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Abstract

In a metric space M = (X ,d), a line induced by two distinct points x,x′ ∈ X , denoted
by LM{x,x′}, is the set of points given by

LM{x,x′}= {z ∈ X : d(x,x′) = d(x,z)+d(z,x′) or d(x,x′) = |d(x,z)−d(z,x′)|}.

A line LM{x,x′} is universal whenever LM{x,x′}= X .
Chen and Chvátal [Disc. Appl. Math. 156 (2008), 2101-2108.] conjectured that in

any finite metric space M = (X ,d) either there is a universal line, or there are at least |X |
different (nonuniversal) lines. A particular problem derived from this conjecture consists
of investigating the properties of M that determine the existence of a universal line, and
the problem remains interesting even if we can check that M has at least |X | different
lines. Since the vertex set of any connected graph, equipped with the shortest path dis-
tance, is a metric space, the problem automatically becomes of interest in graph theory.
In this paper, we address the problem of characterizing graphs that have universal lines.
We consider several scenarios in which the study can be approached by analysing the
existence of such lines in primary subgraphs. We first discuss the wide class of sepa-
rable graphs, and then describe some particular cases, including those of block graphs,
rooted product graphs and corona graphs. We also discuss important classes of nonsepa-
rable graphs, including Cartesian product graphs, join graphs and lexicographic product
graphs.

Keywords: Lines in graphs, universal lines, distance in graph, product graphs, metric
spaces.

Mathematics Subject Classification: 30L99, 05C12, 05C76

1 Introduction
In a metric space M = (X ,dM) a line induced by two distinct points x,x′ ∈ X is defined by

LM{x,x′}= {z ∈ X : dM(x,x′) = dM(x,z)+dM(z,x′) or dM(x,x′) = |dM(x,z)−dM(z,x′)|}.
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A line LM{x,x′} is universal whenever LM{x,x′}= X .
For instance, if M =Rn is the n-dimensional Euclidean space, then for any pair of points

x,x′, the line LRn{x,x′}, equipped with its usual metric inherited from Rn, is isometric to the
one-dimensional Euclidean space. Hence, the n-dimensional Euclidean space has a universal
line if and only if n = 1. Now, if a metric space M is equipped with the discrete metric1, then
LM{x,x′}= {x,x′} for every pair of points x,x′ ∈ X .

There are metric spaces with metrics that may differ from the discrete metric yet generate
the same topology. Such spaces are called discrete metric spaces [16], i.e., a metric space M
is called a discrete metric space if and only if all its subsets are open (and therefore closed) in
M. For instance, the set N, with its usual metric inherited from the one-dimensional Euclidean
space R, is a discrete metric space; every finite metric space is a discrete metric space; and
the vertex set of any connected graph, equipped with the shortest path distance, is a discrete
metric space.

In this context, the following conjecture was stated by Chen and Chvátal [6] for the case
finite metric spaces, where `(M) denotes the number of distinct lines in M.

Conjecture 1.1. [6] Any finite metric space M = (X ,dM) with at least two points and `(M)<
|X | has a universal line.

Conjecture 1.1 is an attempt to generalize a classic theorem of Euclidean geometry which
asserts that any noncollinear set of n points in the plane determines at least n distinct lines.
The problem remains open and, in particular, it was shown in [1] that any finite metric space
on n points (n≥ 2) with no universal line has at least ( 1√

2
−o(1))

√
n distinct lines. Recently,

Chvátal [7] described the main progress related to the conjecture, and pointed out twenty-nine
related open problems plus three additional conjectures.

A problem derived from Conjecture 1.1 consists of investigating the properties of metric
spaces having a universal line, and the problem remains interesting even if we can check that
`(M)≥ |X |. In this paper, we deal with related problems for the particular case of graphs.

To ease the presentation we will refer to the line induced by two distinct vertices u,v ∈
V (G) of a graph G as LG{u,v}. For instance, LKn{u,v} = {u,v} for every pair of distinct
vertices u,v of a complete graph Kn. Hence, a complete graph of order n has a universal line
if and only if n = 2. In contrast, it is easy to check that for any pair of adjacent vertices
u,v ∈ V (T ) of a tree T , the line LT{u,v} is universal. This implies that any nontrivial tree
has a universal line. Another interesting example is the cycle C4, where LC4{u,v} is universal
for every u,v ∈V (C4).

Given a graph G, let µ(G) be the number of pair of vertices of G inducing a universal
line. In this paper we face the following problems.

Problem 1.2 (Existence). Determine necessary and sufficient conditions for a graph to have
a universal line, i.e., graphs with µ(G)≥ 1.

Problem 1.3 (Uniqueness). Determine necessary and sufficient conditions for a graph to
have exactly one pair of vertices inducing a universal line, i.e., graphs with µ(G) = 1.

The problem of characterizing all graphs where all lines are universal was solved in [13].

1The discrete metric is given by dM(x,y) = 0 if x = y and dM(x,y) = 1 otherwise.
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Theorem 1.4 (Totality, [13]). If G is a connected nontrivial graph, then µ(G) =
(|V (G)|

2

)
if

and only if G∼= Pn or G∼=C4.

