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Abstract
Human mobility, contact patterns, and their interplay are key aspects of our social behavior that
shape the spread of infectious diseases across different regions. In the light of new evidence and
data sets about these two elements, epidemic models should be refined to incorporate both the
heterogeneity of human contacts and the complexity of mobility patterns. Here, we propose a
theoretical framework that allows accommodating these two aspects in the form of a set of
Markovian equations. We validate these equations with extensive mechanistic simulations and
derive analytically the epidemic threshold. The expression of this critical value allows us to
evaluate its dependence on the specific demographic distribution, the structure of mobility flows,
and the heterogeneity of contact patterns, thus shedding light on the microscopic mechanisms
responsible for the epidemic detriment driven by recurrent mobility patterns reported in the
literature.

1. Introduction

The proliferation and accessibility of large data sets describing the essential aspects of human behavior is
being crucial to reveal the influence that our social habits have on the development of epidemics as well as
providing useful insights to design non-pharmaceutical containment strategies. Human mobility is one of
the aspects of our social behavior determining the form and speed of the transmission of infectious diseases.
In this sense, the recent availability of data about the mobility patterns of individuals at different levels
[1–3], from global to urban, demands to revisit epidemic models, in particular those studying the
geographical spread of pathogens leveraging the mobility of hosts [4].

Data-driven models are developed to improve the spatio-temporal accuracy of predictions of real
epidemic outbreaks by using a large amount of real data as inputs [5–11]. However, agent-based and
mechanistic models based on large-scale stochastic Monte Carlo (MC) simulations have as a counterpart
the impossibility of performing analytical treatments that shed light on the role played by the different
aspects of our sociability in the transmission of communicable diseases. To fill the gap between accurate
epidemic forecasting systems and mathematical models, theoretical frameworks should be refined in order
to be able to incorporate as much social data as possible.

The most usual way to incorporate mobility patterns into epidemic models is the use of
metapopulations. In this case, individuals are considered to live in a set of subpopulations (or patches)
whereas flows of individuals happen among these patches. Within this framework, the spread of diseases is
characterized by local reactions inside each patch [12–16] that mimic the interactions between individuals
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giving rise to the transmission of the pathogen. This reaction process within each patch interplays with the
global diffusion of agents that captures the mobility patterns at work.

The first metapopulation frameworks were built by considering assumptions that simplify their
mathematical analysis while limiting their direct application in real situations. However, with the advent of
the XXI century and the massive use of online platforms, real data capturing individual flows between
different geographical areas were incorporated into metapopulation frameworks [17–20] in an attempt of
increasing their accuracy while preserving the ability to perform analytical predictions. Still, the first models
in this line assumed simple mobility patterns such as random diffusion [21, 22] or continuous models of
commuting flows [23–25], that allowed analytical studies about the influence of mobility on the epidemic
threshold [17].

The next step in the search for more reliable and accurate metapopulation models was to get rid of the
simplifying assumptions about human diffusion and find ways to take into account aspects such as the
recurrent nature [26–30] and high order memory of human displacements [31], the coexistence of different
mobility modes [32], or the correlation between the time-scales associated to human mobility and that of
infection dynamics [33]. These models, apart from yielding important insights about the role that human
behavior has on the unfolding of epidemic states, have turned to be useful tools to reproduce the real
prevalence distribution of endemic diseases [34] and the advance of real epidemic outbreaks [35, 36], thus
showing a versatile and hybrid facet as mathematical yet informative models.

The former refinements have focused on the way real human mobility patterns are incorporated into
metapopulation frameworks, but continue using simple mixing rules for the interaction of individuals
within each patch. These simplifying hypotheses include well mixing assumptions and explore scenarios
where the number of contacts inside each patch is homogeneous and usually determined by some
demographic aspects such as the density of the patch or its age distribution. However, human contact
patterns are known to be highly heterogeneous and this attribute plays a central role in the transmission of
some communicable diseases [37]. In fact, the analysis of the propagation of recent coronavirus such as
SARS-CoV-1 [38–40], MERS-CoV [41, 42] and SARS-CoV-2 [43–48], reveals that a small proportion of
cases were responsible for a large fraction of the infections. This empirical evidence supports the existence
of super-spreading events [49], an attribute of transmission chains that cannot be captured by models in
which the contacts of individuals, and hence their infectiousness, are assumed to be homogeneous.

There have been some attempts in the literature to account for the impact of individual diversity in
metapopulation modeling [35, 50]. However, they usually rely on the stratification of the population into
different age-groups [51], which are assumed to be homogeneous, and the introduction of mixing matrices
governing the interactions among them. Therefore, a general formalism able to accommodate
heterogeneous subpopulations with any arbitrary degree distribution is still missing in the literature. In this
paper, we aim at filling this gap and including the heterogeneity of social contact patterns in the body of a
metapopulation model, in particular that presented in reference [30] and used in subsequent works
[32, 34, 35].

The most important result found in these works was the detrimental effect of human daily recurrent
mobility for the emergence of epidemic outbreaks. Nonetheless, the mean-field assumption included within
each subpopulation in these formalisms precludes getting any microscopic explanation about the
mechanism triggering this phenomenon. The model presented here is therefore a step forward toward a
metapopulation formalism that includes concomitantly the demographic distribution of real populations,
the recurrent nature of human displacements, and the heterogeneity of social contacts and sheds light on
the unexpected phenomena arising from their interplay. In fact, the most important finding in this new
framework is that the detrimental effect of human daily recurrent mobility is recovered despite the fact that
the number of interactions does not depend on the number of agents that meet inside each patch. Thus,
individual interactions appear here as an intensive parameter, rather than an extensive one as in reference
[30], shedding light on the microscopic roots of the epidemic detriment phenomenon.

