)− γ(G)− |Ss(G)|.

Proof. The inequality ∂s∗(G) ≤ ∂s(G) is straightforward, as for any ∂s∗(G)-set X we have
∂s∗(G) = ∂s(X) ≤ ∂s(G).

We proceed to prove ∂s∗(G) ≥ ∂s(G)−γ(G). Let D be a ∂s(G)-set such that D ∈ D(G),
which exists by Theorem 3. Now, we define D′′ ⊆ V(G) as a set of minimum cardinality
among all supersets D′ of D such that N(v) ∩ D′ 6= ∅ for every vertex v ∈ Dw. Since D is
a dominating set, D′′w ⊆ Dw. Moreover, observe that |D′′ \ D| ≤ γ(G), by the minimality
of D′′. Therefore,

∂s∗(G) ≥ ∂s(D′′)

= |Ne(D′′)| − |D′′w|
≥ |Ne(D)| − |D′′ \ D| − |D′′w|
≥ |Ne(D)| − |Dw| − |D′′ \ D|
= ∂s(G)− |D′′ \ D|
≥ ∂s(G)− γ(G),

as required.
To prove lower bound ∂s∗(G) ≥ n(G) − γ2(G) we only need to observe that for

any γ2(G)-set S we have ∂s∗(G) ≥ ∂s(S) = |Ne(S)| − |Sw| = |Ne(S)| = n(G) − |S| =
n(G)− γ2(G).

Finally, to complete the proof of (ii) we only need to combine the previous bounds
with Theorem 3.
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Corollary 1. Let G be a graph. If ∂s(G) = n(G)− γ2(G) or there exists a ∂s(G)-set which is a
total dominating set, then ∂s∗(G) = ∂s(G).

In order to show some classes of graphs with ∂s∗(G) = ∂s(G) and ∂s∗(G) = n(G)−
γ(G)− |Ss(G)|, we consider the case of corona graphs. It is not difficult to see that if G1
has no isolated vertex and G2 is a non trivial graph, then

∂s∗(G1 � G2) = ∂s(G1 � G2) = n(G1)(n(G2)− 1).

In addition, if G2 is a graph with at least two isolated vertices, then

∂s∗(G1 � G2) = n(G1)(n(G2)− 1)

= n(G1 � G2)− γ(G1 � G2)− |Ss(G1 � G2)|.

Next we discuss some cases where the lower bounds given in Theorem 4 are achieved.

Theorem 5. For any graph G, the following statements are equivalent.

(i) ∂s∗(G) = ∂s(G)− γ(G).
(ii) ∂s∗(G) = n(G)− 3γ(G).

Proof. Assume ∂s∗(G) = ∂s(G) − γ(G). By Theorem 3, there exists a set D ∈ D(G)
which is a ∂s(G)-set. Now, we define D′′ ⊆ V(G) as a set of minimum cardinality among
all supersets D′ of D such that N(v) ∩ D′ 6= ∅ for every vertex v ∈ Dw. Obviously,
|D′′ \ D| ≤ |Dw| ≤ |D|. As we have shown in the proof of Theorem 4,

∂s∗(G) ≥ ∂s(G)− |D′′ \ D| ≥ ∂s(G)− γ(G),

which implies that γ(G) = |D′′ \ D|, and so γ(G) ≤ |Dw| ≤ |D|. On the other side,
∂s(G) ≥ n(G)− 2γ(G), by Theorem 3. In summary,

n(G)− 2γ(G) ≤ ∂s(G) = n(G)− |D| − |Dw| ≤ n(G)− 2γ(G),

Therefore, ∂s(G) = n(G)− 2γ(G), and so ∂s∗(G) = n(G)− 3γ(G).
Conversely, assume ∂s∗(G) = n(G)− 3γ(G). By Theorems 3 and 4 we have

n(G)− 3γ(G) = ∂s∗(G) ≥ ∂s(G)− γ(G) ≥ n(G)− 3γ(G).

Therefore, ∂s(G) = n(G)− 2γ(G) and, as a result, ∂s∗(G) = ∂s(G)− γ(G).