In this paper, we address Problems 1.2 and 1.3 by analysing the existence of universal
lines in primary subgraphs. In particular, in Section 3 we discuss the wide class of separable
graphs. We first discuss the general case, and then describe some particular cases, including
those of block graphs, bridgeless graphs where all cycles are odd, rooted product graphs and
corona graphs. The remaining sections concern the case of nonseparable graphs. Sections 4,
5, and 6 are devoted to Cartesian product graphs, join graphs and lexicographic product
graphs, respectively.

2 Notation, terminology and examples
Throughout the paper, we will use the notation G∼= H if G and H are isomorphic graphs, and
u ∼ v if u and v are adjacent vertices. Given a graph G, the open neighbourhood of a vertex
v ∈ V (G) will be denoted by NG(v). As usual, if NG(v) = V (G)\ {v}, then we will say that
v is a universal vertex of G, while if NG(v) =∅, then we will say that v is an isolated vertex
of G. The degree of v will be denoted by degG(v) = |NG(v)|, while the minimum degree of
G will be denoted by δ (G), i.e. δ (G) = min{degG(v) : v ∈V (G)}.

Given two distinct vertices u,v ∈ V (G) of a connected graph G, we write [uv] for the
geodesic closure of {u,v}, i.e.,

[uv] = {w ∈V (G) : dG(u,v) = dG(u,w)+dG(w,v)}.

Hence, w ∈ LG{u,v} if and only if w ∈ [uv] or u ∈ [wv] or v ∈ [uw].
In general, the geodesic closure of a non-singleton set S⊆V (G) is defined to be

[S] =
⋃

u,v∈S

[uv].

A subset S ⊆V (G) is a geodetic set of G if [S] =V (G). The study of geodetic sets in graphs
was introduced about 30 years ago by Harary and his coworkers [4, 5, 11]. The geodetic
number of G, denoted by g(G), is defined as the minimum cardinality among all geodetic
sets of G.

The following straightforward remark describes the case of universal lines induced by
geodetic sets.

Remark 2.1. Let G be a connected graph. If g(G) = 2, then G has a universal line.

The number of geodetic sets of cardinality two will be denoted by µg(G). An example
of graph with µg(G) = 1 is shown in Figure 1.
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a b

Figure 1: A graph G with g(G) = 2 and µg(G) = 1. In this case, LG{a,b} is a universal line
induced by the geodetic set {a,b}.

An edge e of a connected graph G is a bridge if G− e is not connected. The following
remark is straightforward.

Remark 2.2. If {u,v} is a bridge of a connected graph G, then LG{u,v} is universal.

The remark above describes a particular case of universal lines induced by adjacent ver-
tices. The number of pairs of adjacent vertices g,g′ ∈V (G) such that LG{g,g′} is universal,
will be denoted by µa(G). For instance, in the case of the standard cube Q3, we have that
µg(Q3) = 4, µa(G) = 12 and µ(G) = µg(Q3)+µa(Q3) = 16. Figure 2, shows a 2-connected
graph G where LG{x,y} is a universal line induced by two adjacent vertices. In this case,
µa(G) = 2, µg(G) = 0 and µ(G) = µa(G)+µg(G) = 2.

x y

Figure 2: LG{x,y} is a universal line induced by two adjacent vertices.

A wide family of graphs where µa(G) equals the size of G is the class of connected
bipartite graphs. As observed by Beaudou et al. [3], the following result solves Conjecture 1.1
for the case of bipartite graphs.

Theorem 2.3. [3] If G is a connected bipartite graph of order at least two, then µ(G)≥ 1.

We would emphasize that Conjecture 1.1 was also proved in [3] for connected chordal
graphs.

Theorem 2.4. [3] If G is a connected chordal graph of order at least two, then either `(G)≥
|V (G)| or µ(G)≥ 1.

A graph G is distance-hereditary if for any connected induced subgraph H of G and for
any pair of vertices x,y ∈V (H), dH(x,y) = dG(x,y). The following lemma was stated in [2].

Lemma 2.5. [2] If x,y ∈ V (G) are adjacent vertices of a connected distance-hereditary
graph, then either they belong to a triangle or LG{x,y} is universal.

This Lemma was used by Aboulker and Kapadia [2] to prove Conjecture 1.1 for the case
of distance-hereditary graphs.

Theorem 2.6. [2] If G is a connected distance-hereditary graph of order at least two, then
either `(G)≥ |V (G)| or µ(G)≥ 1.
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There are universal lines that are not induced, neither by geodetic sets nor by adjacent
vertices. Figure 3 shows a graph G such that g(G) > 2 where no pair of adjacent vertices
induces a universal line, but there are two vertices a,b ∈ V (G) such that dG(a,b) ≥ 2 and
LG{a,b} is universal. In this case, µ(G) = 1, while µg(G) = µa(G) = 0.

a b

Figure 3: LG{a,b} is universal.

The graph in Figure 4 does not have universal line.

Figure 4: A graph G with µ(G) = 0.

For the remainder of the paper, definitions will be introduced whenever a concept is
needed. In particular, this is the case for concepts, notation and terminology to be used only
once or in an specific section.

