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Abstract: The search for alternative materials with high dye adsorption capacity, such as methylene
blue (MB), remains the focus of current studies. This computational study focuses on oxides ZnTiO3

and TiO2 (anatase phase) and on their adsorptive properties. Computational calculations based on
DFT methods were performed using the Viena Ab initio Simulation Package (VASP) code to study
the electronic properties of these oxides. The bandgap energy values calculated by the Hubbard U
(GGA + U) method for ZnTiO3 and TiO2 were 3.17 and 3.21 eV, respectively, which are consistent
with the experimental data. The most favorable orientation of the MB adsorbed on the surface (101)
of both oxides is semi-perpendicular. Stronger adsorption was observed on the ZnTiO3 surface
(−282.05 kJ/mol) than on TiO2 (–10.95 kJ/mol). Anchoring of the MB molecule on both surfaces
was carried out by means of two protons in a bidentate chelating (BC) adsorption model. The high
adsorption energy of the MB dye on the ZnTiO3 surface shows the potential value of using this mixed
oxide as a dye adsorbent for several technological and environmental applications.

Keywords: DFT; ZnTiO3; TiO2; methylene blue; adsorption

1. Introduction

Over the past decade, Ti- and Zn-based oxides have received much attention due
to their competitive cost, non-toxicity, excellent stability, availability, and ability to pro-
duce highly oxidizing radicals [1–4]. Titanium oxide (TiO2) and zinc oxide (ZnO) are two
well-known semiconductors that have been widely used to construct electron transport
channels due to their appropriate bandgaps, efficient electron mobilities, and simple syn-
thesis methods [5–8]. In addition, these oxides are promising semiconductors to eliminate
organic pollutants with incomparable efficiency due to their tunable surface and structural
functionality [9]. The ZnO–TiO2 composite system has even more superior properties than
the individual oxides due to the high separation rate of photogenerated carriers and the
wide optical response range [10]. Several syntheses and characterization studies of the ZnO–
TiO2 system have shown that there are three compounds in this binary system, including
ZnTiO3 (cubic, hexagonal), Zn2TiO4 (cubic, tetragonal), and Zn3Ti3O8 (cubic) [11–13].

ZnTiO3 has many similar physical properties to TiO2 and ZnO, including high elec-
tron mobility [14–16]. This ternary oxide has been widely used because of its outstanding
properties and potential scientific and technical applications [17]. ZnTiO3 has been investi-
gated in a variety of applications as an antibacterial, catalyst, nanofiber, white pigment,
microwave dielectric, gas sensor, nonlinear optical, corrosion inhibitor, and luminescent
material [18–23], but its application in adsorption has not been sufficiently studied, despite
the fact that the literature indicates that due to its great specific area, it could have an
important potential as an adsorbent [24,25].
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ZnTiO3 is a polar oxide of the LiNbO3-type (LN-type) with both cations coordinated
octahedrally in a three-dimensional framework of the octahedron perovskite (Pv) that
shares corners [26]. In this structure, both cations move along the trigonal axis c, thus
producing a spontaneous polarization reinforced by a second-order Jahn–Teller (SOJT)
distortion due to Ti4+ (d0) [27]. The paraelectric parent structure of ZnTiO3 is the ilmenite
(Il)-type phase (hexagonal space group R-3), which is the stable phase under ambient
conditions [28]. The crystalline and phase transformation behaviors of ZnTiO3 have
systematically been investigated by various authors regarding several synthesis methods,
Ti:Zn precursor molar ratios, and calcination temperatures [29–35]. Furthermore, the
literature agrees that obtaining ZnTiO3 as a pure phase at a low processing temperature is
a challenge in materials chemistry [36–38].