To continue the study, we need to establish the following lemma.

Lemma 1. For any graph G, there exists a ∂s∗(G)-set X which is a dominating set of G and
|Pe(v, X)| ≥ 2 for every v ∈ Xw.

Proof. Let D be a ∂s∗(G)-set and D′ = V(G) \ Ne(D). Since Ne(D′) = Ne(D) and
D′w ⊆ Dw,

∂s(D′) = |Ne(D′)| − |D′w| ≥ |Ne(D)| − |Dw| = ∂s(D) = ∂s∗(G),

which implies that D′ is a ∂s∗(G)-set, as D′w ⊆ N(D′). Obviously, D′ is a dominating set.
Now, let D1 ⊆ D′w such that |Pe(v, D′)| = 1 for every v ∈ D1 and |Pe(v, D′)| ≥ 2 for

every v ∈ D′w \ D1. Let X = D′ ∪ (
⋃

v∈D1

Pe(v, D′)). Since |Ne(X)| = |Ne(D′)| − |D1| and

|Xw| ≤ |D′w| − |D1|,

∂s(X) = |Ne(X)| − |Xw| ≥ |Ne(D′)| − |D′w| = ∂s(D′) = ∂s∗(G).
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Therefore, X is a ∂s∗(G)-set, as Xw ⊆ N(X). Clearly, |Pe(v, X)| ≥ 2 for every
v ∈ Xw.

We are now able to characterize the graphs with ∂s∗(G) = n(G)− γ(G).

Theorem 6. For any graph G, the following statements are equivalent.

(i) ∂s∗(G) = n(G)− γ(G).
(ii) γ2(G) = γ(G).
(iii) ∂s(G) = n(G)− γ(G).

Proof. Assume ∂s∗(G) = n(G)− γ(G). By Lemma 1, there exists a set D ∈ D(G) which
is a ∂s∗(G)-set. Hence, n(G) − γ(G) = ∂s∗(G) = |Ne(D)| − |Dw| = n(G) − |D| − |Dw|,
which implies that |D|+ |Dw| = γ(G). Since γ(G) ≤ |D|, we deduce that |D| = γ(G) and
|Dw| = 0. Therefore, D is a 2-dominating set of G and so, γ2(G) ≤ |D| = γ(G) ≤ γ2(G),
which leads to γ2(G) = γ(G).

Conversely, from Theorem 4 we deduce that γ2(G) = γ(G) implies that ∂s∗(G) =
n(G)− γ(G).

Finally, the equivalence (ii)←→(iii) was previously established in [8].

By the result above we have that if ∂s∗(G) = n(G)− γ(G), then ∂s∗(G) = n(G)−
γ2(G). However, the converse does not hold. For instance, as we will see in Corollary 2,
if G is a path or a cycle, then ∂s∗(G) = n(G)− γ2(G) < n(G)− γ(G).

We next consider some cases of graphs satisfying ∂s∗(G) = n(G)− γ2(G).

Theorem 7. Let G be a graph. If ∆(G) ≤ 3 or G is a claw-free graph, then

∂s∗(G) = n(G)− γ2(G).

Proof. By Lemma 1, there exists D ∈ D(G) which is a ∂s∗(G)-set and |Pe(v, D)| ≥ 2 for
every v ∈ Dw. Assume that ∆(G) ≤ 3. We define a set D′ ⊆ V(G) as follows.

D′ = (D \ Dw) ∪
( ⋃

v∈Dw

Pe(v, D)

)
.

Notice that N(v) ∩ D 6= ∅ and |N(v) \ D| = |Pe(v, D)| = 2 for every v ∈ Dw. Hence,
D′ ∈ D(G) and D′w = ∅, which implies that D′ is a 2-dominating set of G and

n(G)− |D′| = n(G)− |D| − |Dw|
= |Ne(D)| − |Dw|
= ∂s(D)

= ∂s∗(G).

Therefore, ∂s∗(G) = n(G)− |D′| ≤ n(G)− γ2(G), and we deduce the equality by the
lower bound ∂s∗(G) ≥ n(G)− γ2(G) given in Theorem 4.