3 Separable graphs
Let H = {G1, . . . ,Gk} be a family of pairwise disjoint (nontrivial) connected graphs. Con-
sider a connected graph G constructed from H in the following way. First, we select one
vertex of G1, one vertex of G2, and identify these two vertices. Afterwards, continue this
procedure inductively. That is, if r graphs G1, . . . ,Gr have been used in the construction,
where r ∈ {2, . . . ,k−1}, then select one vertex in the already constructed graph (this vertex
may be one of the already selected vertices) and one vertex of Gr+1, and then identify these
two vertices. We say that G is obtained by point-attaching from H and that the graphs in
H are the primary subgraphs of G. Furthermore, the vertices of G obtained by identifying
two vertices of different primary subgraphs are the attachment vertices of G. Obviously, the
attachment vertices are cut vertices of G. We denote by A(G) the set of attachment vertices
of G and by A(Gi) the set of attachment vertices of G belonging to V (Gi). Figure 5 illustrates
a sketch of a graph obtained in this manner.

The construction described above was introduced by Deutsch and Klavžar in [8], where
they used it to compute the Hosoya polynomials of graphs. After that, this construction has
been used by several authors. For instance, it was used in [9] to study the terminal Hosoya
polynomial of composite graphs, in [15] to compute the local metric dimension of graphs,
and in [14] to compute the metric dimension.
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Observe that any graph, constructed by point-attaching from a family of connected
graphs, has a tree-like structure, where the primary subgraphs are its building stones.

We would highlight the following remark, which is ease to see from the inductive con-
struction described above.

Remark 3.1. Let G be a graph constructed by point-attaching from a family H of connected
graphs. Then the following statements hold.

(i) dG(x,y) = dGi(x,y) for every Gi ∈H and x,y ∈V (Gi).

(ii) If Gi,G j ∈H are two different graphs, then |V (Gi)∩V (G j)|= |A(Gi)∩A(G j)| ≤ 1.

(iii) Let Gi ∈H and G j ∈H \ {Gi}. For any u ∈ V (G j), there exists a ∈ A(Gi) such that
dG(u,a) = min{dG(u,w) : w ∈V (Gi)}.

A connected nontrivial graph is said to be separable if it can be disconnected by remov-
ing one vertex, ie., if it has a cut vertex. Now, a nonseparable graph is a nontrivial connected
graph containing no cut vertices.

Remark 3.2. Every separable graph is obtained by point-attaching from a family of nonsep-
arable graphs.

The class of separable graphs contains several well-known families of graphs. For in-
stance, this is the case of cactus graphs, block graphs, chains of graphs, circuits of graphs,
corona product graphs, rooted product graphs, bouquets of graphs, etc. Some of these fami-
lies of graphs are described below.

G2G1

G3

G4

G11

G8 G10

G5

G7

G9

G6

Figure 5: Sketch of a graph G constructed by point-attaching from a family H =
{G1, . . . ,G11} of primary subgraphs.

The following result shows that the problem of determining the existence of universal
lines in separable graphs carries over to the problem of terminating the existence of universal
lines in their primary subgraphs.

Theorem 3.3 (Existence). A separable graph G has a universal line if and only if there
exists a primary subgraph Gi of G and x,y ∈ V (Gi) such that LGi{x,y} is universal and
A(Gi)∩ ([xy]\{x,y}) =∅.
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Proof. Let G be a graph obtained by point-attaching from a family of connected nontrivial
graphs H = {G1, . . . ,Gk}.

Assume that there exists a primary subgraph Gi ∈H having a universal line LGi{x,y}
such that A(Gi)∩ ([xy] \ {x,y}) = ∅. Let G j ∈ H \ {Gi} and u ∈ V (G j). Let v ∈ A(Gi)
such that dG(u,v) = min{dG(u,w) : w ∈V (Gi)}. Since x ∈ [vy] or y ∈ [vx], we conclude that
x ∈ [uy] or y ∈ [ux], which implies that LG{x,y} is universal.

Conversely, let LG{x,y} be a universal line. If there exists Gi ∈H such that x,y∈V (Gi),
then the set A(Gi)∩([xy]\{x,y}) has to be empty, otherwise for any a∈A(Gi)∩([xy]\{x,y})
there exists G j ∈H \{Gi} such that a ∈V (G j) and (V (G j)\{a})∩LG{x,y}=∅, which is
a contradiction.

From now on, assume that {x,y} 6⊆ V (Gi) for every Gi ∈H. First, consider the case in
which x ∈V (Gi), y ∈V (G j), i 6= j and there exists a ∈ A(Gi)∩A(G j). Obviously, x 6= a and
it is readily seen that LGi{x,a} is universal. Thus, a reasoning analogous to the one described
above allows us to conclude that A(Gi)∩ ([xa]\{x,a}) =∅.

Now, assume that x ∈V (Gi), y∈V (G j), i 6= j and A(Gi)∩A(G j) =∅. In this case, there
exists Gl ∈H such that every vertex of Gl lies on a shortest path from x to y. Let a,b ∈ A(Gl)
such that dG(x,a) = min{dG(x,w) : w ∈V (Gl)} and dG(y,b) = min{dG(y,w) : w ∈V (Gl)}.
Obviously, LGl{a,b} is universal and, as above, we can check that A(Gl)∩([ab]\{a,b})=∅.
Therefore, the result follows.

