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Abstract

The paper presents a comprehensive overview of the use of artificial intelli-

gence (AI) systems in drug design. Neural networks, which are one of the

systems employed in AI, are used to identify chemical structures that can

have medical relevance. Successful training of neural networks must be pre-

ceded by the acquisition of relevant information about chemical com-

pounds, functional groups, and their possible biological activity. In general,

a neural network requires a large set of training data, which must contain

information about the chemical structure–biological activity relationship.

The data can come from experimental measurements, but can also be gen-

erated using appropriate quantum models. In many of the studies presented

below, authors showed a significant potential of neural networks to pro-

duce generalizations based on even relatively narrow training data. Despite

the fact that neural network systems have been known for more than

40 years, it is only recently that they have seen rapid development due to

the wider availability of computing power. In recent years, there has been a

growing interest in deep learning techniques, bringing network modeling to

a new level of abstraction. Deep learning allows combining what seems to

be causally distant phenomena and effects, and to associate facts in a way

resembling the human mind.
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1 | INTRODUCTION

Currently, there is an unprecedented range of possibilities for using computers in the medical field—not only as a
device to store health records and patient databases or to operate medical equipment but, above all, as a tool to support
diagnosis and drug design. This, of course, requires advanced techniques employing artificial intelligence (AI). The
advent of the popularity of deep neural learning dates back to 2012 when Krizhevsky et al.1 won the Large Scale Visual
Recognition Challenge.2 Artificial neural networks providing diagnostic, identification, and organizational potential,
especially for large clinical and biological datasets, are becoming increasingly used in medical science. Drug
discovery,3–10 lead optimization11 and synthesis,12,13 cardiological and cardiovascular diseases,14–18 medical image
analysis,19–22 diabetic diseases,23,24 oncology research,25,26 diagnosis, for example, alteration of oscillatory brain activity
as a possible biomarker for use in Alzheimer's disease diagnosis,27 are some of the examples of AI in service of medical
science (Figure 1). Computer-aided drug design is not only an interesting concept but also a business requirement. As
was noted by Wong and Siah,28 based on a sample of 406,038 entries of clinical trial data for over 21,143 compounds
from years 2000–2015, only a small percentage of substances tested are commercially successful and can be used by the
pharmaceutical industry. For example, the probability of success (POS) for an orphan drug is 6.2%, and ranges from a
minimum of 3.4% for oncology to a maximum of 33.4% for vaccines (infectious diseases). This low success rate encour-
ages the search for alternative ways to design drugs. In several cases, the widely cited statistics present more optimistic
values of POS than those by actual databases. For example, in the aforementioned oncological example, authors show
that pre-2019 studies had even larger (5.1%) success rate than those from 2019 (3.4%).

Biological systems are a complex and rich source of information, especially in the field of human diseases. Such
information has been systematically measured and collected using various technologies to reach an unprecedented
volume. The emergence of such high-performance research approaches in the field of biology and diseases creates both
challenges and opportunities for the pharmaceutical industry. This is primarily because of the increased possibility of
identifying reliable therapeutic hypotheses which can be the basis for developing appropriate drugs. The recent huge
growth in computing capabilities has led to an increased interest in machine learning (ML) techniques and their use in
the pharmaceutical industry.29 Creating computer platforms in a distributed architecture gives a virtually unlimited
access to storage and a large increase in computing power required for effective learning of complex AI systems. It also
enables processing of many types of large data sets constituting the basis for building reliable ML systems. Such data
may include text, images, spatial representations of medical scans, biometric data and other information from research
and diagnostic work, as well as data on multidimensional elements often represented in tensor form. Much of this rapid
increase in performance is due to the high availability of computer hardware, especially graphics processing units
(GPUs), which significantly accelerates computing, particularly in the area of parallel processing. The ability of a soft-
ware tool to use the GPU depends on the source of such application. Closed source software, for example, AlphaFold
gives the possibility to use GPU architecture, on the other hand the Polypharmacology Browser 2 (PPB2) technical
specification does not contain any data about this possibility. Many of the available applications (Chemputer,
DeepChem, DeepNeuralNet-QSAR, DeltaVina, NeuralGraphFingerprints, Open Drug Discovery Toolkit [ODDT],
Objective-Reinforced Generative Adversarial Network for Inverse-design Chemistry [ORGANIC], REINVENT, SCScore,

FIGURE 1 Artificial intelligence in medical application
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SIEVE-Score, QML) are open-source applications implemented in Python. Therefore, it is up to the user/researcher to
decide whether to run the code using an interpreter that performs calculations in the traditional way on the CPU or on
the GPU. GPU vendor Nvidia has pioneered the use of GPU-based interpreters to run SciPy or NumPy packages
included in drug design tools.