Now, assume that G is a claw-free graph. Observe that in this case Pe(v, D) is a clique
for every v ∈ Dw, as N(v) ∩ D 6= ∅. Let X ⊆ V(G) \ D such that |X| = |Dw| and
|X ∩ Pe(v, D)| = 1 for every v ∈ Dw. Notice that X′ = D ∪ X is a 2-dominating set of
G. Hence,

∂s∗(G) = ∂s(D) = |Ne(D)| − |Dw| = n(G)− |D| − |Dw| = n(G)− |X′| ≤ n(G)− γ2(G).

Therefore, by the lower bound ∂s∗(G) ≥ n(G)− γ2(G) given in Theorem 4 we con-
clude the proof.

The following result is a direct consequence of Theorem 7 and the well-known equali-
ties γ2(Cn) = d n

2 e and γ2(Pn) = d n+1
2 e due to Fink and Jacobson [18].
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Corollary 2. For any integer n ≥ 3,

∂s∗(Pn) =

⌊
n− 1

2

⌋
and ∂s∗(Cn) =

⌊n
2

⌋
.

By Theorems 1 and 4 we derive the following result.

Theorem 8. Given a graph G, the following statements hold.

(i) If δ(G) ≥ 3, then ∂s∗(G) ≥ n(G)
2 .

(ii) If δ(G) = 2, then ∂s∗(G) ≥ n(G)
3 .

For instance, for any cubic graph with γ2(G) = n(G)
2 we have ∂s∗(G) = n(G)

2 , and for

any corona graph of the form G ∼= G1 � K2 we have ∂s∗(G) = ∂s(G) = n(G)
3 .

We next discuss the relationship between the quasi-total strong differential and the
semitotal domination number.

Theorem 9. Given a graph G with no isolated vertex, the following statements hold.

(i) ∂s∗(G) ≤ n(G)− γt2(G).
(ii) ∂s∗(G) = n(G)− γt2(G) if and only if γt2(G) = γ2(G).
(iii) ∂s∗(G) = n(G)− γt2(G)− 1 if and only if one of the following conditions holds.

(a) γ2(G) = γt2(G) + 1.
(b) γ2(G) ≥ γt2(G) + 1 and there exist a γt2(G)-set D and a vertex v ∈ D ∩ N(D)

such that Pe(v, D) 6= ∅ and D is a 2-dominating set of G− Pe(v, D).

Proof. By Lemma 1, there exists a dominating set D which is a ∂s∗(G)-set. In addition,
since G has no isolated vertex, D is also a semitotal dominating set of G, which implies that
|D| ≥ γt2(G). Hence,

∂s∗(G) = |Ne(D)| − |Dw| ≤ n(G)− |D| − |Dw| ≤ n(G)− |D| ≤ n(G)− γt2(G).

Therefore, (i) follows and ∂s∗(G) = n(G)− γt2(G) if and only if D is a 2-dominating
set and |D| = γt2(G). Now, since γt2(G) ≤ γ2(G), every 2-dominating set of cardinality
γt2(G) is a γ2(G)-set. Therefore, (ii) follows.

Finally, we proceed to prove (iii). We first assume that ∂s∗(G) = n(G)− γt2(G)− 1.
By (i) we deduce that γt2(G) + 1 ≤ γ2(G). Also, notice that

n(G)− γt2(G)− 1 = ∂s∗(G) = ∂s(D) = n(G)− |D| − |Dw|,

which implies that |D|+ |Dw| = γt2(G)+ 1. Since |D| ≥ γt2(G), we obtain that |Dw| ∈ {0, 1}.
We distinguish these two cases.

Case 1. |Dw| = 0. In this case, we have that D is a 2-dominating set of G of cardinality
γt2(G)+ 1, which implies that γt2(G)+ 1 ≤ γ2(G) ≤ |D| = γt2(G)+ 1. Therefore, γ2(G) =
γt2(G) + 1. Conversely, if γ2(G) = γt2(G) + 1, then by (i) and Theorem 4 we have that
n(G) − γt2(G) − 1 ≤ ∂s∗(G) = n(G) − γt2(G), and so (ii) leads to ∂s∗(G) = n(G) −
γt2(G)− 1.