In the following subsections we give applications of this result to specific families of
separable graphs.

3.1 The case of block graphs
A block of a graph G is a maximal nonseparable subgraph of G. That is, a block of G is a
nonseparable subgraph of G that is not a proper subgraph of any nonseparable subgraph of G.
A connected graph G is a block graph if every block of G is a complete graph. Since every
block graph is obtained by point-attaching from a family of complete graphs, Theorem 3.3
leads to the following result.

Corollary 3.4 (Existence and uniqueness). If G is a block graph, then the following state-
ments hold.

(i) µ(G)> 0 if and only if K2 is a block of G.

(ii) µ(G) = 1 if and only if exactly one block of G is isomorphic to K2.

3.2 The case of bridgeless graphs where all cycles are odd
A graph is said to be bridgeless or isthmus-free if it contains no bridges. Figure 4 shows a
connected bridgeless graph.

Theorem 3.5. If G is a connected bridgeless graph where all cycles are odd, then µ(G) = 0.
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Proof. Let G be a connected bridgeless graph where all cycles are odd, and let x,y ∈ V (G).
First, consider the particular case G ∼= Cn, where n is odd. Let V (Cn) = {v0,v1, . . . ,vn−1}
where consecutive vertices are adjacent. Without loss of generality, we can assume that
x = v0,v1, . . . ,vl = y is a shortest path from x to y in Cn. If l is odd, then for j = n+l

2 we have
that dCn(x,v j) = dCn(y,v j) =

n−l
2 , and so v j 6∈ LCn{x,y}. Now, if l is even, then for i = n+l+1

2
we have that dCn(x,vi) =

n−l−1
2 and dCn(y,vi) =

n−l+1
2 , which implies that vi 6∈ LCn{x,y}.

Therefore, no line of Cn is universal.
For the proof of the general case we apply Theorem 3.3 considering the fact that every

connected bridgeless graph is obtained by point-attaching from a family of odd cycles. To
show this, we only need to prove that all cycles of G are edge disjoint. Suppose, to the con-
trary, that there are two cycles Ck and Ct of G sharing some edges. Let V (Ck) = {u1, . . . ,uk}
and V (Ct) = {v1, . . . ,vt} such that consecutive vertices are adjacent. We can assume, without
loss of generality, that the common vertices of these cycles form a path u1 = v1, . . . ,ur = vr,
where r ≥ 2. Hence, the cycle C, whose vertex set is V (C) = {vr = ur,ur+1, . . . ,uk,u1 =
v1,vt ,vt−1, . . . ,vr+1}, has even length |V (C)| = k+ t−2r+2, as k and t are odd, which is a
contradiction.

Notice that from two cycles that share two or more disjoint paths, we can always identify
two cycles that share exactly one path, and then we can use the previous procedure to reach a
contradiction. Therefore, the result follows.

3.3 The case of rooted product graphs
Let G be a graph and H a graph with root vertex v. The rooted product graph G ◦v H is
defined as the graph obtained from one copy of G and |V (G)| copies of H, identifying the
ith vertex of G with vertex v in the ith copy of H for each i ∈ {1, . . . , |V (G)|}. For every
x ∈V (G), the copy of H in G◦v H containing x, which is isomorphic to H, will be denoted by
Hx. Since G◦v H can be obtained by point-attaching from the family {G}∪{Hx : x ∈V (G)},
Theorem 3.3 leads to the following result.

Corollary 3.6 (Existence). Let G and H be two connected graph of order at least two, and let
v∈V (H). Then µ(G◦v H)≥ 1 if and only if µa(G)≥ 1 or there exist two vertices h,h′ ∈V (H)
such that LH{h,h′} is universal and v 6∈ [hh′]\{h,h′}.

Theorem 3.7 (Uniqueness). Let G and H be two connected graph of order at least two, and
let v ∈V (H). Then µ(G◦v H) = 1 if and only if the following conditions hold.

(i) µa(G) = 1.

(ii) If there exists a universal line LH{h,h′}, then v ∈ [hh′]\{h,h′}.

Proof. For any x ∈V (G) and h ∈V (H), let hx be the vertex of Hx corresponding to h.
Assume µ(G◦v H) = 1. By Corollary 3.6, µa(G) ≥ 1 or there exist two vertices h,h′ ∈

V (H) such that LH{h,h′} is universal and v 6∈ [hh′]\{h,h′}. Now, if µa(G)= k≥ 1, then there
are k pairs x,y ∈ V (G) of adjacent vertices such that LG{x,y} is universal, and LG◦vH{x,y}
is also universal. Therefore, (i) follows. On the other side, if there exists a universal line

8



LH{h,h′} such that v 6∈ [hh′] \ {h,h′}, then for any x ∈ V (G), the line LG◦vH{hx,h′x} is uni-
versal, which is a contradiction, as in such a case, µ(G ◦v H) ≥ |V (G)|. This implies that
µ(H) = 0 or v ∈ [hh′]\{h,h′} for every universal line LH{h,h′}. Therefore, (ii) follows.

Conversely, assume that (i) and (ii) hold. Let x,y ∈ V (G ◦v H) such that LG◦vH{x,y} is
universal. We differentiate the following cases.