2. Metapopulation model

2.1. Coupling recurrent mobility and heterogeneous contacts
Let us start the construction of the metapopulation framework by describing the interaction rules that
govern the mixing of individuals across and within patches. We consider a metapopulation network with Ω

patches, each one of population ni (i = 1, . . . ,Ω), thus accumulating a total of N =
∑

i ni individuals. Each
individual is associated with a single residence (one of the patches) and can travel to another patch
according to some mobility rules. The flow of individuals from a patch i to another j is described by a
directed and weighted network of patches, in which the weight Wij is the number of individuals from i that
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Figure 1. Example of a metapopulation with two patches, both having the same average connectivity 〈k〉 = 5. The first is a
heterogeneous patch with resident individuals of connectivity 1 or 20, and the second is a homogeneous patch in which all
residents have the same connectivity 5.

commute to j daily. The matrix Wij is also called origin-destination (OD) matrix and allows us to define the
probability that, when an individual living in i decides to move, she or he goes to patch j as

Rij =
Wij∑Ω
l=1Wil

, (1)

where
∑Ω

l=1Wil = si is the total number of trips observed from patch i.
According to the framework presented in reference [30], mobility and interactions are iterated in

consecutive rounds of a process that involves three stages: mobility, interaction, and return (MIR). Namely,
first the agents with residence in a patch i decide to move with probability p (or they stay in i with
probability 1 − p). If they move, their destination j is chosen with probability Rij, given by equation (1).
Once all the agents in each patch have been assigned to their new locations (either their residence or a new
destination chosen according to the matrix R) the interaction on the assigned patch takes place with the rest
of agents in the same subpopulation. Finally, once the interaction stage has finished, agents are placed in the
original population, i.e. they come back to their corresponding residence.

Now we propose a modification to consider heterogeneous contacts inside each patch. In reference [30],
all individuals inside a patch interact with all others with the same probability thus following a
homogeneous mixing hypothesis. Here we propose a model in which each individual in a patch has a
different social degree or connectivity k as shown in figure 1. In this way, each patch i has n[k]

i individuals
with connectivity k, so that the population of patch i can be written as:

ni =
∑

k

n[k]
i =

∑
k

niPi(k), (2)

where Pi(k) is the probability that a randomly chosen individual living inside i has a connectivity k:

Pi(k) =
n[k]

i

ni
. (3)

In the following, we assume that individuals with social connectivity k will preserve this value when
traveling to another patch, i.e. we assume that sociability is an intrinsic individual attribute that does not
depend on their location. This later hypothesis captures the biological and behavioral aspect of hosts that
can turn them into super-spreaders, i.e. individuals that are highly efficient in transmitting the disease due
to a high viral shedding [52] or because they have a high contact rate due to a pronounced social behavior.
However, other causes that are inherently related to the location, such as the existence of high-risk scenarios
related to work or leisure, are not captured by the former assumption.

Under the former hypothesis about the invariance of the connectivity k under mobility and assuming
that those individuals with connectivity k move with probability pk, we can calculate the effective
population of a patch i, ñi, after the movement stage has been performed, as the sum of the effective
number of agents with connectivity k:

ñi =
∑

k

ñ[k]
i . (4)

In the latter equation, ñ[k]
i is calculated considering the number of individuals with connectivity k that travel

from any patch j to i:

ñ[k]
i =

∑
j

n[k]
j→i, (5)

3
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where
n[k]

j→i =
[
(1 − pk)δij + pkRji

]
njPj(k). (6)

Another quantity that can be evaluated is the effective connectivity distribution of a patch, P̃i(k), defined
as the probability of finding an individual of connectivity k in patch i after the mobility stage. This
probability is given by:

P̃i(k) =
ñ[k]

i

ñi
. (7)

From the effective connectivity distribution of a patch i we can measure the effective moments as:

〈̃kn〉i =
∑

k

knP̃i(k). (8)

2.2. Disease spreading dynamics
The coupling of interaction and mobility patterns of agents produces, for a given set of mobility
probabilities {pk}, a variation of the main structural attributes of the patches, as shown by the expressions
of the effective population, equations (4) and (5), and the effective connectivity distribution, equation (7).
These variations occur once the mobility step is performed and become crucial when the spreading process
(the interaction step of the MIR model) enters into play.

Here the interaction stage is incorporated as a susceptible–infected–susceptible (SIS) spreading
dynamics. To this aim, we denote the number of infected individuals residing in i that have connectivity k as
I[k]

i , implying that the total number of infected residents in i is Ii =
∑

k I[k]
i . Thus, the probability that an

agent with residence in patch i and connectivity k is infected is given by:

ρ[k]
i =

I[k]
i

n[k]
i

. (9)

The probabilities {ρ[k]
i } (with i = 1, . . . ,Ω and k = 1, . . . , kmax) constitute our dynamical variables. From

these variables we can compute the fraction of infected individuals with residence in patch i:

ρi =
∑

k

ρ[k]
i Pi(k), (10)

or the fraction of infected individuals in the whole metapopulation:

ρ =
1

N

∑
i

niρi. (11)

To derive the corresponding Markovian evolution equations of the probabilities {ρ[k]
i } corresponding to

the SIS dynamics we make use of the so-called heterogeneous mean-field theory (HMF) in the annealed
regime [53]. Thus, after the movement stage, each susceptible agent with connectivity k that is placed in
patch j connects randomly with k individuals in the same patch and, for each infected contact, the
susceptible agent will become infected and infectious with probability λ̄. In addition, those infected agents
at time t will recover and become susceptible again with probability μ̄. Following these simple rules, the
equations for the time evolution of the probabilities {ρ[k]

i } read:

ρ[k]
i (t + 1) = (1 − μ̄)ρ[k]

i (t) +
[

1 − ρ[k]
i

]
Π[k]

i (t), (12)

where Π[k]
i (t) is the probability that a healthy individual with connectivity k and residence in patch i

becomes infected at time t:

Π[k]
i (t) = (1 − pk)π[k]

i (t) + pk

Ω∑
j=1

Rijπ
[k]
j (t), (13)

where π[k]
i (t) is the probability that an individual of connectivity k placed in patch i becomes infected at

time t and reads:

π[k]
i (t) = 1 −

(
1 − λ̄

∑
k′

P̃i(k′|k)ρ̃[k′]
i (t)

)k

. (14)
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In the former expression, P̃i(k′|k) is the probability that an agent with connectivity k placed in patch i is
connected with another agent with k′ placed in the same patch. In addition, ρ̃[k]

i is the effective fraction of
infected individuals with connectivity k placed in patch i:

ρ̃[k]
i =

Ĩ[k]
i

ñ[k]
i

=
1

ñ[k]
i

∑
j

I[k]
j→i =

1

ñ[k]
i

∑
j

n[k]
j→iρ

[k]
j (t), (15)

where the denominator is given by (5) and the numerator is the number of infected individuals that are in
patch i.