The current rapid development of ML algorithms, such as deep learning (DL), which allows building complex and
flexible models based on data, and the success of these techniques in numerous and sometimes very distant areas, have
further contributed to a huge increase in interest in ML in pharmaceutical companies over the last few years.30 In gen-
eral, AI is the broadest concept, also in health care31 including problems related to training of neural networks. ML is a
slightly narrower area usually considered to encompass algorithms using large, extensive neural networks, but designed
for selected problems. Currently, the narrowest classified area of AI systems is DL. The main difference between ML
and DL is the level of abstraction of the problems that these techniques cover. For example, an ML algorithm can be
used to study the relationship between the structure and a selected physicochemical property of a substance. In turn, a
DL algorithm can be used to give an answer on the potential relationship between disease symptoms and the structure
of a therapeutically active compound required for treatment, which requires a much more complex neural network to
cover a higher level of abstraction. DL algorithms are used to combine causally distant events and effects, a task that
has so far only been possible for humans. Although ML and DL are in some aspects similar AI approaches the impor-
tant distinction between them is the scope and complexity of the problems that they can operate on. ML is a broader
term that includes DL in its meaning. DL, however, has capabilities that are broader than ML, due to the use of a larger
network structure and its greater complexity. In general, ML gives the ability to create classification models however
only with the provision of appropriate features whereas DL gives the ability to generate classification features on its
own. DL is used to solve much more complex problems where the datasets are huge, characterized by high diversity
and the data is less structured. A significant advantage of DL over ML is that as learning progresses, the network learns
to extract features independently eliminating the need for manual feature extraction. However, it should be noted that
DL requires significantly more hardware resources. This review focuses on recent developments in the field of drug
design based on AI.

2 | STAGES OF DRUG DESIGN

Hughes et al.32 present the typical stages of drug discovery (Figure 2). Exploration of available biomedical data has
significantly intensified target identification. Data mining, refers to the use of a bioinformatic approach to improve
identification, and also to indicate and prioritize potential targets for diseases.33 Another effective method is the search
for potential genetic relationships, for example, between genetic polymorphism and the risk of disease or disease devel-
opment, or establishing whether a polymorphism is functional.34 A further method is the use of phenotypic screening
to determine disease-relevant objectives. Phage display is one of the most potent and extensively used laboratory
techniques for studying protein–protein, protein–peptide, and protein–DNA interactions. This approach is mostly based
on the protein display on the surface using phages, and is then used to investigate purpose-built libraries containing
millions or even billions of bacteriophage that were displayed.35

Validation methods include techniques from in vitro approaches through the use of complete animal models and
modulation of a required objective in ill patients. Certainty in the observed results is considerably increased by a multi-
validation approach. After the target validation process, complex screening tests are developed during the “hit” identifi-
cation phase and the main discovery in the drug discovery process. A “hit” molecule is defined as a chemical

FIGURE 2 Stages of early drug discovery
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compound which has the desired activity in a complex screening test and whose activity is proven after reexamination.
A method called high throughput screening (HTS) involves screening of the whole chemical component library directly
in relation to the drug target. Alternatively, a more complex assay arrangement is used, such as a cell-based assay, in
which the activity is target-dependent, but which consequently would also need secondary assays to verify the mecha-
nism of action of the investigated substance.36