Case 1. x,y ∈ V (G). Since V (G) ⊆ LG◦vH{x,y}, we conclude that LG{x,y} is universal.
Now, if x 6∼ y, then for every vertex g ∈ V (G) lying between x and y, we have that V (Hg) 6⊆
LG◦vH{x,y}, which is a contradiction. Hence, x∼ y and, since µa(G) = 1, they form the only
pair of adjacent vertices of G that induce a universal line in G◦v H.

Case 2. x,y ∈V (Hg)\{g} for some vertex g ∈V (G). In this case, LHg{x,y} is universal and,
by assumption, g ∈ [xy] \ {x,y}. Thus, for any z ∈ V (G ◦v H) \ (V (Hg)∪{g}), we have that
z 6∈ LG◦vH{x,y}, which is a contradiction.

Case 3. There exists g ∈ V (G) such that x ∈ V (Hg) \ {g} and y 6∈ V (Hg) \ {g}. As above,
LHg{x,g} is universal, which is a contradiction, as g 6∈ [xg]\{x,g}.

Therefore, according to the three cases above, we conclude that µ(G◦v H) = 1.

3.4 The case of corona product graphs
Given two graphs G and H, the corona product G�H is defined as the graph obtained from
G and H by taking one copy of G and |V (G)| copies of H, and making the ith vertex of G
adjacent to every vertex of the ith copy of H for every i ∈ {1, . . . , |V (G)|}.

The particular case K1�H is known as the join graph K1 +H. To prove our results, we
need to state the following straightforward lemma.

Lemma 3.8. Let H be a graph, h,h′ ∈V (H) and V (K1) = {v}. Then the following statements
hold.

(i) The line LK1+H{h,v} is universal if and only if degH(h) = 0.

(ii) If LK1+H{h,h′} is a universal line, then v ∈ [hh′].

Theorem 3.9 (Existence). Let G be a connected graph of order at least two and H a graph.
Then µ(G�H)≥ 1 if and only if µa(G)≥ 1 or δ (H) = 0.

Proof. Notice that G�H ∼= G ◦v (K1 +H), where v is the vertex of K1. Hence, by Corol-
lary 3.6, µ(G�H)≥ 1 if and only if µa(G)≥ 1 or there exist two vertices h,h′ ∈V (K1 +H)
such that LK1+H{h,h′} is universal and v 6∈ [hh′] \ {h,h′}. Therefore, from Lemma 3.8 we
deduce that µ(G�H)≥ 1 if and only if µa(G)≥ 1 or δ (H) = 0.

Theorem 3.10 (Uniqueness). Let G be a connected graph of order at least two and H a
graph. Then µ(G�H) = 1 if and only if µa(G) = 1 and δ (H)≥ 1.

Proof. Since G�H ∼= G◦v (K1 +H), where v is the vertex of K1, the result is a direct conse-
quence of Theorem 3.7 and Lemma 3.8.
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4 The case of Cartesian product graphs
Given two graphs G and H, the Cartesian product G�H is the graph with vertex set V (G�H)=
V (G)×V (H), where two vertices (g,h),(g′,h′) are adjacent in G�H if and only if, either
g = g′ and hh′ ∈ E(H) or h = h′ and gg′ ∈ E(G). The distance between two vertices (g,h)
and (g′,h′) is given by

dG�H((g,h),(g′,h′)) = dG(g,g′)+dH(h,h′).

Since G�H ∼= H�G, explanations of symmetrical cases will be omitted.

Theorem 4.1 (Existence and uniqueness). Let G and H be two connected nontrivial graphs.
Then µ(G�H)> 0 if and only if one of the following conditions holds.

(i) µa(G)≥ 1 or µa(H)≥ 1.

(ii) g(G) = 2 and g(H) = 2.

Furthermore, µ(G�H) 6= 1.

Proof. First, assume that (i) holds. Without loss of generality, we can assume that there exist
two vertices g,g′ ∈ V (G) such that g ∼ g′ and LG{g,g′} is universal. Notice that for any
x ∈V (G), we have that g∈ [xg′] or g′ ∈ [xg]. Let h∈V (H) and (x,y)∈V (G�H). If g∈ [xg′],
then

dG�H((x,y)(g′,h)) = dG(x,g′)+dH(y,h)
= dG(x,g)+dG(g,g′)+dH(y,h)
= dG�H((x,y)(g,h))+dG�H((g,h)(g′,h)),

while if g′ ∈ [xg], then

dG�H((x,y)(g,h)) = dG(x,g)+dH(y,h)
= dG(x,g′)+dG(g′,g)+dH(y,h)
= dG�H((x,y)(g′,h))+dG�H((g,h)(g′,h)).

Therefore, LG�H{(g,h),(g′,h)} is universal. Notice that, in this case, µ(G�H)≥ µa(G)|V (H)|.
Now, assume that (ii) holds. Let {g,g′} be a geodetic set of G and {h,h′} a geodetic set

of H. In this case, for any (x,y) ∈V (G�H),

dG�H((g,h)(g′,h′)) =dG(g,g′)+dH(h,h′)
=dG(g,x)+dG(x,g′)+dH(h,y)+dH(y,h′)
=dG�H((g,h)(x,y))+dG�H((x,y)(g′,h′)).