In the following we will consider that the contact networks created at each interaction step are
completely uncorrelated. This way, the probability P̃i(k′|k) can be written in terms of the effective
connectivity distribution of patch i as:

P̃i(k′|k) =
k′P̃i(k′)

〈̃k〉i

=
k′ñ[k′]

i∑
k′′

k′′ñ[k′′]
i

, (16)

which is the probability of selecting an edge from an individual with connectivity k′ placed in patch i,
independent of k.

3. Metapopulations with heterogeneous subpopulations

The derived Markovian equations are general for a set of Ω patches, their population ni, degree distribution
Pi(k), and OD matrix elements Wij, (i, j = 1, . . . ,Ω). We now study the impact of heterogeneous
distributions of individual contacts by using synthetic metapopulations to validate these equations by
comparing the results obtained by the iteration of equations (12)–(14) with the results of mechanistic MC
simulations in which we keep track of the dynamics of each agent.

3.1. Synthetic metapopulation
Although the formalism presented can accommodate any arbitrary mobility network and set of connectivity
distributions, we restrict our analysis, as in reference [30], to synthetic star-like metapopulation networks.
Our choice is rooted in their versatility for, despite being simplistic structures, star-like metapopulations
exhibit a wide variety of regimes caused by the non-uniform distribution of the population across patches
and the asymmetry in the mobility patterns connecting them. This kind of synthetic metapopulation,
shown in figure 2, is composed by a central patch (the hub) connected to κ patches (the leaves). The hub h
has a population of nh individuals, while each leaf l has a fraction α ∈ [0, 1] of the hub population,
nl = αnh. The mobility toward leaves of individuals with residence in the hub is uniform, given by:

Rhl =
1

κ
, (17)

while the mobility of those residents in the leaves is controlled by a parameter δ. This way, a resident in a
leave l that decides to move will go to the hub with probability δ,

Rlh = δ, (18)

or move to the next (counterclockwise direction) leave with probability

Rl,l+1 = 1 − δ. (19)

Note that the choice of the direction of movements among leaves is not relevant as long as it is uniform
across all the leaves, for they are statistically equivalent. Up to this point, the design of the metapopulation
is identical to that presented in reference [30], being characterized by two parameters α and δ. However, the
synthetic metapopulations used here get rid of the assumption of homogeneous (all-to-all) contact patterns
in the patches. To this aim, and keeping the symmetry of the original star-like metapopulations, we consider
that the residents of the central patch (the hub) have a contact distribution Ph(k) that is different from that
of the residents in the leaves, Pl(k). A particular case of this setting used along the manuscript is to consider
that the connectivity distribution of the individuals belonging to the hub is bimodal:

Ph(k) = ηδk1 + (1 − η)δkkmax , (20)

5
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Figure 2. Example of a star-like metapopulation network with κ+ 1 patches. In this example, the leaves and the hub have the
same number of individuals, nl = αnh, with α = 1, while the hub is a heterogeneous patch with resident individuals of
connectivity 1 with probability η, or kmax = 20 with complementary probability 1 − η, and each leaf is a homogeneous patch
with residents of same connectivity 〈k〉l = β〈k〉h, with β = 1 and 〈k〉h = 5. The flow from hub to a leaf happens with probability
Rhl = κ−1, from leaves to hub with Rlh = δ, and between adjacent leaves with Rl,l+1 = 1 − δ, in counterclockwise direction.

i.e. agents in the hub have connectivity 1 with probability η and connectivity kmax with probability (1 − η).
This way, the nth moment of the hub’s connectivity distribution is:

〈kn〉h =
∑

k

knPh(k) = η + (1 − η)kn
max. (21)

In their turn, those individuals belonging to leaves have the same number of contacts (〈k〉l):

Pl(k) = δk〈k〉l
. (22)

Note that the values of η and kmax are correlated if we impose the additional constraint that the hub has
an average connectivity 〈k〉h fixed. In this case, given a value kmax, the value of η that allows it is given by:

η =
kmax − 〈k〉h

kmax − 1
. (23)

In this simple configuration, the heterogeneous nature of the contacts is two-fold. From a microscopic
point of view, the bimodal distribution existing inside the central node induces local heterogeneities in the
contacts made by residents there, which are controlled by parameters η and kmax. In its turn, another global
connectivity heterogeneity emerges driven by the asymmetry existing between the connectivity of residents
of the hub and the leaves. In particular, we will assume throughout the manuscript that 〈k〉l = β〈k〉h, with
β ∈ [0, 1]. According to this formulation, the star-like metapopulation shown in figure 2 has 〈k〉h = 5,
kmax = 20, and α = β = 1.

3.2. MC simulations
To check the validity of the Markovian equations, we define an MC algorithm for the stochastic simulation
of the SIS model on top of a metapopulation with heterogeneous contact patterns. As in the case of
Markovian equations, equations (12)–(14), the proposed process is also a discrete-time dynamics. At each
time step t, each individual is tested to move with probability pk (being k the number of contacts assigned to
this individual). If accepted, it moves to a patch j with probability Rij. Then, each susceptible individual with
connectivity k chooses randomly k individuals in the patch they currently occupy and are infected with
probability λ̄ if the contacted individual is infectious. Once all the potential infections events have been
simulated, healing happens with probability μ̄ for each infected individual at time t − 1. In this sense, we
perform a synchronous update of the state of the entire metapopulation.

First, a fraction ρini of the population is randomly infected as the initial condition and the simulation
procedure in a give time step t can be summarized as follows:

6
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(a) For each patch i, each individual with connectivity k resident in i is tested to move with probability pk.
If she or he moves, a patch j is chosen proportionally to Rij.