In a previous experimental paper, we reported the synthesis and characterization of the
ZnTiO3/TiO2 nanocomposite. This heterostructure was indexed to a hexagonal phase with
space group R-3(148) for ZnTiO3 and a tetragonal phase with space group I41/amd(141)
for TiO2 (anatase) [39,40]. In these studies, we also reported the ability of ZnTiO3/TiO2 to
remove the methylene blue (MB) dye in aqueous systems, and it was contrasted with the
results obtained for pure TiO2 (anatase). The results showed that the heterostructure has
better photocatalytic adsorption and degradation capacity than anatase alone, probably due
to a synergistic effect. This synergistic effect between semiconductors has been extensively
studied, showing that the presence of a second semiconductor can provide special active
sites to enhance the adsorption and photocatalysis of various compounds [41].

Although several properties of ZnTiO3 have been extensively studied experimentally,
a proper description of its electronic, optical, and adsorptive properties remains an active
research area from a theoretical point of view [42] since, up to date, this ternary oxide
has scarcely been studied with quantum methods [43]. Therefore, the computational
study of the molecular interaction between ZnTiO3 and methylene blue could contribute to
clarifying the adsorption and degradation mechanism of this dye, favoring the development
of materials for the treatment of waters contaminated with MB.

The elimination of MB in wastewater is an extremely important task in environmental
protection because it has caused serious contamination in many countries of the world [44].
Methylene blue, known as methylthioninium chloride is a basic cationic dye widely used
in the printing, plastics, paper, leather, food, pharmaceutical, and textile industries [45–47].
The discharge of wastewater effluents from these industries, with a high content of MB
without efficient degradation, results in harmful effects for humans and animals [48].

Various technologies have been used to treat wastewater contaminated with dyes [49].
Among these techniques, adsorption is easy to perform without pretreatment and is highly
selective for removing dyes [50]. In addition, adsorption has been found to be superior
to other techniques for wastewater treatment in terms of initial cost, simplicity of design,
ease of operation, and insensitivity to toxic substances [24]. Although there are several
experimental studies of MB adsorption on different surfaces, some uncertainties remain
due to lack of understanding at the molecular level of the MB adsorption mechanism on
the ZnTiO3 surface.

As is well known, computational calculations of the electronic structure in an isolated
molecule can achieve the desired chemical precision as long as a sufficiently large basis
set is used, the electronic correlation is sufficiently described, and the relativistic effects in
the calculation are adequately included [51]. Therefore, in this study, Density Functional
Theory (DFT) computational calculations were used to characterize the electronic structure
of ZnTiO3 and TiO2 (anatase) and also to investigate the feasibility of using both oxides
as MB adsorbents. The results presented in this paper clarify the previously obtained
experimental results and confirm that ZnTiO3 is an excellent adsorbent and that it has high
potential for future technological and environmental applications.
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2. Results
2.1. Optimization and Electronic Structure of ZnTiO3 and TiO2

The adsorption of the methylene blue molecule on the surface of both ZnTiO3 and
TiO2 was modeled using the following parameters: hexagonal ZnTiO3 with a cell = 5.148 Å
× 5.148 Å × 13.937 Å <90◦ × 90◦ × 120◦> and tetragonal TiO2 with a cell = 3.821 Å × 3.821
Å × 9.697 Å <90◦ × 90◦ × 90◦>, as shown in Figure 1. The coordinates of the optimized
ZnTiO3 and TiO2 structures are detailed in Table S1 and the corresponding optimization
energy values are included in Figure S2.
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Figure 1. Optimized structures of (a) ZnTiO3 and (b) TiO2.

The selection of the high symmetry points and lines in the first Brillouin zone [52] and
the results of the calculation of the electronic band structure of ZnTiO3 and TiO2 are shown
in Figure 2a,b, respectively.

Figure 2a,b show that the indirect bandgap energy values of the ZnTiO3 and TiO2
structures calculated by the exchange–correlation functional in the generalized gradient
approximation (GGA-PBE) method were 2.20 and 2.31 eV, respectively. However, the
indirect bandgap values were also calculated by the GGA + U method, that is, incorporating
the Hubbard U approximation term. Indirect bandgap calculations using GGA + U resulted
in 3.16 eV (U = 2.5) and 3.21 eV (U = 4.0) for ZnTO3 and TiO2, respectively. These results
are in good agreement with the experimental results reported in the literature: 3.18 eV for
ZnTiO3 [15] and 3.20 eV for TiO2 [53].