Case 2. |Dw| = 1. If Dw = {v}, then v ∈ D ∩ N(D) and Pe(v, D) 6= ∅. In addition,
since |D|+ |Dw| = |D|+ 1 = γt2(G) + 1, we have that D is a γt2(G)-set and a 2-dominating
set of G− Pe(v, D). Therefore, (b) holds. Conversely, assume that (b) holds. Since γ2(G) ≥
γt2(G) + 1, from (i) and (ii) we conclude that ∂s∗(G) ≤ n(G) − γt2(G) − 1, and so the
γt2(G)-set satisfying (b) is a ∂s∗(G)-set.

Next we derive some lower bounds on ∂s∗(G).
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Theorem 10. For any graph G with every component of order at least three,

∂s∗(G) ≥
⌈

1
2
(n(G)− γ(G) + |L(G)| − 2|S(G)| − 2|Ss(G)|)

⌉
.

Proof. Let S be a γ(G)-set such that S(G) ⊆ S and S = V(G) \ S.
Now, we define S′′ ⊆ S as a set of minimum cardinality among all subsets S′ of S that

satisfy the following conditions.

(a) N(v) ∩ L(G) ∩ S′ 6= ∅ for every vertex v ∈ S(G) \ Ss(G) or v ∈ S(G) with N(v) ⊆
L(G).

(b) (N(v) ∩ S′) \ L(G) 6= ∅ for every vertex v ∈ Ss(G) such that N(v) ∩ S = ∅ and
N(v) 6⊆ L(G).

Notice that |S(G)| − |Ss(G)| ≤ |S′′| ≤ |S(G)|. Now, let I ⊆ S \ S′′ the set of isolated
vertices of the graph G[S \ S′′]. Hence, by definition of S′′ we deduce that |I| ≥ |L(G)| −
|S(G)|+ |Ss(G)|.

Now, we define X′′ ⊆ S \ (I ∪ S′′) as a set of minimum cardinality among all subsets
X′ of S \ (I ∪ S′′) such that N(v) ∩ X′ 6= ∅ for every vertex v ∈ S \ (I ∪ S′′ ∪ X′). It is clear
that if S = I ∪ S′′, then X′′ = ∅, while if S \ (I ∪ S′′) 6= ∅, then X′′ is a γ(G[S \ (I ∪ S′′)])-set.
As G[S \ (I ∪ S′′)] has no isolated vertex, we have that

|X′′| ≤ 1
2
(n(G)− (|S|+ |I|+ |S′′|)) ≤ 1

2
(n(G)− γ(G)− |L(G)|).

Hence, in any case |X′′| ≤ 1
2 (n(G)− γ(G)− |L(G)|) because |S|+ |L(G)| ≤ n(G).

Now, let D = S ∪ S′′ ∪ X′′. Notice that D ∈ D(G), Dw ⊆ Ss(G) and Dw ⊆ N(D).
Hence,

∂s∗(G) ≥ ∂s(D)

= |Ne(D)| − |Dw|
= n(G)− |D| − |Dw|
= n(G)− |S| − |S′′| − |X′′| − |Ss(G)|

≥ n(G)− γ(G)− |S(G)| − 1
2
(n(G)− γ(G)− |L(G)|)− |Ss(G)|

=
1
2
(n(G)− γ(G) + |L(G)| − 2|S(G)| − 2|Ss(G)|).

Therefore, the result follows.

The bound above is tight. For instance, it is achieved by the graphs shown in Figure 2.

Figure 2. Two graphs achieving the bound given in Theorem 10.

Corollary 3. For any graph G with δ(G) = 2,

∂s∗(G) ≥ 1
2
(n(G)− γ(G)).

The bound above is achieved by any corona graph of the form G ∼= G1 � K2, where
G1 is a nontrivial graph. In this case, ∂s∗(G) = ∂s(G) = n(G1) =

1
2 (n(G)− γ(G)).
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Theorem 11. For any graph G with no isolated vertex,

∂s∗(G) ≥ n(G)− γt(G)− γ(G).