(b) Each susceptible individual with connectivity k selects k contacts at random in patch i. For each
attempt, it can be infected with probability:

λ̄

∑
k

kĨ[k]
i∑

k
kñ[k]

i

, (24)

or remains susceptible with complementary probability. These attempts stop when the individual
becomes infected and reproduce the annealed regime proposed in section 2, since all edges are available
for each individual in the same time step.

(c) Each individual with infected state at time step t − 1 heals in time step t with probability μ̄.

(d) Finally, all individuals return to their residences and time step t + 1 starts in (a).

To avoid the absorbing state, we infect a small fraction ρpump = 2 × 10−4 of individuals at random when
this state is reached [54, 55]. This keeps the dynamics always active and the equilibrium state is defined after
comparing averages over sequential time windows of size T = 100, and accepting if the absolute difference
is smaller than ρcvg = 10−6.

3.3. Comparison between MC and Markovian equations
The comparisons between MC and Markovian equations are performed in star-like metapopulations with
κ = 10 and α = 1, i.e. in which all patches (hubs and leaves) contain the same number of individuals
(nl = nh = 104 individuals per patch), to focus on the effect of contact heterogeneity. Furthermore, for the
same reason, we focus on the case that mobility is independent of the connectivity of individuals, pk = p∀k.

First we neglect local heterogeneities and consider that contact heterogeneity only happens between
patches. In mathematical terms, this assumption implies that the population of the hub has an
homogeneous contact distribution (η = 0) although its mean connectivity 〈k〉h = kmax is different from that
of the leaves 〈k〉l = β〈k〉h, with β 	= 1. In particular, in figure 3 we plot the mean epidemic prevalence ρ∗ in
the equilibrium state as a function of the infection probability λ̄ scaled by the epidemic threshold in the
case of null mobility λ̄0 ≡ λ̄c(p = 0). To derive the latter quantity, we realize that the absence of flows
among the patches precludes the interaction among the residents in different areas, so the epidemic
threshold corresponds to the well-known expression provided by HMF equations [53] for the most
vulnerable patch. Therefore,

λ̄0 = μ̄ min

{
〈k〉h

〈k2〉h
,
〈k〉l

〈k2〉l

}
. (25)

We consider that 〈k〉h = 100 while leaves have 〈k〉l = 10 (β = 0.1) and explore two different mobility
patterns. In particular, in (a) we set δ = 0.1 so that most of the residents of leaves move circularly, i.e.
passing from one leave to another and avoiding the hub. In this case, the so-called epidemic detriment by
mobility shows up so that the epidemic state is delayed as the mobility p increases, with the exception of
very large values of p. However, note that, at variance with reference [30], here both the hubs and the leaves
are equally populated; we will explore the roots of this detriment below. Second, in panel (b), we set δ = 0.9
so that the situation is the opposite and the residents of leaves tend to visit the hub. In this case, the
epidemic detriment is also evident although this behavior is restricted to values p < 0.5, while for p > 0.5
the increase of mobility produces a progressive decrease of the epidemic threshold. In both cases, the
agreement with MC simulations is almost perfect.

Next we analyze a star-like metapopulation that generalizes the contact heterogeneity of the first one. In
this case the hub is very heterogeneous, containing a power-law distribution, Ph(k) ∼ k−γ̄h with γ̄h = 2.3,
while leaves have also a power-law distribution Pl(k) ∼ k−γ̄l with γ̄ l = 3.5, both with k ∈ [3, 100], the hub
being the most heterogeneous one. The cases explored in figure 4 are again (a) δ = 0.1 and (b) δ = 0.9,
showing similar qualitative behaviors with the mobility, namely the emergence of epidemic detriment, to
those found in figure 3. Quantitatively, it is worth stressing that the existence of strong local heterogeneities
within both hub and leaves in absence of mobility will lead to an activation described by the HMF theory,
in which the epidemic prevalence approaches zero close to the epidemic threshold as ρ ∼ (λ̄− λ̄c)β̄ where
β̄ > 1 if the degree exponent is smaller than four [56], and valid for large population sizes (thermodynamic
limit). The convexity of the prevalence curve approaching the transition in the finite-size population of the
investigated patches is reminiscent of this behavior. Again, the agreement with MC is good, except around
the epidemic threshold due to difficulties in avoiding the absorbing state.

7
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Figure 3. Equilibrium regimes of the Markovian equations (lines) and MC simulations (symbols) for a star-like metapopulation
with nh = nl = 104 and κ = 10. The hub contains individuals with connectivity 〈k〉h = 100 (η = 0 and kmax = 100), and the
leaves 〈k〉l = 10 (β = 0.1). The mobility patterns are given by (a) δ = 0.1 and (b) 0.9. A fraction ρpump = 2 × 10−4 and ten
stochastic samples were used for the MC simulations.

Figure 4. Equilibrium regimes of the Markovian equations (lines) and MC simulations (points) for nh = nl = 104 and κ = 10.
The patches contain individuals with power-law connectivity distributions Pi(k) ∼ k−γ̄i , k ∈ [3, 100], with γ̄h = 2.3 for the hubs
and γ̄ l = 3.5 for the leaves. The mobility pattern is given by (a) δ = 0.1 and (b) 0.9. A fraction ρpump = 2 × 10−4 and ten
stochastic samples were used for the MC simulations.

4. Epidemic threshold

Figures 3 and 4 reveal that the epidemic detriment emerges even when dealing with uniformly distributed
populations, contrarily with reference [30], in which increasing mobility in homogeneous populations
favors epidemic spreading by reducing the epidemic threshold, λ̄c, here defined as as the minimum
infectivity per contact, λ̄, such that an epidemic state can be stable. Therefore, the emergence of epidemic
detriment here should be rooted in the interplay among contact heterogeneities and human mobility. In
this section, we aim at deriving an analytical expression of the epidemic threshold, λ̄c for general
configurations, to shed light on the mechanisms giving rise to the behavior shown above.