Therefore, LG�H{(g,h),(g′,h′)} is universal. Notice that, in this case, µ(G�H) ≥ 2 as
LG�H{(g,h′),(g′,h)} is also universal.

Conversely, assume that there exist two distinct vertices (g,h),(g′,h′) ∈ V (G�H) such
that LG�H{(g,h),(g′,h′)} is universal. We differentiate the following two cases.
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Case 1. h = h′. If dg(g,g′) ≥ 2, then for any h′′ ∈ NH(h) and g′′ ∈ [gg′]∩NG(g) we have
dG�H((g′,h),(g,h)) = dG(g′,g′′)+1 = dG(g′,g′′)+dH(h,h′′) = dG�H((g′,h),(g′′,h′′)), and
so (g′′,h′′) 6∈ LG�H{(g,h),(g′,h′)}, which is a contradiction. Hence, g ∼ g′. Now, ob-
serve that if we take K1 as the trivial graph with V (K1) = {h}, then G�K1 ∼= G and, since
LG�H{(g,h),(g′,h)} is universal, LG�K1{(g,h),(g′,h)} is also universal. This implies that
LG{g,g′} is universal. Therefore, (i) follows.

Case 2. g 6= g′ and h 6= h′. If H ∼= K2, then (i) follows. Assume H 6∼= K2, and let v ∈
V (H)\{h,h′}. We consider first the case in which h∼ h′. Observe that (g′,v) 6∈ [(g′,h′)(g,h)]
and (g,h) 6∈ [(g′,v)(g′,h′)]. Hence, (g′,h′)∈ [(g′,v)(g,h)], and so h′ ∈ [vh], which implies that
LH{h,h′} is universal. Therefore, (i) follows. The same conclusion is reached if g∼ g′.

From now on, assume dH(h,h′) ≥ 2 and dG(g,g′) ≥ 2. Let y ∈ NH(h)∩ [hh′]. Suppose
that {g,g′} is not a geodetic set of G. In such a case, there exist two adjacent vertices x,g′′ ∈
V (G) such that g′′ ∈ [gg′] and x 6∈ [gg′].

Notice that dG(g,x)= dG(g,g′′)+1, dG(g′,x)= dG(g′,g′′)+1 and dG(g,g′)= dG(g,g′′)+
dG(g′′,g′). Hence,

dG�H((g,h),(x,y)) = dG(g,x)+1 = dG(g,g′′)+2

and

dG�H((g′,h′),(x,y)) = dG(g′,x)+dH(h′,y)
= dG(g′,g′′)+1+dH(h′,y)
= dG(g′,g′′)+dH(h′,h).

This implies that (x,y) 6∈ [(g,h)(g′,h′)], as

dG�H((g,h),(x,y))+dG�H((x,y),(g′,h′)) = dG(g,g′′)+2+dG(g′,g′′)+dH(h′,h)
= dG�H((g,h),(g′,h′))+2
6= dG�H((g,h),(g′,h′)).

Hence, (g,h) ∈ [(x,y)(g′,h′)] or (g′,h′) ∈ [(x,y)(g,h)], which implies that

dG(g,g′′)+dG(g′′,g′)+dH(h,h′) = dG(g,g′)+dH(h,h′)
= dG�H((g,h),(g′,h′))
= |dG�H((x,y),(g,h))−dG�H((x,y),(g′,h′))|
= |dG(g,g′′)+2−dG(g′′,g′)−dH(h,h′)|.

This implies that dG(g,g′′) =−1, which is impossible, or dG(g′′,g′)+dH(h,h′) = 1, which is
a contradiction again, as dH(h,h′)≥ 2. Thus, {g,g′} is a geodetic set of G, and by analogously
we deduce that {h,h′} is a geodetic set of H. Therefore, (ii) follows.

Finally, to check that µ(G�H) 6= 1 we only need to observe that we have shown that
if (i) holds, then µa(G) ≥ 1 and µ(G�H) ≥ µa(G)|V (H)| or µa(H) ≥ 1 and µ(G�H) ≥
µa(H)|V (G)|. Furthermore, we have shown that (ii) leads to µ(G�H) ≥ 2. Therefore, the
result follows.
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5 The case of join graphs
The join G+H of two disjoint graphs G and H is defined as the graph obtained by taking one
copy of G and one copy of H and joining by an edge each vertex of G with each vertex of H.
Since G+H ∼= H +G, explanations of symmetrical cases will be omitted.

In order to state the next result, we need to introduce the following family G of graphs
such that G∈ G if and only if G∼= N2 or there exists a graph G′ such that G∼= N2+G′. Notice
that G\{N2} is the class of graphs of diameter two with g(G) = 2.

Theorem 5.1 (Existence). Let G and H be two graphs. Then µ(G+H)> 0 if and only if one
of the following conditions holds.

(i) G ∈ G or H ∈ G.

(ii) δ (G) = 0 and δ (H) = 0.

Proof. First, assume G ∈ G. Let V (N2) = {x,y} in such a way that either G ∼= N2 or there
exists a graph G′ such that G ∼= N2 +G′. Since {x,y} is an independent set and NG+H(x) =
NG+H(y) =V (G+H)\{x,y}, we conclude that LG+H{x,y} is universal.