The total and partial density of states (DOS) of ZnTiO3 and TiO2 are illustrated in
Figures 3 and 4, respectively. Figure 3a shows that the total density of state (TDOS) of
ZnTiO3 has two main zones: an upper conduction band (CB) zone from 2.5 to 6.2 eV,
and a lower valence band (VB) zone, from −6.0 to −0.2 eV. The CB is dominated by the
contribution of Ti, while the VB is dominated by the contribution of Zn and O. Figure 3b–d
show the partial density of state (PDOS) of ZnTiO3. As can be seen in Figure 3b, the main
contribution of Ti in the CB is through the 3d orbital. On the other hand, Figure 3c shows
that Zn contributes mainly to the VB through the 3d orbital while O interacts with Zn in
this band through the 2p orbital shown in Figure 3d.

Likewise, Figure 4a shows that the total density of state (TDOS) of TiO2 has two main
zones: an upper conduction band (CB) zone from −0.1 to 3.8 eV, and a lower valence band
(VB) zone, from −7.6 to −2.8 eV. The CB is dominated by the contribution of Ti, while the
VB is dominated by the contribution of O. Figure 4b,c show the partial density of state
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(PDOS) of TiO2. As can be seen in Figure 4b, the main contribution of Ti in the CB is
through the 3d orbital. On the other hand, Figure 4c shows that O contributes mainly to
the VB through the 2p orbital.
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In both structures, ZnTiO3 and TiO2, the valence band maximum (VBM) is bordered
by the oxygen atom, while the Ti atom determines the conduction band maximum (CBM).
Consequently, ZnTiO3 has an energy bandgap quite similar to that of TiO2, due to the
fact that ZnTiO3 involves both ZnO and TiO2. Our calculated results agree with the
literature [5,18,54].

In order to further understand the chemical bonding of hexagonal ZnTiO3 and tetrag-
onal TiO2, the population analyses were estimated by the Bader method. For ZnTiO3, the
net charge of Ti (+2.6e) was 1.4e, much smaller than its +4e formal charge, whereas the Zn
atom had a positive charge of +1.4e and the O atom had a negative charge of −1.3e, which
are less than their +2e and −2e formal charges by 0.6e and 0.7e, respectively. For TiO2, the
net charges of the Ti and O atoms were similar to those calculated for the Ti and O atoms
of ZnTiO3. These results agree with those reported by other authors [55]. Since the charges
on the different bonds can reflect the covalent and ionic properties of the molecule, we
concluded that the Ti–O bond is typically covalent for both ZnTiO3 and TiO2 and that the
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Zn–O bond for ZnTiO3 is typically ionic; these results coincide with those reported in the
literature [42,56].
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2.2. Adsorption of the MB Dye on the Structures

The orientations of the MB molecule on the ZnTiO3 and TiO2 surfaces are shown in
Figure 5. Figure 5a shows the horizontal orientation of the MB molecule on the ZnTiO3 sur-
face, while Figure 5b,c show the semi-perpendicular orientation of the MB molecule on the
ZnTiO3 and TiO2 surfaces, respectively. The adsorption of the MB molecule on the ZnTiO3
surface with the molecule placed in semi-perpendicular orientation (Eads = −2.916 eV) was
more energetically favored than in the horizontal orientation (Eads = −1.310 eV). Therefore,
we studied the adsorption of MB on the TiO2 surface only with the semi-perpendicular
orientation. The calculated adsorption energy for the TiO2 surface (Eads = −0.113 eV) was
less favorable than the calculated adsorption energy for the ZnTiO3 surface.