Let us assume that the dynamics has reached its steady state, so that ρ[k]
i (t + 1) = ρ[k]

i (t) = ρ∗i
[k]. Under

this assumption, equation (12) reads:

μ̄ρ∗i
[k] =

[
1 − ρ∗i

[k]
]
Π∗

i
[k] (26)

with

Π∗
i

[k] = (1 − pk)π∗
i

[k] + pk

Ω∑
j=1

Rijπ
∗
j

[k] . (27)

Furthermore, for λ̄ values close to the epidemic threshold, the fraction of infected individuals is negligible,
which means that ρ∗i

[k] = ε̄ik � 1 ∀ (i, k). This fact allows us to linearize the equations characterizing the
steady state of the dynamics by neglecting all the terms O(ε̄2). In particular, the probability that an

8
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individual with connectivity k and placed in i contracts the disease, π∗
i

[k], can be approximated by

π∗
i

[k] = 1 −
(

1 − λ̄
∑

k′
P̃i(k′|k)ρ̃i

∗[k′]

)k

 λ̄k
∑

k′
P̃i(k′|k)ρ̃i

∗[k′] , (28)

where we have used O(ρ̃) = O(ε̄) as shown by equation (15). In particular, plugging (15) and (16) into the
last expression leads to:

π∗
i

[k] =
λ̄k

Qi

∑
k′

k′
∑

j

[(
1 − pk′

)
δij + pk′Rji

]
njPj(k′)ε̄jk′ , (29)

where
Qi ≡

∑
k

k
∑

j

[
(1 − pk)δij + pkRji

]
njPj(k) (30)

is the effective number of edges in patch i. Note that
∑

i Qi =
∑

k

∑
j kPj(k)nj is the total number of edges

in the system, a conserved quantity. After introducing (29) and some algebra, equation (27) transforms
into:

Π∗
i

[k] = λ̄
∑

j

∑
k′

M̄jk′

ik ε̄jk′ , (31)

where

M̄jk′

ik = kk′Pj(k′)

[
(1 − pk)(1 − pk′)

δij

Qi
+ (1 − pk)pk′

Rji

Qi

+ pk(1 − pk′)
Rij

Qj
+ pkpk′

∑
l

RilRjl

Ql

]
nj. (32)

Finally, if we introduce these values into equation (26) and retain only linear terms in ε̄, we arrive to the
following expression

μ̄ε̄ik = λ̄
∑

j

∑
k′

M̄jk′

ik ε̄jk′ , (33)

that defines an eigenvalue problem. According to its definition, the epidemic threshold is thus given by:

λ̄c =
μ̄

Λmax(M̄)
. (34)

The elements of matrix M̄ given by (32) represent four types of interactions in the metapopulation. Namely,

the element M̄jk′

ik represents the probability that a resident of patch i with connectivity k is in contact with
another individual of patch j and connectivity k′. The first term accounts for interactions of residents of the
patch, that do not move. In second term, an individual of i stays and interacts with a traveler from patch j in
patch i, that arrived with probability pk′Rji. A similar event happens in the third term, in which an
individual of i travels to patch j and interact there with a resident of j with probability pkRij. Finally, in the
forth term, both individuals of patches i and j travel to a patch l, arriving there with probability pkpk′RilRjl.
In computational terms, each row or column identifies individuals from one degree class living inside a
patch. Therefore, the dimension of the matrix corresponds with the sum of the different degree classes
observed within each patch.

4.1. Homogeneous mobility across degree classes
Equation (34) computes the exact expression of the epidemic threshold in presence of heterogeneous
contact patterns. However, its computation involves solving the spectrum of a matrix whose dimension is
determined by the number of connectivity classes and patches in the metapopulation. In particular, in
presence of highly heterogeneous populations with fine spatial resolution, this problem can be
computationally very hard due to a large number of elements of the critical matrix. For this reason, in what
follows, we assume that mobility is independent of the connectivity so that pk = p, which will considerably
reduce the complexity of the problem as proved below.

Before going ahead, it is convenient to make the transformation ε̄ik �→ kεik in equation (33). Note that
this represents a similarity transformation which does not alter the spectrum of the matrix. After doing
such transformation, equation (33) turns into

μ̄εik = λ̄
∑

j

∑
k′

Mjk′

ik εjk′ , (35)

9
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Figure 5. Dependence of the epidemic threshold on the mobility parameter p. All patches have the same population (α = 1),
where the hub has agents with a bimodal connectivity distribution with k = 1 or kmax, fixing 〈k〉h = 5, and the leaves have agents
with connectivity 〈k〉l = 5 (β = 1). (a) Comparison of the theoretical epidemic threshold obtained using equation (40) (solid
line), scaled by its value for p = 0, and the steady values of the prevalence ρ obtained from equations (12)–(14) for
(kmax, δ) = (50, 0.4). (b) Relative epidemic threshold for different configurations (kmax, δ), shown in the legends, with solid and
dashed lines for kmax = 50 and 100, respectively.

where the elements of the new matrix M read as

Mjk′

ik = k′2Pj(k′)

[
(1 − pk)(1 − pk′)

δij

Qi
+ (1 − pk)pk′

Rji

Qi

+ pk(1 − pk′)
Rij

Qj
+ pkpk′

∑
l

RilRjl

Ql

]
nj. (36)

If pk = p, equation (35) becomes independent of k, which allows a dimensionality reduction of the
matrix. In particular, equation (35) reads:

μ̄εi = λ̄
∑

j

Mijεj, (37)

and the elements of the reduced matrix M are given by:

Mij = 〈k2〉j

[
(1 − p)2 δij

Qi
+ p(1 − p)

(
Rji

Qi
+

Rij

Qj

)
+ p2

∑
l

RilRjl

Ql

]
nj, (38)

where the effective number of edges Qi is now expressed as

Qi =
∑

j

〈k〉j

[
(1 − p)δij + pRji

]
nj. (39)

Once matrix M is constructed the epidemic threshold is computed as

λ̄c =
μ̄

Λmax(M)
. (40)

To test the accuracy of the former expression for the epidemic threshold, we compare its value computed
according to equation (40) with the heat map of the steady state of the dynamics obtained from the
iteration of equations (12)–(14). Figure 5(a) reveals that the theoretical prediction of the epidemic
threshold by equation (40) is very accurate and captures the dependence of the epidemic threshold on the
mobility p. This threshold increases while promoting mobility until it reaches a maximum at p = p∗ since
the infection is gradually reduced in the hub as p increases, and the activation is then triggered in the leaves
since hub’s residents spend longer times there.