Now, if there exist two vertices g∈V (G) and h∈V (H) such that degG(g)= degH(h)= 0,
then it is also very easy to check that LG+H{g,h} is universal.

Conversely, assume that here exist two vertices u,v ∈V (G+H) such that LG+H{u,v} is
universal. We differentiate two cases.

Case 1. u,v ∈ V (G). First, observe that if u ∼ v, then V (H) 6⊆ LG+H{u,v}, which implies
that u 6∼ v. Now, if there exists w ∈V (G)\{u,v}, then {u,v} has to be a subset of NG(w), to
ensure that w ∈ LG+H{u,v}. Therefore, G ∈ G, i.e., (i) follows.

Case 2. u ∈ V (G) and v ∈ V (H). If there exists u′ ∈ V (G)\{u}, then u′ 6∈ NG(u), to ensure
that u′ ∈ LG+H{u,v}. Thus, degG(u) = δ (G) = 0. By analogy we see that δ (H) = 0, and so
(ii) follows.

In order to state the next result, we need to introduce some additional notation. Let Gu be
the family of graphs such that G∈Gu if and only if there exist exactly two vertices x,y∈V (G)
such that NG(x) = NG(y) =V (G)\{x,y}. Now, let O be the family of graphs such that G ∈O
if and only if δ (G) = 0. Obviously, G∩O= {N2} and Gu ⊆ G.

Theorem 5.2 (Uniqueness). Let G and H be two graphs. Then µ(G+H) = 1 if and only if
exactly one of the following conditions holds.

(i) |{G,H}∩O| ≤ 1, G 6∈ G∪{K1} and H ∈ Gu.

(ii) G∼= K1 and H ∈ Gu \{N2}.

(iii) G has exactly one isolated vertex and H has exactly one isolated vertex.

Proof. Assume µ(G+H)≥ 1. Let LG+H{x,y} be a universal line. By Theorem 5.1, we can
distinguish the following cases.
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Case 1. |{G,H}∩O| ≤ 1 and {G,H}∩G 6= /0. Since deg(G) > 0 or deg(H) > 0, every pair
of adjacent vertices in G+H form a triangle, and so x and y are not adjacent in G+H, which
implies that NG+H(x) = NG+H(y) =V (G+H)\{x,y}. Now, if G,H ∈ G, then µ(G+H)≥ 2,
and so we can assume, without loss of generality, that G 6∈ G. In such a case, H ∈ G and
x,y ∈ V (H). Observe that, if G ∼= K1, then H 6∼= N2, and so µ(G+H) = 1 if and only if
G+H 6∼= K1 +N2 ∼= P3 and also x and y form the only pair of vertices of H with NH(x) =
NH(y) =V (H)\{x,y}. Therefore, µ(G+H) = 1 if and only if either (i) holds or (ii) holds.

Case 2. G,H ∈ O. Notice that G∩O = {N2}. For any vertex g ∈ V (G) and h ∈ V (H) such
that degG(g) = degH(h) = 0, the line LG+H{g,h} is universal. Therefore, µ(G+H) = 1 if
and only if (iii) hods.

6 The case of lexicographic product graphs
Let G and H be two graphs. The lexicographic product of G and H is the graph G◦H whose
vertex set is V (G ◦H) = V (G)×V (H), where two vertices (g,h) and (g′,h′) are adjacent if
and only if gg′ ∈ E(G) or g = g′ and hh′ ∈ E(H). Notice that for any g ∈V (G) the subgraph
of G ◦H induced by {g}×V (H) is isomorphic to H. For simplicity, we will denote this
subgraph by Hg. For a basic introduction to the lexicographic product of two graphs we
suggest the books [10, 12].

The following claim, which states the distance formula in the lexicographic product of
two graphs, is one of our main tools.

Remark 6.1. [10] For any connected graph G of order n(G) ≥ 2 and any graph H, the
following statements hold.

(i) dG◦H((g,h),(g′,h′)) = dG(g,g′) for g 6= g′.

(ii) dG◦H((g,h),(g,h′)) = min{2,dH(h,h′)}.

As in Section 5, we shall use the notation G for the family of graphs such that G ∈ G if
and only if G∼= N2 or there exists a graph G′ such that G∼= N2 +G′.

Theorem 6.2 (Existence). Let G be a connected graph and H a nontrivial graph. Then
µ(G◦H)> 0 if and only if at least one of the following conditions holds.

(i) G has a universal vertex and H ∈ G.

(ii) µa(G)≥ 1 and δ (H) = 0.

Proof. Let g,g′ ∈ V (G) and h,h′ ∈ V (H). We proceed to show that LG◦H{(g,h),(g′,h′)} is
universal if and only if one of the following conditions holds.

(a) g = g′ is a universal vertex, h 6= h′ and NH(h) = NH(h′) =V (H)\{h,h′}.

(b) LG{g,g′} is universal, dG(g,g′) = 1 and degH(h) = degH(h
′) = 0.
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By simple inspection we can see that if the pair (g,h),(g′,h′) ∈ V (G)×V (H) satisfies
(a) or (b), then LG◦H{(g,h),(g′,h′)} is universal.