The anchoring modes of the MB molecule on the ZnTiO3 and TiO2 surfaces are shown
in Figure 6. Adsorption of the dye on the ZnTiO3 and TiO2 surfaces occurs in a bidentate
chelating (BC) adsorption model [57] with two protons oriented toward the nearest surface
oxygen [58].
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The calculated adsorption energy value indicates that the MB molecule is strongly
adsorbed on the ZnTiO3 surface. The average distances from the hydrogen atoms of
the MB molecule (HMB) to the surface plane of ZnTiO3 are O(oxide)-HMB = 2.34 Å and
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O(oxide)-HMB = 2.52 Å. Moreover, the adsorption energy value of the MB molecule on the
TiO2 surface indicates a weaker interaction than on ZnTiO3 (Eads =−0.113 eV). The average
distances from the hydrogen atoms of the molecule to the plane of the TiO2 surface are
O(oxide)-HMB = 2.68 Å and O(oxide)-HMB = 2.69 Å.

3. Discussion
3.1. Optimization and Electronic Structure of ZnTiO3 and TiO2

The description of the electronic structure of materials involving transition metals with
DFT is often complicated due to correlation effects involving 3d electrons [59]. However,
since the transition metals of the oxides studied in this paper are formally in the 3d0 or
3d10, neither TiO2 nor ZnTiO3 are strongly correlated materials; consequently, a simple DFT
approach allowed us to accurately calculate the conduction and valence bands of ZnTiO3
and TiO2.

The literature shows that ZnTiO3 has a relatively wide bandgap (Eg = 2.73–3.70 eV), the
value of which depends on the synthesis conditions [60,61]. In our study, the ZnTiO3 and
TiO2 structures presented indirect bandgap values of 2.20 and 2.31 eV, respectively, which
were calculated by the GGA-PBE method. In contrast with the experimental data, 3.18 eV
for ZnTiO3 [15] and 3.20 eV for TiO2 [53], the theoretical values are lower, and this may be
due to the widely known DFT-underestimation of the bandgap in most materials [1,15].
Therefore, a Hubbard U approximation term was adopted to accurately describe the
electronic structures [12,62]. The new indirect bandgap values calculated by GGA + U
were 3.16 and 3.21 eV for ZnTiO3 and TiO2, respectively, which are consistent with the
aforementioned experimental data. As can be seen, mixed oxide ZnTiO3 has lower bandgap
energy than TiO2. According to the literature, this occurs due to the replacement of Ti
(3d0) atoms with Zn (3d10) that induce O 2p-Zn 3d10 repulsion [21,63]. Table 1 shows the
comparison of the bandgap energy values of the ZnTiO3 and TiO2 calculated in this study
with other energy values reported in the literature.

Table 1. Calculated bandgap energy of ZnTiO3 and TiO2 and other values reported in the literature.

Adsorbent Software Used Basis Set Used/Functional Used Bandgap (eV) Reference

ZnTiO3 CASTEP GGA/SP-PBE 3.14 [1]
ZnTiO3 CASTEP GGA+U 3.28 [1]
ZnTiO3 MS-DMol3 GGA/PBE 3.10 [5]
ZnTiO3 MS-DMol3 GGA/PPE-grime 3.53 [5]
ZnTiO3 MS-DMol3 GGA/PPE-TS 3.12 [5]
ZnTiO3 Experimental 3.18 [15]
ZnTiO3 VASP GGA/PBE 2.96 [15]
ZnTiO3 CASTEP GGA/PW91 3.47 [18]
ZnTiO3 ABINIT HSE06 4.25 [56]
ZnTiO3 ABINIT GGA/NC 3.25 [56]
ZnTiO3 ABINIT LDA/NC 3.05 [56]
ZnTiO3 ABINIT GGA/ultrasoft 2.96 [56]
ZnTiO3 ABINIT LDA/ultrasoft 2.86 [56]
ZnTiO3 VASP GGA/PBE+U 3.16 This study
ZnTiO3 VASP GGA/PBE 2.20 This study