For the sake of completeness, in appendix B, we analyze the case p = 0 for equation (40) retrieving, as
expected, the expression for the epidemic threshold provided by HMF equations on contact networks.
Moreover, to quantify the effects of promoting mobility among disconnected patches, we perform a
perturbative approach to the latter threshold which holds for small p values in appendix C. Interestingly, at
variance with the perturbative analysis carried out for (non-structured) well mixed metapopulations in
reference [30], here the linear correction of the epidemic threshold strongly depends on the topological
properties of the metapopulation.

10
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Figure 6. Heat maps of the relative magnitude of the peak of the epidemic threshold λ̄c(p∗)/λ̄0 as a function of α, β, and γ, with
〈k〉h = 5. In (a), all patches have the same average connectivity, with β = 1 while the local heterogeneity of the hub is modulated
by γ. Dashed lines correspond to the values of γ for kmax = 100, 50, and 20, from left to right. The plot in (b) considers a fixed
value of γ ≈ 0.0617, corresponding to kmax = 100 when β = 1, tuning the connectivity of the leaves with β. The population
asymmetry is modulated by α for all cases.

4.2. Disentangling the roots of the epidemic detriment
In what follows, to shed light on the nature of the epidemic detriment, we aim at quantifying the impact of
the different components of the formalism, namely the underlying metapopulation structure and the
contact heterogeneities existing among its population, on the relative magnitude λ̄c(p∗)/λ̄0. To simplify this
analysis, we will focus on the case of mobility independent of k, pk = p, and consider the configuration
defined in section 3.1, in which the hub has individuals with connectivity either 1 or kmax, with fixed
average connectivity 〈k〉h, and the ones of the leaves have the same connectivity 〈k〉l = β〈k〉h. For the sake
of clarity, let us also express 〈k2〉l = γ〈k2〉h. Note that in this configuration the values of η and kmax are
correlated by equation (23), while γ is also correlated with β and kmax via

γ =
β2〈k〉2

h

〈k〉h (kmax + 1) − kmax
. (41)

First, we fix α = β = 1, so that nl = nh and 〈k〉h = 〈k〉l, to study the effects of varying either the local
heterogeneity existing in the hub by tuning kmax or the flows from leaves to the hub with δ in figure 5(b).
Fixing kmax = 50 and changing δ, it becomes clear that the increase of δ leads to a decrease of p∗ as a
consequence of the higher mixing among individuals from the central node and the leaves, but does not
change the relative magnitude λ̄c(p∗)/λ̄0.

The former beneficial effect is rooted in the homogenization of the connectivity distribution driven by
the mixing among individuals from the hub and the leaves. Interestingly, the position of the peak p∗

remains unaltered when keeping δ constant. Moreover, for small values of p, the behavior does not depend
on the local heterogeneities of the patches, as shown by a perturbative analysis in appendix C.
Quantitatively, it becomes clear that increasing the degree heterogeneity in the central node boosts the
beneficial effect of the mobility, since the homogenization effect gains more relevance due to the higher
vulnerability of the central node. Mathematically, the invariance of p∗, when introducing local contact
heterogeneities without varying the mobility patterns, implies that the spatial distribution of cases close to
the epidemic threshold—controlled by the components of the eigenvector of matrix M—is ruled by the
structure of the underlying mobility network. We also observe that the value of the epidemic threshold at
the peak p∗ is independent of the mobility network but is instead determined by the local heterogeneities,
the difference in mixing of the subpopulations.

Finally, we extend our analysis to cover populations distributed heterogeneously across the
metapopulation. In particular, we are interested in determining how the population asymmetry α and the
local connectivity heterogeneity η shape the relative magnitude of the peak of the epidemic threshold. To
this aim, we represent λ̄c(α,β, γ; p∗)/λ̄0(β, γ) in figure 6, for nl = αnh, 〈k〉l = β〈k〉h, and 〈k2〉l = γ〈k2〉h, in
which γ is given by equation (41) for the constraints imposed in section 3.1. We can observe that, as in
figure 5(b), increasing the local heterogeneity of the hub (lowering γ) increases the beneficial effect of the
population mixing, as shown in figure 6(a). Interestingly, if we fix γ and study the dependence of
λ̄c(α,β, γ; p∗)/λ̄0(β, γ) with α and β, as shown in figure 6(b), we observe that the detriment effect becomes
stronger for larger values of β since kmax increases so to keep γ constant. In the opposite direction, when
reducing the population of the periphery nodes, i.e. decreasing α, agents in the leaves are not able to
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substantially modify the connectivity distribution of residents in the hub, thus hindering the detriment
effect in all investigated cases.

5. Conclusions

Driven by the advance of data mining techniques in mobility and social patterns [1, 57, 58], epidemic
models are continuously refined to bridge the gap existing between their theoretical predictions and the
outcomes of real epidemic scenarios. In particular, within the very diverse realm of epidemic models, the
proliferation of data sets capturing human movements across fine spatial scales have prompted the
evolution of metapopulation frameworks, which constitute the usual approach to study the interplay
between human mobility and disease spreading. In this sense, the first theoretical frameworks assuming the
population to move as random walkers across synthetic metapopulations [17] have given rise to models
incorporating the recurrent nature of human mobility [28, 30, 59, 60], the socio-economic facets of human
movements [32, 61] or high-order mobility patterns [31].

While most of the advances previously described have been focused on capturing the mobility flows
more accurately, less attention has been paid to improve the contact patterns within each subpopulation.
With few exceptions, such as the model recently proposed in [62] incorporating the time varying nature of
social contacts, human interactions are usually modeled using well-mixing hypothesis that do not capture
the heterogeneous nature of human interactions and the role that this social heterogeneity has on the
so-called super-spreading events.