Besides HTS, compound libraries, such as datasets based on rule of five,37 are used to determine the “hit” set of mol-
ecules for further investigations. Analysis of the substance “hit” list based on algorithms of computational chemistry
permits refining and selecting hits for further progression based on a chemical cluster understood as an ensemble of
molecules and factors such as ligand performance, which give an idea of how well a compound produces an effect
of required or expected magnitude. This is followed by the “hit to lead” phase in which the effort is made to extract
more effective and selective compounds from the hit series, such that they exhibit properties sufficient to test their effi-
ciency in any in vivo models available. Normally, this task involves carrying out intensive structure–activity relation-
ship (SAR) studies of each of the main complex structures, with measurements to determine the activity and selectivity
of each individual compound. Quantitative structure–activity relationship (QSAR) and SAR models38–42 are mathemati-
cal modeling techniques that can be used to predict physicochemical properties and biological activities for the ana-
lyzed chemical compounds based on their known chemical structure. These models are available free of charge or as
commercial computer programs. QSAR models must be scientifically valid, and the substance must belong to the field
of application of the model. The aim of this final phase of drug discovery is to preserve the promising features and char-
acteristics in lead components while making improvements of flaws in the lead structure. All molecule data collected at
this stage will allow the development of the final candidate profile which, along with the toxicological and chemical
production and control conditions, will provide the basis for a regulatory application to start administering to humans.

In the case of drug design, AI is used primarily to assess the potential properties of active substances and, to a lesser
extent, to discover new drugs or new uses for already existing drugs (drug repurposing) and synthesis routes. At each of
these steps it is necessary to know the structure of the compound, and its interactions.43

3 | DRUG DESIGN IN PRACTICE

It was shown by Lipinski,37 who introduced a rule of five which defines molecular properties essential for a drug's phar-
macokinetics in the human body, that the chemical space might contain as many as 1060 compounds when taking into
consideration only basic structural rules.44 In the light of the above, researchers have been creating databases of drug
like chemical structures. The biggest databases are GDP-13,45 containing approximately 970 million compounds, and
GDP-17,46 containing 166 billion organic small molecules, both freely available for researchers. There are also databases
created purely on an ab initio basis using quantum calculations. Maho47 derived a database containing 1.52 million
substances using a density-functional theory (DFT) approach with the B3LYP exchange-correlation functional and basis
set 6–31+G* able to represent electronic wave functions of chemical elements up to argon. Such databases create the
potential to research possible pathways for drug design.

One of the key problems that occurs when comparing chemical compounds for selected structural features is the
relatively high complexity of the process of searching for and identifying selected chemical substructures. It is
assumed48 that searching for chemical structures belongs to the class of non-polynomial-complete computational prob-
lems O(kN), where N is the number of atoms. This means, in a worst-case scenario, an exponential increase in the dura-
tion of calculations with each successive atom added to the investigated structure. In the traditional approach, the
solution used to describe similarities between substances was to capture the structure in topological indices, for exam-
ple the Wiener, Balaban or Hosoy index. In strict applications in drug design procedures, topological indices carried too
little information about the indexed compound. The solution proposed was then to use structural keys, in which appro-
priate information about structure was encoded using bit string expressions. The disadvantage of structural keys, how-
ever, was the requirement to employ a definite and unique agreement on how to code chemical structures, which
limited their level of generalization. To overcome this problem, a higher level of abstraction was proposed in the form
of molecular fingerprints, in which the necessity of using predefined patterns was eliminated and which, consequently,
enabled the generalization without the use of predefined patterns. Similar to cryptographic fingerprints, a given chemi-
cal substructure is represented by a numerical hash being a sequence of bits. The specific binary representation of a
given substructure is irrelevant, but it is important that each substructure is represented equally. The coding of the
molecular fingerprint is done by means of a specific, typically proposed by researchers or software developers,
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randomization function, also called the hash function. Hashed fingerprints are a type of black box encoding a structure,
which at the same time ensures that similar substructures receive a similar set of bits representing them. For example,
convolutional neural networks (CNNs) are used in many areas of medical expertise.49,50 CNNs can progressively filter
different portions of training data and refine important features in the discrimination process used to recognize or clas-
sify patterns. A typical artificial neural network using neural connections on any-to-any basis can easily be overtrained.
However, in the CNN's convolutional substructure, each neuron is connected only to the local input region. Local areas
are defined by width and height, while depth extends through the entire input image layer. Such a limited area of
hyper-connections is called a reception area. Convolutions allow extracting simple features in the initial layers of the
network, for example, during image processing they recognize edges with different orientation or areas with different
colors, and then shapes and geometric objects in the subsequent layers. Convolutional layers perform mathematical
convolution operations on the input data and pass their results on to the next layer. This is similar to the reaction of the
neuron in the visual cortex to a specific stimulus. Exemplary, processing of data describing a chemical structure
involves recognizing its fragments by the convolution layer in individual iterative steps (Figure 3), thereby identifying
individual characteristics of the structure. Such a network can be trained by applying input data encoded with SMILES
(simplified molecular input line entry specification) notation51 or even a bitmap image of a classical chemical structure.
Eventually, the convolutional network is able to learn the relationship between the structure and the target parameter
of biological, chemical, or physicochemical activity.