Proof. Let S1 be a γt(G)-set and S2 a γ(G)-set. Let S = S1 ∪ S2. As S1 ∈ Dt(G) and
S2 ∈ D(G), we deduce that Sw ⊆ N(S) and Sw ⊆ S1 ∩ S2. Hence,

∂s∗(G) ≥ ∂s(S)

= |Ne(S)| − |Sw|
= n(G)− |S| − |Sw|
≥ n(G)− |S1| − |S2|+ |S1 ∩ S2| − |Sw|
≥ n(G)− γt(G)− γ(G),

as desired.

The bound above is tight. Figure 3 shows a graph G with γ(G) < γt(G), where
∂s∗(G) = 5 = n(G)− γt(G)− γ(G).

Figure 3. A graph G with ∂s∗ (G) = 5.

Theorem 12. For any graph G with every component of order at least three,

∂s∗(G) ≥ n(G)− β(G)− |S(G)| − |Ss(G)|.

Proof. Let S be a β(G)-set such that S(G) ⊆ S. Now, we define S′ ⊆ L(G) such that
|S′| = |S(G)| and |N(v) ∩ S′| = 1 for every vertex v ∈ S(G). Hence, S′′ = S ∪ S′ is a
dominating set, S′′w ⊆ Ss(G) and S′′w ⊆ N(S′′), which implies that

∂s∗(G) ≥ ∂s(S′′)

= |Ne(S′′)| − |S′′w|
= n(G)− |S′′| − |S′′w|
≥ n(G)− |S| − |S(G)| − |Ss(G)|.

Therefore, the result follows.

The bound above is tight. For instance, Figure 3 shows a graph G with ∂s∗(G) = 5 =
n(G)− β(G)− |S(G)| − |Ss(G)| = α(G)− |S(G)| − |Ss(G)|.

Notice that Theorems 2 and 12 lead to the following bound.

Theorem 13. For any graph G with every component of order at least three,

∂s∗(G) ≥ α(G)− |S(G)| − |Ss(G)|.

In particular, for graphs of minimum degree at least two we deduce the following result.

Theorem 14. For any graph G with δ(G) ≥ 2, the following statements hold.

(i) ∂s∗(G) ≥ α(G).
(ii) If ∂s∗(G) = α(G), then α(G) = n(G)− γ2(G).
(iii) ∂s∗(G) ≥ γ(G).
(iv) If ∂s∗(G) = γ(G), then γ(G) = n(G)− γ2(G).
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Proof. Obviously, (i) is an immediate consequence of Theorem 13 and (iii) is derived from
the fact that α(G) ≥ γ(G).

Now, since δ(G) ≥ 2, every vertex cover is a 2-dominating set, which implies that
γ2(G) ≤ β(G) = n(G)− α(G). Thus, by Theorem 4, if ∂s∗(G) = α(G), then

α(G) = ∂s∗(G) ≥ n(G)− γ2(G) ≥ α(G).

Therefore, (ii) follows, and by analogy we deduce that (iii) follows.

The graph shown in Figure 4, on the left, satisfies ∂s∗(G) = α(G) = n(G)− γ2(G) = 4.
The converse of Theorem 14 (ii) does not hold. For instance, for the right hand side graph
shown in Figure 4 we have α(G) = n(G)− γ2(G) = 3, while ∂s∗(G) = 4.

Figure 4. Two graphs with ∂s∗ (G) = 4.

The graph shown in Figure 5 satisfies ∂s∗(G) = γ(G) = n(G) − γ2(G) = 5. We
would point out that there are several cases of graphs of minimum degree one with
∂s∗(G) ≤ γ(G)− 1.

Next we discuss the trivial bounds on ∂s∗(G) and we characterize the extreme cases.

Figure 5. A graph with ∂s∗ (G) = γ(G) = n(G)− γ2 (G) = 5.

Proposition 1. For any graph G of order n(G) ≥ 3, the following statements hold.