Conversely, assume that LG◦H{(g,h),(g′,h′)} is universal. We differentiate two cases.

Case 1. g = g′. If dH(h,h′) = 1, then NG(g)×V (H) 6⊆ LG◦H{(g,h),(g,h′)}, which is a
contradiction and, as a result, h 6∼ h′. If there exists h′′ ∈ V (H) \ (NH(h′)∪ {h,h′}), then
dG◦H((g,h′′),(g,h′)) = 2 = dG◦H((g,h),(g,h′)), and so (g,h′′) 6∈LG◦H{(g,h),(g,h′)}, which
is a contradiction. Hence, NH(h′) =V (H)\{h,h′} and, analogously, NH(h) =V (H)\{h,h′}.
Finally, if there exists g′′ ∈V (G) such that dG(g,g′′)≥ 2, then

dG◦H((g,h),(g,h′)) = 2≤ dG(g,g′′) = dG◦H((g,h),(g′′,h)) = dG◦H((g,h′),(g′′,h)).

Thus, (g′′,h) 6∈ LG◦H{(g,h),(g,h′)}, which is a contradiction, and so g is a universal vertex
of G. Therefore, (a) follows.

Case 2. g 6= g′. Note that h and h′ are not necessarily different. Suppose that there exits
z ∈V (G)\LG{g,g′}. In such a case,

dG◦H((g,h),(g′,h′)) = dG(g,g′)
6= dG(g,z)+dG(z,g′)
= dG◦H((g,h),(z,h))+dG◦H((z,h),(g′,h′))

and, analogously, dG◦H((g,h),(g′,h′)) 6= |dG◦H((g,h),(z,h))− dG◦H((z,h),(g′,h′))|. Hence,
(z,h) 6∈ LG◦H{(g,h),(g′,h′)}, which is a contradiction, and so LG{g,g′} has to be universal.
Now, suppose that dG(g,g′)≥ 2. In this case, for any y ∈V (H)\{h},

dG◦H((g,h),(g′,h′)) = dG◦H((g,y),(g′,h′)) = dG(g,g′)≥ 2≥ dG◦H((g,h),(g,y)).

Hence, (g,y) 6∈ LG◦H{(g,h),(g′,h′)}, which is a contradiction, and so dG(g,g′) = 1. Thus, if
there exists y ∈ NH(h), then

dG◦H((g,h),(g′,h′)) = dG◦H((g,y),(g′,h′)) = dG(g,g′) = 1 = dG◦H((g,h),(g,y)),

and so (g,y) 6∈LG◦H{(g,h),(g′,h′)}, which is a contradiction again. This implies that degH(h)=
0 and, by analogy, degH(h

′) = 0. Therefore, (b) follows.

As in Section 5, we shall use the notation Gu for the family of graphs such that G ∈ Gu
if and only if there exist exactly two vertices x,y ∈V (G) such that NG(x) = NG(y) =V (G)\
{x,y}.

Theorem 6.3 (Uniqueness). Let G be a connected graph and H a nontrivial graph. Then
µ(G◦H) = 1 if and only if one of the following conditions holds.

(i) G has exactly one universal vertex and H ∈ Gu.

(ii) µa(G) = 1 and H has exactly one isolated vertex.
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Proof. By Theorem 6.2 we differentiate the following two cases for G and H.

Case 1. G has a universal vertex and H ∈ G. Since for any universal vertex g ∈V (G) and any
pair h,h′ ∈V (H) such that NH(h) = NH(h′) =V (H)\{h,h′}, the line LG◦H{(g,h),(g,h′)} is
universal, we conclude that µ(G◦H) = 1 if and only if (i) holds.

Case 2. µa(G)≥ 1 and δ (H) = 0. Since for any universal line LG{g,g′} with g∼ g′ and any
h ∈V (H) such that degH(h) = 0, the line LG◦H{(g,h),(g′,h)} is universal, we conclude that
µ(G◦H) = 1 if and only if (ii) holds.

Observe that (i) and (ii) do not occur simultaneously for a graph H.
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N. Fraiman, Y. Zwols, A De Bruijn–Erdős theorem for chordal graphs, Electron. J.
Combin. 22 (1) (2015) P1.70.

[4] F. Buckley, F. Harary, Distance in graphs, Addison-Wesley Publishing Company Ad-
vanced Book Program, Redwood City, CA, 1990.

[5] F. Buckley, F. Harary, L. V. Quintas, Extremal results on the geodetic number of a graph,
Sci. Ser. A Math. Sci. (N.S.) 2 (1988) 17–26.

[6] X. Chen, V. Chvátal, Problems related to a de Bruijn-Erdős theorem, Discrete Appl.
Math. 156 (11) (2008) 2101–2108.
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[10] R. Hammack, W. Imrich, S. Klavžar, Handbook of product graphs, Discrete Mathemat-
ics and its Applications, 2nd ed., CRC Press, 2011.

[11] F. Harary, E. Loukakis, C. Tsouros, The geodetic number of a graph, vol. 17, 1993, pp.
89–95, graph-theoretic models in computer science, II (Las Cruces, NM, 1988–1990).
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