Various neural network algorithms have been proposed in the literature in drug design, ranging from very simple to
extremely complex.52 Due to the enormous breadth of the topic of neural network algorithms, only a very brief sum-
mary of the models discussed in this paper is given below. Some of the simple ones include multilayer perceptron
(MLP) based on McCulloch-Pitts neurons or more complex regression classifiers such as logistic, naive Bayes, shallow
neural networks, ridge, lasso, or support vector machines (SVM). Logistic regression is used when a variable is depen-
dent on a dichotomous scale53 and the explanatory variable has a two-point distribution. Naive Bayes regression is lin-
ear method in which statistical analysis is carried out using the method of Bayesian inference54 and classifiers are based
on the assumption of mutual independence of independent variables. Shallow network models usually have up to two
layers of neurons and require properly prepared features to perform the learning process. Such models are relatively
easy to overtrain which is characterized by too faithful adherence to specific data that such a network has already
observed. Ridge and lasso regression is a type of regularization that consist on introducing additional information to
the ill-conditioned problem to improve the quality of the solution and is used as a method to increase the generalization

FIGURE 3 Illustration of identification of chemical substructures by the convolutional layer of neural network
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of the trained model. Lasso (least absolute shrinkage and selection operator, L1) originally proposed by Santosa et al.55

is able to reduce variability and improve the quality of linear regression methods. Ridge (Tikhonov regularization, L2)
regression56 is a method used when independent and explanatory variables are strongly correlated. The standard errors
of ridge regression are reduced by the addition of a certain amount of bias to regression estimates. Besides SVM is a type
of kernel class of algorithms and an abstract concept of a machine that acts as a classifier, whose training is to deter-
mine a hyperplane which separates examples belonging to two classes with a maximum margin.57 Taking into account
separate objects, the kernel function evaluates a certain similarity measure. Generalized regression neural network
(GRNN) is a neural network that combines the advantages of radial network and MLP. The first hidden layer utilizes
radial neurons, performing clustering of the input data. The second layer consists of only two summation neurons and
is called the regression layer. Interesting solution is used hierarchical linear models which allow to take into account
the structure of relationships between variables grouping observations.

Among the techniques used in drug design, tree based models also show satisfactory results. The decision trees
include many learning algorithms to express given hypotheses.58 Decision trees are widely used in problems concerning
classification and prediction of ideas and concepts, among others in medical diagnostics. Random forest59 involves con-
structing multiple decision trees while teaching and generating a class which is a mode, indicating the value with the
highest probability of occurrence, or the value most frequently occurring in the sample, or predicted average of individ-
ual trees.60 Random forests are a way of averaging many deep decision trees, trained on different parts of the same
training set, to reduce variance.

The relatively simple radial networks and their more elaborate successors are a different way of solving learning
problems. Radial network is a type of unidirectional neural network in which radial basis functions (RBF) is used and
radial neurons are applied. RBF are real functions whose value depends on the distance from a certain point, that is, it
is a measure of distance. A representative radial network contains an input layer, a hidden layer consisting of radial
neurons and an output layer, working out the network response. Radial neurons are used to recognize repetitive and
characteristic features of clusters of input data. More complex models that utilizes radial networks are probabilistic
neural networks (PNN) in which the number of neurons in the hidden layer is equal to the number of training cases.
The main feature of probabilistic networks is to normalize the values of output signals in such a way that their sum on
all outputs of the network has the value of one. It can then be assumed that the values on the individual outputs of the
network represent the probabilities of categories assigned to those outputs.