TiO2 VASP HSE06 3.20 [62]
TiO2 VASP GGA/PBE 2.55 [58]
TiO2 VASP GGA/PBE+U 3.11 [58]
TiO2 Experimental 3.20 [53]
TiO2 CASTEP GGA/PBE 2.70 [53]
TiO2 CASTEP GGA/PBE+U 3.34 [53]
TiO2 ABINIT GGA/PBE 2.08 [64]
TiO2 ABINIT GW 3.71 [64]
TiO2 VASP GGA/PBE 2.31 This study
TiO2 VASP GGA/PBE+U 3.21 This study

The main character of the electronic structure of ZnTiO3 originates mainly from
the hybridization between the Ti-3d and O-2p states. The Zn-3d and O-2p hybridization
and the Ti-3d and O-2p hybridization as well as nonbonding O-2p states are observed
at the upper valence bands (VBs). The localized Zn-3d states indicate weak Zn-3d and
O-2p hybridization. The states at the lower conduction bands (CBs) are attributed to
antibonding states from Ti-3d and O-2p. These results agree with those reported by other
authors [42]. Similarly, the main character of the electronic structure of TiO2 originates
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from the hybridization between the Ti-3d and O-2p states. This hybridization, as well as
nonbonding O-2p states, is observed at the upper valence bands (VBs), while the states at
the lower conduction bands (CBs) are attributed to antibonding states from Ti-3d and O-2p.
In both structures, the lowest-energy states are due to the isolated Ti-3s, Ti-3p, and O-2s
states. These results also agree with those reported by other authors [5,54,65].

3.2. Adsorption of the MB Dye on the Oxide Models

Several experimental studies of MB removal in aqueous systems have shown that this
cationic dye can be easily adsorbed on the ZnTiO3 and TiO2 surfaces, due to electrostatic
attraction [49]. Therefore, the surface oxygen atoms of both oxides probably generate
negatively charged sites that easily attract positive regions of the MB molecule, favoring
molecular adsorption.

Our results indicated that the semi-perpendicular orientation of the MB molecule with
respect to both oxide surfaces is more favored. In fact, the MB molecule oriented parallel
to the surface shows a strong preference for the methyl group of the molecule, while the
aromatic ring bends slightly away from the surface due to electrostatic repulsion between
the N and S atoms from the aromatic ring and surface oxygen. This is consistent with several
studies reporting good adsorption results for dye molecules oriented perpendicular to the
adsorbent surface [57,66,67]. Greathouse et al. mentioned that at very high concentrations,
this dye forms aggregates that are adsorbed vertically to the surface [68]. Our results
suggested that this orientation of the MB molecule on the surface is caused by the balance
between electrostatic repulsion between adjacent ions and the strong hydrophobic MB–MB
and MB–surface interactions [69].

The MB molecule was adsorbed on the ZnTiO3 surface (101) with higher negative
energy (Eads = −2.92 eV) than on the TiO2 surface (101) (Eads = −0.12 eV), and the aver-
age adsorption distances (O–H) were 2.43 and 2.68 Å for ZnTiO3 and TiO2, respectively.
According to the optimized configurations, in both cases, the approach is from the two H
atoms of the methyl group of the MB molecule to an O atom of each surface. In agreement
with the literature, hydrogen bonding can increase the stability of the interaction of a dye
with the ZnTiO3 and TiO2 surfaces during the adsorption process [70,71]. The Bader charge
analysis in Table S1 indicates no significant electronic exchange between the MB molecule
and the oxides surface [72]. The results obtained in this theoretical study suggest that MB
adsorption is more stable (higher negative adsorption energy) on the ZnTiO3 surface than
on the TiO2 surface, which is consistent with previous experimental studies.

Pastore et al. suggested three typical coordination schemes: monodentate, bidentate
chelating, and bidentate bridging [57]. In our study, we found that the MB molecule is
adsorbed on the ZnTiO3 and TiO2 surfaces (101) in a bidentate chelating mode, which,
according to several authors, produces more stable adsorption with more exothermic ad-
sorption energy [70,73]. The shape of the dye molecules anchored to the oxide significantly
affects the molecular adsorption energy. Therefore, calculating the adsorption energy value
gives insight into the adherence strength and shape of molecule–surface bonding [66]. The
higher the adsorption energy, the higher the retention of the dye on the oxide surface, this
being a desirable condition to apply to subsequent photosensitive processes.