(i) max{0, ∆(G)− 2} ≤ ∂s∗(G) ≤ n(G)− 2.
(ii) ∂s∗(G) = 0 if and only if ∆(G) ≤ 1.
(iii) ∂s∗(G) = 1 if and only if ∆(G) ∈ {2, 3} and γ2(G) = n(G)− 1.
(iv) ∂s∗(G) = n(G)− 2 if and only if γ2(G) = 2.
(v) ∂s∗(G) = n(G)− 3 if and only if γ2(G) = 3 or γ2(G) 6= 2 and γ(G) = 1.

Proof. We first proceed to prove (i). If ∆(G) ∈ {0, 1}, then it is straightforward that
∂s∗(G) = 0. We assume that ∆(G) ≥ 2. Let v ∈ V(G) be a vertex of maximum degree,
u ∈ N(v) and S = {u} ∪ (V(G) \ N(v)). Notice that either Sw = ∅ or Sw = {v}. Hence,
∂s∗(G) ≥ ∂s(S) = |Ne(S)| − |Sw| ≥ ∆(G)− 2, as desired. Since n(G) ≥ 3 every ∂s∗(G)-set
has cardinality at least two, and so ∂s∗(G) ≤ n(G)− 2.

We next proceed to prove (ii). if ∂s∗(G) = 0, then ∆(G) ≤ 2 by (i). Now, if ∆(G) = 2,
then for any vertex x of maximum degree we have that V(G) \ {x} is a 2-dominating set,
and so ∂s∗(G) ≥ 1, which is a contradiction. Therefore, ∆(G) ≤ 1. Obviously, if ∆(G) ≤ 1,
then ∂s∗(G) = 0.

Now, we proceed to prove (iii). First, we assume that ∂s∗(G) = 1. By (i) and (ii) we
deduce that ∆(G) ∈ {2, 3}. Hence, Theorem 7 leads to γ2(G) = n(G)− 1. Conversely,
if ∆(G) ∈ {2, 3} and γ2(G) = n(G)− 1, then Theorem 7 leads to ∂s∗(G) = n(G)− γ2(G) =
1. Therefore, (iii) follows.
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To prove the remaining statements, we take a ∂s∗(G)-set D ∈ D(G), which exists due
to Lemma 1.

We next proceed to prove (iv). First, assume that ∂s∗(G) = n(G)− 2. In this case, we
deduce that |D|+ |Dw| = 2, which implies that |D| = 2 and Dw = ∅. Therefore, D is a
γ2(G)-set and so, γ2(G) = 2. On the other side, if γ2(G) = 2, then by Theorem 4 and (i)
we deduce that ∂s∗(G) = n(G)− 2.

Finally, we proceed to prove (v). If either γ2(G) = 3 or γ2(G) 6= 2 and γ(G) = 1, then
by Theorem 4 and the statements (i) and (iv) we deduce that ∂s∗(G) = n(G)− 3. Conversely,
assume that ∂s∗(G) = n(G) − 3. From (iv) we deduce that γ2(G) ≥ 3. Moreover, we
deduce that |D|+ |Dw| = 3, which implies that either |D| = 2 and |Dw| = 1 or |D| = 3
and |Dw| = 0. If |D| = 2 and |Dw| = 1, then γ(G) = 1 as D ∈ D(G), while if |D| = 3 and
|Dw| = 0, then D is a 2-dominating set, and so γ2(G) = 3.

To conclude this section, we discuss the case of join graphs.

Proposition 2. For any two graphs G and H we have the following statements.

(i) n(G) + n(H)− 4 ≤ ∂s∗(G + H) ≤ n(G) + n(H)− 2.
(ii) ∂s∗(G + H) = n(G) + n(H) − 2 if and only if min{γ2(G), γ2(H)} = 2 or γ(G) =

γ(H) = 1.
(iii) ∂s∗(G + H) = n(G) + n(H)− 3 if and only if one of the following holds.

• min{γ2(G), γ2(H)} = 3 and max{γ(G), γ(H)} ≥ 2.
• min{γ2(G), γ2(H)} ≥ 3 and, in addition, γ(G) = 2 or γ(H) = 2.
• min{γ(G), γ(H)} = 1 and max{γ(G), γ(H)} ≥ 2 and min{γ2(G), γ2(H)} ≥ 3.