The most complex DL network models include GANs, CNNs, and capsule networks.
GANs are type of networks used to create very realistic content. GAN consists of two parts, a generator and a dis-

criminator, which engage in competition with each other during training. The generator creates artificial content and
the discriminator tries to distinguish it from real world data. The network is trained to the point where the discrimina-
tor cannot differentiate the artificial data from the real data.

Capsule networks proposed by Geoffrey Hinton61 improve generalization to new points of view, which means that
after training in handling rotation, they learn that an object can be viewed from several different sides. Single comput-
ing unit in capsule networks is a capsule which is a generalized type of neuron. Vector carries information about the
strength of activation through its length and about the context of activation through its direction.

3.1 | Determining drug properties

The great potential of AI was recognized by the pharmaceutical industry and medical community several years ago.
There have even been large programs integrating scientists, which have made it possible to create large databases which
form the basis for ML. An excellent example of this is the Tox21 Data Challenge62 containing details of 12,000 environ-
mental chemicals and drugs, including 12 different toxic effects, comprised stress response effects and nuclear receptor
effects. Stress response panel consisted of the nuclear factor (erythroid-derived 2)-like 2 antioxidant responsive element,
heat shock factor response element, genotoxicity indicated by ATAD5, mitochondrial membrane potential, and DNA
damage p53 pathway. Nuclear receptor panel (biomolecular targets) contained the following elements: estrogen recep-
tor alpha; androgen receptor; estrogen receptor alpha, luciferase; androgen receptor, luciferase; aryl hydrocarbon
receptor; peroxisome proliferator-activated receptor gamma; aromatase. Based on 12,000 compounds as training data,
ML was proposed for the evaluation of 647 compounds with excellent accuracy. It should be noted that the success of
learning methods largely depends on the training datasets which are, therefore, the first prerequisite for obtaining reli-
able models.
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In silico methods in drug properties prediction are based on several techniques. Artificial neural networks are the
main method proposed for QSAR models (Figure 4).15 This technique is widely used by the pharmaceutical industry in
the drug discovery process. As early as at the beginning of the century, scientists noted that increasing computer power
can support decision making in this area. For example, a study63 compared a SVM with ML methods (RBF kernel and
C5.0 decision tree) in predicting inhibition of dihydrofolate reductase by pyrimidines. The authors showed that SVM is
an effective deterministic learning algorithm with reproducible results, with the lowest model error, as well as the
shortest calculation time compared with the RBF ML methods. Based on this methodology, it is possible to predict
the properties of drugs in the context of their toxicity.

Chemical carcinogenesis prediction is very important in drug discovery because of the crucial impact of drugs on
human health.64 In this case, two main mechanisms are considered: genotoxicity (by the mutagenicity of DNA-
damaging chemicals) and non-genotoxic carcinogenic action. Distinction between both mechanisms is very important
for risk assessment. It is crucial for non-genotoxic carcinogens which are classified as promoters for tumor develop-
ment. However, genotoxicity is a risk factor at different concentrations and may result in mutations causing tumor
growth initiation. Many recent studies have shown that environmental factors, including various chemicals, play a key
role in cancer development.65 Therefore, it is extremely important to identify substances with such activity and to pre-
vent exposure to such carcinogens. Traditionally, animal assays were used to indicate substances with the carcinogenic
potential. However, this method is not only costly and time-consuming, but also complicated by regulatory policies
demanding changes in protocols of examination of toxicological effects. Singh et al.66 showed a possibility to use the
PNN and GRNN modeling approaches in prediction of carcinogenicity of diverse chemicals (by determining the
tumorigenic dose, �logTD50). Authors employed the dataset from Carcinogenic Potency Database67 including: for rats,
834 compounds (466 positive and 368 non-positive carcinogens), for mice, 632 (292 positive), for hamsters, 57 (38 posi-
tive). Of the various molecular descriptors, 12 non-quantum mechanical molecular descriptors were used. They could
be divided into four categories: (i) physicochemical (octanol–water partition coefficient as Log P, density, melting point,
half-life in water or in air, persistence time), calculated by molecular structures; (ii) constitutional (hydrogen-bond
acceptor or donor, and carbon or hydrogen percentage); (iii) geometrical (maximum Z-length); and (iv) topological
(Balaban index), computed based on 2D structures of the molecules (in the form of SMILES). It should be noted here
that the authors employed relatively simple descriptors based mainly on physical and chemical properties for the
evaluation of complex final estimators, prediction of carcinogenicity. Both models proposed differ in architecture,
5 or 9 input, and hidden layer for PNN and GRNN models, respectively. Moreover, PNNs are based on the Bayesian
classification and classical estimators for probability density function,68 while GRNNs are trained by a K-means cluster-
ing algorithm. The authors showed that the optimum PNN exhibited a high ability to predict and differentiate
substances between positive and non-positive carcinogens and may be treated as a preliminary stage for the possible
exclusion of new substances with a carcinogenic potential. The GRNN model, on the other hand, allowed predicting
the tumorigenic dose with high accuracy.