In the literature, not enough computational studies of MB adsorption on semiconduc-
tors were found; consequently, in Table 2, the results obtained in the present study are
compared with those results reported in the literature for the adsorption of other dyes on
ZnTiO3 (101) and TiO2 (101).

Table 2. Calculated adsorption energy of ZnTiO3 and TiO2 and other values reported in the literature.

Adsorbent Dye Software Used Basis Set/Functional Used
Adsorption

ReferenceseV kJ/mol

ZnTiO3 (101) TPA-1 CASTEP GGA/PBE −1.41 −136.39 [66]
ZnTiO3 (101) TPA-2 CASTEP GGA/PBE −1.63 −157.47 [66]
ZnTiO3 (101) TPA-3 CASTEP GGA/PBE −5.82 −561.33 [66]
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Table 2. Cont.

Adsorbent Dye Software Used Basis Set/Functional Used
Adsorption

ReferenceseV kJ/mol

ZnTiO3 (101) TPA-4 CASTEP GGA/PBE −2.37 −228.19 [66]
ZnTiO3 (101) (H) MB VASP GGA/PBE −1.31 −126.76 This study
ZnTiO3 (101) (SP) MB VASP GGA/PBE −2.92 −282.05 This study

TiO2 (101) R4-BT VASP GGA/PBE −1.40 −135.46 [58]
TiO2 (101) R4-F2BT VASP GGA/PBE −1.39 −134.50 [58]
TiO2 (101) R4-BO VASP GGA/PBE −1.39 −134.50 [58]
TiO2 (101) R6-Bz VASP GGA/PBE −1.40 −135.46 [58]
TiO2 (101) R6-BT VASP GGA/PBE −1.38 −133.53 [58]
TiO2 (101) R6-F2BT VASP GGA/PBE −1.37 −132.56 [58]
TiO2 (101) R6-B0 VASP GGA/PBE −1.37 −132.56 [58]
TiO2 (101) R6-Bz VASP GGA/PBE −1.38 −133.53 [58]

TiO2 (101) (SP) MB VASP GGA/PBE −0.12 −11.61 This study

Other research studies should analyze and apply these results to implement adsorptive
systems for dyes or similar molecules.

4. Materials and Methods

All Density Functional Theory (DFT) calculations were performed using the Viena
Ab initio Simulation Package (VASP), version 5.3.3 [15,74]. The Perdew–Burke–Ernzerhof
(PBE) exchange–correlation functional in the generalized gradient approximation (GGA)
proposed by Perdew et al. [75] was employed. The augmented plane wave (PAW) method
was used to describe the electron–ion interactions [15]. The cutoff energy to the plane
waves was set to 500 eV. The Kohn–Sham equations [76,77] were solved self-consistently
until the energy variation between cycles was less than 10−5 eV. The first Brillouin zone
was sampled using Monkhorst–Pack [78] k-point meshes to calculate the bulk properties of
ZnTiO3 and TiO2, in particular, 3 × 7 × 5 and 3 × 3 × 1, respectively. All atomic positions
were fully relaxed until the forces on each atom were below 0.01 eV/Å. The computational
parameters were selected seeking the best balance between computational cost and pre-
cision. The tested values were as follows: energy cutoff points = 450, 475, 500, and 515 eV;
force convergence criterion for ionic relaxation = 0.08, 0.04, 0.02, 0.01, and 0.005 eV/Å and
number of k-points corresponding to k-spacing in each axe = 0.35, 0.30, 0.25, 0.20, and
0.15. The parameters were optimized until the difference between the energy values of the
system was lower than 10−4 eV.

The Gaussian smearing method with σ = 0.10 eV was applied to band occupations in
order to improve total energy convergence [15]. A Hubbard U approximation term was
adopted to describe the strong on-site Coulomb repulsion in order to accurately explain
the electronic structures [62], which is not correctly described by the PBE functional [58].
Population analyses were estimated using Bader’s charge analysis code, which provided
important information on bonding behaviors from the atomic charge values [79–81]. All
calculations were non-spin polarized and all molecular models were created and visualized
using BioVia Material Studio, version 5.5.