(iv) ∂s∗(G + H) = 4 if and only if min{γ(G), γ(H)} ≥ 3 and min{γ2(G), γ2(H)} ≥ 4.

Proof. By Proposition 1 (i) we deduce that ∂s∗(G + H) ≤ n(G) + n(H)− 2. For any set
D = {u, v}, where u ∈ V(G) and v ∈ V(H), we have that ∂s∗(G + H) ≥ |Ne(D)| − |Dw| =
n(G) + n(H) − |D| − |Dw| ≥ n(G) + n(H) − 4. Thus, (i) follows. Finally, by (i) and
Proposition 1 (iv) and (v), we deduce the remaining statements, which completes the
proof.

4. A Gallai-Type Theorem

A Gallai-type theorem is a result of the form a(G) + b(G) = n(G), where a(G) and
b(G) are parameters defined on G. This terminology comes from Theorem 2, which is
a well-known result stated by Gallai in 1959. The aim of this section is to identify the
parameter a(G) such that a(G) + ∂s∗(G) = n(G). We will show that this invariant, which
is associated to a version of the Italian domination, is perfectly integrated into the theory
of domination.

Let f : V(G) −→ {0, 1, 2} be a function and Vi = {v ∈ V(G) : f (v) = i} for
i ∈ {0, 1, 2}. We will identify the function f with these subsets of V(G) induced by f ,
and write f (V0, V1, V2). The weight of f is defined to be

ω( f ) = f (V(G)) = ∑
v∈V(G)

f (v) = ∑
i

i|Vi|.

The theory of Roman domination was introduced by Cockayne et al. [19]. They
defined a Roman dominating function on a graph G to be a function f (V0, V1, V2) satisfying
the condition that every vertex in V0 is adjacent to at least one vertex in V2. Recently,
Cabrera García et al. [20] defined a quasi-total Roman dominating function as a Roman
dominating function f (V0, V1, V2) such that N(v) ∩ (V1 ∪V2) 6= ∅ for every v ∈ V2.

An Italian dominating function on a graph G is a function f (V0, V1, V2) satisfying that
f (N(v)) = ∑u∈N(v) f (u) ≥ 2 for every v ∈ V0, i.e., f (V0, V1, V2) is an Italian dominating
function if N(v) ∩ V2 6= ∅ or |N(v) ∩ V1| ≥ 2 for every v ∈ V0. Hence, every Roman
dominating function is an Italian dominating function. The concept of Italian domination
was introduced by Chellali et al. in [21] under the name Roman {2}-domination. The term
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Italian Domination was later introduced by Henning and Klostermeyer [22,23]. The Italian
domination number, denoted by γI (G), is the minimum weight among all dominating
functions on G.

The following Gallai-type theorem for the strong differential and the Italian domina-
tion number was stated in [8].

Theorem 15 (Gallai-type theorem, [8]). For any graph G,

γI (G) + ∂s(G) = n(G).

We say that an Italian dominating function f (V0, V1, V2) is a quasi-total Italian domi-
nating function if N(v) ∩ (V1 ∪V2) 6= ∅ for every v ∈ V2. Clearly, every quasi-total Roman
dominating function is a quasi-total Italian dominating function. The quasi-total Italian
domination number, denoted by γI∗(G), is the minimum weight among all quasi-total
dominating functions on G.

Theorem 16 (Gallai-type theorem). For any graph G,

γI∗(G) + ∂s∗(G) = n(G).

Proof. By Lemma 1, there exists a ∂s∗(G)-set D which is a dominating set of G. Hence,
the function g(W0, W1, W2), defined from W1 = D \ Dw and W2 = Dw, is a quasi-total
Italian dominating function on G, which implies that

γI∗(G) ≤ ω(g)

= 2|Dw|+ |D \ Dw|
= |Dw|+ |D|
= n(G)− (|Ne(D)| − |Dw|)
= n(G)− ∂s∗(G).