These relatively simple models were presented in a study66 and initiated further research in this area. For example,
various ML models of in vitro and in vivo bioassays for rat carcinogenicity prediction were presented in reference 69.
The first advantage over the previously described models is that here the authors used a much larger set of training
data, including GreenScreen with genotoxicity results (in vitro GADD-45a-GFP assay) for 1415 compounds,70 Syrian
Hamster Embryonic with in vitro Syrian Hamster Embryonic (pH 7+) cell transformation assay results
(356 compounds),71 Hansen Toxicity Benchmark dataset with Ames bacterial mutagenicity results (6512 compounds),72

FIGURE 4 Machine learning methods in drug design
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ISSCAN (in vivo rat carcinogenicity, 854 compounds),73 in vivo rodent pharmaceutical carcinogenicity results (374 com-
pounds).74 Moreover, to predict the assay results in this case, higher numbers of ML algorithms were compared: J.48
Decision Tree, Random Forest, MLP, k-nearest neighbor and Adaboost75 with 10-fold cross validation. Moreover,
descriptors associated with physicochemical properties were used to describe the compounds. The authors used for this
purpose, such parameters as: (i) presentations of chemical structures by ChemAxon Standardizer with redrawn 3D
coordinates, the explicit representation of hydrogens and reconfigured aromaticity; (ii) physicochemical properties
(octanol–water partition coefficient as Log P), number of hydrogen-bond acceptor or donor, as well as rotatable bonds,
polarizability, polar surface area, and molecular weight. It should be noted that the assessment of properties of sub-
stances (potential drugs), that is, in the context of carcinogenicity, is always supported by the assessment of chemical
properties. It should be noted that the assessment of properties of substances (potential drugs), that is, in the context of
carcinogenicity, is always supported by the assessment of chemical properties. This confirms the important role of coor-
dination of chemistry in drug design with the use of ML techniques. The authors concluded that k-nearest neighbors
model was the best one of all considered for in vivo rodent carcinogenicity prediction, and that the results obtained can
contribute to future development of new drugs and determination of their properties with AI methods.