In this work, we tackle this challenge and adapt the metapopulation model presented in reference [30] to
account for the heterogeneity in the number of contacts made by individuals. We describe a complete set of
Markovian equations for a discrete-time SIS dynamics on subpopulations with recurrent mobility patterns.
These equations characterize the spatio-temporal evolution of the number of infected individuals across the
system and show a good agreement with extensive agent-based simulation results. Computationally,
iterating the equations of our formalism is orders of magnitude faster than performing the simulations
because the latter should account for each microscopic stochastic process occurring in the population at
each time step. Apart from the computational advantages, our formalism allows for deriving analytical
results on the interplay between epidemics, mobility, and the structure of contacts within the
metapopulation. Specifically, the linearization of these equations yields an accurate expression for the
epidemic threshold, which is a crucial indicator for the design of interventions aimed at mitigating
emerging outbreaks.

Our most important finding here is the emergence of the epidemic detriment when enhancing mobility,
despite the fact that individuals preserve their number of interactions independently of the visited locations.
This result cannot be explained following the macroscopic arguments proposed in reference [30] and shed
light on the microscopic nature of the epidemic detriment phenomenon. In particular, it becomes clear that
this phenomenon is inherent to the variation of the contact structure of the population driven by
redistribution of its individuals. Specifically, close to the epidemic threshold, the outbreak is mainly
sustained by super-spreaders and the ties existing among them, which are weakened due to the
homogenization of the underlying connectivity distributions caused by human mobility. Interestingly, the
epidemic detriment observed in critical regimes is reversed in the super-critical regimes, where mobility
increases epidemic prevalence, for it increases the average number of potentially infectious contacts made
by scarcely connected individuals.

The formalism here presented constitutes a step forward to account for the interplay between contact
and flow structures and thus present several limitations. First of all, we assume that the number of
interactions of each individual is constant and depends on the features of her residence patch, regardless of
the place to which they move. Although this assumption can be interpreted as the preservation of the
sociability of individuals, it prevents us from accounting for super-spreading events [46] associated to
events or particular gatherings in which social connectivity is punctually amplified. In addition, as
remarked in the former paragraph, the results here obtained rely on assuming uncorrelated connectivity
distributions within each patch. In this context, the effect of degree–degree correlations inside the patches
deserves to be investigated; for example, one could expect the epidemic detriment to lose relevance in
assortative populations, where ties connecting super-spreaders are strengthened and less likely to be
influenced by the mobility. Finally, although we have explored the physics of the interplay between contact
heterogeneity and recurrent mobility with simple synthetic metapopulation networks, the model represents
a general framework that can accommodate any arbitrary set of degree distributions within a population
and any mobility network structure. In this sense, when data is available, the model can be investigated
using a data-driven approach in the sense that one can easily include real data of demographics, mobility,
and contact patterns to describe more realistic situations.
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Appendix A. Exact evaluation of the epidemic threshold for a star-like
metapopulation

In this case, we have to evaluate seven different terms:

• Mhh: contact of two individuals residing in the hub;

• Mlh: contact of one resident from a leaf with another from the hub;

• Mhl: contact of one resident from the hub with another from a leaf;

• Mll: contact of two individuals residing in the same leaf;

• Ml,l+1: contact of one resident from a leaf with another from its adjacent leaf;

• Ml,l−1: contact of one resident from the adjacent leaf with one from the other leaf;

• Mln: contact of two residents from different and not adjacent leaves;

The mobility matrix elements Rij are expressed in. Applying these expressions in (38), we have

Mhh = 〈k2〉h

[
(1 − p)2 1

Qh
+

p2

κ

1

Ql

]
nh, (1.1a)

Mlh = 〈k2〉h

[
(1 − p)p

(
1

κ

1

Ql
+ δ

1

Qh

)
+ p2 (1 − δ)

κ

1

Ql

]
nh, (1.1b)

Mhl = 〈k2〉l

[
(1 − p)p

(
δ

1

Qh
+

1

κ

1

Ql

)
+ p2 (1 − δ)

κ

1

Ql

]
nl, (1.1c)

Mll = 〈k2〉l

[
(1 − p)2 1

Ql
+ p2 (1 − δ)2

Ql
+ p2 δ

2

Qh

]
nl, (1.1d)

Ml,l+1 = 〈k2〉l

[
(1 − p)p

(1 − δ)

Ql
+ p2 δ

2

Qh

]
nl, (1.1e)

Ml,l−1 = 〈k2〉l

[
(1 − p)p

(1 − δ)

Ql
+ p2 δ

2

Qh

]
nl, (1.1f)

Mln = 〈k2〉l

(
p2 δ

2

Qh

)
nl. (1.1g)

Again, by evaluating equation (37), we have, for the hub,

μ̄εh = λ̄
∑

j

Mhjεj = λ̄Mhhεh + κλ̄Mhlεl, (1.2)
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while for a leaf we have

μ̄εl = λ̄
∑

j

Mljεj = λ̄Mlhεh + λ̄Mllεl

+ λ̄Ml,l+1εl + λ̄Ml,l−1εl + λ̄(κ− 3)Mlnεl, (1.3)

in which the factor three in the last term is since there are κ− 3 other leafs not directly connected to a
single leaf (Rln = 0). The statistical equivalence of the leaves allows us to recast the computation of the
epidemic threshold in a eigenvalue problem of a 2 × 2 matrix

M =

(
Mhh κMhl

Mlh Mll + Ml,l+1 + Ml,l−1 + (κ− 3)Mln,

)
. (1.4)

The leading eigenvalue will be given by Λmax =
Tr M+

√
(Tr M)2−4 det M

2 , that was solved using SymPy [63] to
get the results shown in the main text.

Appendix B. Epidemic threshold in the static case

To check the consistency of these equations, let us consider the static case in which all individuals stay in
their patches and do not move: pk = 0 ∀k. So, equation (38) becomes

Mij

∣∣
pk=0

= 〈k2〉j
δij

Qi|pk=0

nj,

where Qi|pk=0 = ni〈k〉i, that after being used in (37) results in μ̄εi = λ̄ 〈k2〉i
〈k〉i

εi. This case consists of isolated
subpopulations in an annealed regime in which the epidemic threshold will be given by the first
subpopulation in the active state, if its population is not so small compared to other patches. Indeed, the
usual epidemic threshold known in the HMF theory is obtained,

λ̄c = μ̄min
i

{
〈k〉i

〈k2〉i

}
. (2.1)

Therefore, in the static case the epidemic threshold of the metapopulation corresponds to the individual
epidemic threshold of the most vulnerable patch.