We proceed to show that γI∗(G) ≥ n(G) − ∂s∗(G). Let f (V0, V1, V2) be a γI∗(G)-
function. It is readily seen that for D′ = V1 ∪V2 we have that D′ \ D′w = V1 and D′w = V2.
Thus,

∂s∗(G) ≥ ∂s(D′)

= |Ne(D′)| − |D′w|
= |V(G) \ (V1 ∪V2)| − |V2|
= n(G)− 2|V2| − |V1|
= n(G)− γI∗(G).

Therefore, the result follows.

5. Computational Complexity

In this section, we show that the problem of finding the quasi-total strong differential
of graph is NP-hard. To this end, we need to establish the following result.

Theorem 17. For any graph G,

∂s∗(G� K1) = n(G)− γ(G).

Proof. Given x ∈ V(G), let x′ be the vertex of the copy of K1 associated to x in G � K1,
and let V(G� K1) = V(G) ∪ X, where X =

⋃
x∈V(G)

{x′}.
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By Lemma 1, there exists a ∂s∗(G�K1)-set A which is a dominating set and |Pe(v, A)| ≥
2 for every v ∈ Aw. Hence, Aw ∩ X = ∅. Now, if there exists x ∈ V(G) ∩ Aw, then there
exists u ∈ Pe(x, A) ∩V(G) such that u′ 6∈ A and N(u′) ∩ A = ∅, which is a contradiction.
Hence, Aw = ∅, which implies that A is a 2-dominating set of G� K1. Thus,

∂s∗(G� K1) = ∂s(A) = n(G� K1)− |A| ≤ n(G� K1)− γ2(G� K1).

Since Theorem 4 leads to ∂s∗(G� K1) ≥ n(G� K1)− γ2(G� K1), we conclude that

∂s∗(G� K1) = 2 n(G)− γ2(G� K1).

Now, let D be a dominating set of G and D′ = D ∪ X. Since D′ is a 2-dominating set
of G� K1, we have that

γ2(G� K1) ≤ |D′| = γ(G) + n(G).

Finally, for any γ2(G� K1)-set Y, we have that X ⊆ Y and Y ∩V(G) is a dominating
set of G, which implies that

γ2(G� K1) = |Y| = |X|+ |Y ∩V(G)| ≥ |X|+ γ(G) = n(G) + γ(G).

Therefore, γ2(G� K1) = n(G) + γ(G), and so the result follows.

A direct consequence of the preceding result is the determination of computational
complexity of finding the quasi-total strong differential. Given a graph G and a positive
integer t, the domination problem is to decide whether there exists a dominating S in G
such that |S| is at most t. It is well known that the domination problem is NP-complete.
Hence, the optimization problem of finding γ(G) is NP-hard. Therefore, from Theorem 17,
we derive the following result.

Corollary 4. Given a graph G, the problem of finding ∂s∗(G) is NP-hard.

6. Conclusions and Open Problems

This article is a contribution to the theory differential of graphs. Particularly, we
introduce the concept of the quasi-total strong differential of a graph. In our study, we
show that the quasi-total strong differential is closely related to several graph parameters,
including the domination number, the total domination number, the 2-domination number,
the vertex cover number, the semitotal domination number, the strong differential, and the
quasi-total Italian domination number. Finally, we proved that the problem of finding the
quasi-total strong differential of a graph is NP-hard.

Some open problems have emerged from the study carried out. For instance, we
highlight the following.

(a) It would be interesting to obtain some Nordhaus-Gaddum type relations.
(b) We have shown that if ∂s∗(G) = α(G), then α(G) = n(G)− γ2(G). Likewise, we

have shown that if ∂s∗(G) = γ(G), then γ(G) = n(G)− γ2(G). However, the prob-
lem of characterizing all graphs such that ∂s∗(G) = α(G) and ∂s∗(G) = γ(G) is still
an open problem.

(c) Since the optimization problem of finding ∂s∗(G) is NP-hard, it would be inter-
esting to devise polynomial-time algorithm for simple families of graphs or to
develop heuristics that allow to estimate as accurately as possible this parameter for
any graph.

(d) It would be interesting to investigate the quasi-total strong differential of product
graphs, and try to express this invariant in terms of different parameters of the
graphs involved in the product.
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