To study MB adsorption, an optimized molecular structure was used [68]. The bulk of
both ZnTiO3 and TiO2 crystals was cleaved on the surface (101), since it is the most stable
surface according to the literature [54,57,62,66,82]. The slab model of ZnTiO3 (101) was a
supercell p(2 × 3) with three atomic layers, which includes 36 Zn atoms, 36 Ti atoms, and
108 O atoms. On the other hand, the TiO2 (101) surface model has seven atomic layers with
a p(3 × 3) structure of the original unit cell, which includes 168 Ti atoms and 336 O atoms.
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An appropriate vacuum thickness of each structure was chosen by calculating the
surface energy. For both ZnTiO3 and TiO2 surface models, a vacuum of 20 Å was added.
The surface energies (γs) were calculated using the following equation [83]:

γs =
(Eslab − n× Ebulk)

2A
(1)

where Eslab is the total energy of the slab material (eV), Ebulk is the total energy of the bulk
material (eV), n is the number of atoms contained in the slab, and A is the surface area (Å2).
The values for the surface energies (γs) of the ZnTiO3 and TiO2 structures with a vacuum
distance of 20 Å were 0.076 eV/Å2 (7.30 kJ/Å2) and 0.062 eV/Å2 (5.98 kJ/Å2), respectively.

Adsorption calculation was initiated with the MB molecule placed close to the sur-
face of each oxide in at least one of the following orientations, horizontal (H) and semi-
perpendicular (SP), with respect to the surface.

The adsorption energy (∆Eads) of the MB molecule on the surface of both ZnTiO3 and
TiO2 oxides was calculated using the following equation [84]:

∆Eads = EMB/oxide − Eoxide − EMB (2)

where EMB/oxide is the energy of the supersystem formed by the adsorbed molecule on
the surface (eV), Eoxide is the energy of the clean oxide (eV), and EMB is the energy of the
isolated molecule in vacuum (eV).

5. Conclusions

The aim of this comparative study was to use molecular simulation to address unre-
solved issues related to the adsorption mechanism of methylene blue on both ZnTiO3 and
TiO2. DFT calculations of MB adsorption on the surface (101) of both ZnTiO3 and TiO2
indicated that adsorption on ZnTiO3 was stronger than on TiO2. The semi-perpendicular
orientation was the most probable molecular approach to the oxide surfaces. Electrostatic
repulsion due to the proximity of adjacent S and N atoms when MB was in high concentra-
tion was overcome by the much stronger interactions between the methyl groups and the
surface oxygen atoms of ZnTiO3 and TiO2.

Finally, we computationally corroborated the feasibility of using ZnTiO3 as an MB
adsorbent material, as experimentally found. Theoretically, we forecast the appealing
prospect for this material according to the adsorption energy and the large bandgap
calculated by DFT, which is in addition to the experimental results that we reported in a
previous paper. Our study verifies that ZnTiO3 has better MB adsorption energy than TiO2
in the anatase phase, which is important to enhance a subsequent degradation process.
The large bandgap obtained by DFT calculations also shows that ZnTiO3 can potentially
be used as a photocatalyst, allowing for complete degradation of the dye after being
adsorbed. Therefore, considering only the band structure, ZnTiO3 fully meets the necessary
requirements to be a photocatalyst. As already mentioned, however, in addition to the
band structure, the adsorption capacity is also very important for photocatalytic materials.
In this way, ZnTiO3 constitutes an efficient alternative material for various technological
and environmental applications.

Supplementary Materials: The following are available online. Figure S1: Aromatic ring of MB bent
slightly on the ZnTiO3 surface (101); Figure S2: Optimization energies of ZnTiO3, TiO2 and MB;
Table S1: Coordinates of the optimized structures; Table S2: Bader’s charge analysis of the methylene
blue molecule.
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