Appendix C. Perturbative analysis of the epidemic threshold

We proceed by making a perturbative analysis of the eigenvalues of the matrix M up to first order on p to
complement the discussions of the main text. First, it is convenient to rewrite equation (38) to split the
terms with different order in p:

Mij = 〈k2〉j

{
δij

Qi
+ p

[
Rji

Qi
+

Rij

Qj
− 2

δij

Qi

]
+ p2

[
δij

Qi
− Rji

Qi
− Rij

Qj
+
∑

l

RilRjl

Ql

]}
nj. (3.1)

Since Qi is also a function of p, we must perform a Taylor expansion around p = 0, knowing that
Qi|p=0 = ni〈k〉i. The first derivative of Qi is

dQi

dp

∣∣∣∣
p=0

=
∑

j

〈k〉j

(
Rji − δij

)
nj.

Let us define
ri ≡

∑
j

(
−Rji + δij

)
nj〈k〉j,

so that
d

dp

(
1

Qi

)∣∣∣∣
p=0

=
ri(

ni〈k〉i

)2 .
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Figure C1. Normalized leading eigenvalue of matrix M as a function of the mobility for different values of the number of leaves
κ and the agents flow from leaves to the hub governed by δ, with the same number of individuals (α = 1). Solid lines show the
exact values whereas dotted lines corresponds to the linear correction estimated by the perturbative approach via equation (3.6).
We fix the number of leaves κ and modify δ (color code) in (a) and present the complementary analysis in (b).

Next, keeping only terms up to order 1, we have

1

Qi
=

1

ni〈k〉i
+ p

ri(
ni〈k〉i

)2 +O(p2).

Substituting the last expression in (3.1) we get, after some algebra,

Mij = M̃(0)
ij + pM̃(1)

ij +O(p2), (3.2)

where

M̃(0)
ij = δij

〈k2〉i

〈k〉i
, (3.3a)

M̃(1)
ij =

[
Rij

nj〈k〉j
+

Rji

ni〈k〉i
+

δij

ni〈k〉i

(
ri

ni〈k〉i
− 2

)]
nj〈k2〉j. (3.3b)

From the static case, we know that there are Ω unperturbed eigenvalues Λ(0)
i = 〈k2〉i/〈k〉i, for p = 0,

with normalized eigenvectors εi =
{
εj

}
and εj = δij; see equation (2.1). Assuming that the eigenvalues are

not degenerate, the new eigenvalues will be given by [64]

Λi ≈ Λ(0)
i + pΛ(1)

i , (3.4)

where

Λ(0)
i =

〈k2〉i

〈k〉i
, (3.5a)

Λ(1)
i = εiM̃

(1)εi. (3.5b)

Substituting equation (3.3b) in (3.5b), after some algebra we get the first correction to the eigenvalue,

Λ(1)
i

Λ(0)
i

= Rii − 1 −
∑
j	=i

Rji
nj〈k〉j

ni〈k〉i
. (3.6)

Interestingly, unlike the original MIR model, the first order correction depends on the underlying
topology. To check the accuracy of this correction, we represent in figure C1 the leading eigenvalues of the
matrix M along with the linear correction provided by the perturbative analysis, finding a remarkable
agreement in the low mobility regime p � 1.
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Jesús Gómez-Gardeñes https://orcid.org/0000-0001-5204-1937

References

[1] Guimera R, Mossa S, Turtschi A and Amaral L A N 2005 Proc. Natl Acad. Sci. 102 7794–9
[2] González M C, Hidalgo C A and Barabási A-L 2008 Nature 453 779
[3] Barbosa H et al 2018 Phys. Rep. 734 1–74
[4] Ball F, Britton T, House T, Isham V, Mollison D, Pellis L and Scalia Tomba G 2015 Epidemics 10 63–7
[5] Eubank S, Guclu H, Anil Kumar V S, Marathe M V, Srinivasan A, Toroczkai Z and Wang N 2004 Nature 429 180
[6] Balcan D et al 2009 BMC Med. 7 45
[7] Halloran M E et al 2014 Science 346 433
[8] Bansal S, Chowell G, Simonsen L, Vespignani A and Viboud C 2016 J. Infect. Dis. 214 S375–9
[9] Zhang Q et al 2017 Proc. Natl Acad. Sci. USA 114 E4334–43

[10] Kraemer M U G et al 2020 Science 368 493–7
[11] Schlosser F, Maier B F, Jack O, Hinrichs D, Zachariae A and Brockmann D 2020 Proc. Natl Acad. Sci. USA 117 32883–90
[12] Ball F G 1991 Math. Biosci. 107 299
[13] Sattenspiel L and Dietz K 1995 Math. Biosci. 128 71
[14] Lloyd A L and May R M 1996 J. Theor. Biol. 179 1
[15] Grenfell B and Harwood J 1997 Trends Ecol. Evol. 12 395–9
[16] Keeling M J and Rohani P 2002 Ecol. Lett. 5 20
[17] Colizza V, Pastor-Satorras R and Vespignani A 2007 Nat. Phys. 3 276
[18] Colizza V and Vespignani A 2007 Phys. Rev. Lett. 99 148701
[19] Colizza V and Vespignani A 2008 J. Theor. Biol. 251 450–67
[20] Balcan D, Colizza V, Gonçalves B, Hu H, Ramasco J J and Vespignani A 2009 Proc. Natl Acad. Sci. 106 21484–9
[21] Mata A S, Ferreira S C and Pastor-Satorras R 2013 Phys. Rev. E 88 042820
[22] Silva D H and Ferreira S C 2018 Chaos 28 123112
[23] Simini F, González M C, Maritan A and Barabási A-L 2012 Nature 484 96–100
[24] Simini F, Maritan A and Néda Z 2013 PLoS ONE 8 e60069
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