From the point of view of drug design, acute toxicity analysis is important as well. This parameter indicates
unequivocally whether it is worth considering a given substance as a potential drug or whether, in view of the strong
hazard to human health, any further stages of research in this area should be abandoned. It could also predict the side-
effects of overdosage and should support all phase III clinical trials of drugs. Evaluation of acute toxicity could help in
the identification of patients at higher risk for overdosing, for example, those suffering from depression or dementia.
In terms of acute oral, dermal and inhalation toxicity, the most common studies reported in the literature are related to
oral toxicity assessment (mainly as median lethal dose, LD50 parameter). In these studies, authors mainly use the data-
base created by Zhu et al.76 for 7385 compounds with their most conservative lethal dose. For example, in one study,
authors predicted oral acute toxicity based on a molecular graph encoding a convolutional neural networks standard
(MGE-CNN) with regression model, a multi-classification model and a multi-task model for deep fingerprints.77 Analy-
sis of data allowed extracting structural fragments of molecules responsible for toxicity: nitriles, alyl (thio)phosphates
and thicarbonyl. The presented DL architecture for acute oral toxicity could be used for prediction and exploration of
other toxicity or property endpoints of chemical compounds. Moreover, by using the ability to learn automatically from
DL, it was also possible to create fragments from information about atoms and bonds and then identify their potential
toxicity. Researchers from Peking University, Center of Quantitative Biology and Molecular Design Laboratory, made
these DL models available at a website.78 The issue of oral toxicity prediction was also discussed in.79 The authors
showed the superiority of dual-layer hierarchical models (by integration regression and classification QSAR models)
over classical base models in the prediction of categories (binary toxic/nontoxic and four hazard categories under the
U.S. Environmental Protection Agency [EPA] classification system) and continuous (LD50) endpoints for rat acute oral
toxicity. The first layer of the proposed model was based on regression, binary and multiclass ML techniques, and
molecular descriptors and fingerprints, while the second one was based on collection of the outputs from the
base models. In order to confirm the validity of the adopted learning model, the authors presented calculations
for two substances: Furaserenon-X ([(1S,2R,3S,7R,9R,10R,11S,12S)-3,10-dihydroxy-2-(hydroxymethyl)-1,5-dimethyl-
4-oxospiro[8-oxatricyclo[7.2.1.02,7]dodec-5-ene-12,20-oxirane]-11-yl]acetate) and VX (Ethyl({2-bis(propan-2-yl)amino]
ethyl}sulfanyl)(methyl)phosphinate). Furaserenon-X is a class of trichothecene mycotoxins. It causes disruption of DNA
synthesis by inhibiting protein synthesis,80 with logLD50 at the level of �1.95 mmol/kg (EPA, class I). The base regres-
sion model predicted that this compound is nontoxic (EPA, class III, logLD50 = �0.39 mmol/kg), while the hierarchical
classification model identified it as toxic (EPA, class I, logLD50 = �1.14 mmol/kg). VX is an extremely toxic class of
organophosphorus compounds belonging to thiophosphonates (EPA, class I, logLD50 = �4.34 mmol/kg), which poten-
tially blocks the function of acetylcholinesterase. As a consequence, flaccid paralysis of all muscles in the body occurs.
The immediate cause of death is asphyxiation caused by paralysis of the diaphragm muscle.81 In this case, both tested
and comparable models were not very accurate, although both correctly predicted toxicity (EPA, class I). It should be
noted that the low accuracy of prediction was due to the small amount of training data in such a high toxicity range.
However, a smaller error could also be seen here for the hierarchical model (logLD50 = �1.19 mmol/kg) in comparison
with the base model (logLD50 = �1.08 mmol/kg). It is worth pointing out that the artificial neural network should have
the ability to generalize, just like humans, and the low accuracy of prediction obtained indicates that the training data
did not include the range of testing data. Thus, the main problem here is the volume of database. Alberga et al.82

proposed prediction of toxicology endpoints related to the acute oral systemic toxicity as binary classification: nontoxic
(LD50 > 2000 mg/kg) and very toxic (LD50 < 50 mg/kg), as well as classification according to EPA and GHS
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(Globally Harmonized System of Classification and Labeling of Chemicals) based on k-nearest neighbors techniques
and 19 different fingerprints (Table 1). The authors concluded that the increasingly accurate methods of predicting
acute oral toxicity may replace the necessary animal tests.

Cardiotoxicity is often described with regard to blockade of human ether-à-go-go-related gene (hERG) cardiac potas-
sium channel.89 Cardiovascular toxicity comprises heart failure due to toxin-induced abnormalities with injury of the
muscles, and therefore may reduce blood flow and circulation. It is also the main reason for withdrawal of many drugs
from markets globally. Lengthening of the QT interval related with lethal ventricular arrhythmia is responsible for such
situations. Since this aspect is very important in drug design (mainly as safety evaluation of drug candidates), in silico
methods are described in the literature.90 Zhang et al.84 proposed prediction of hERG activity by deep neural networks
(optimal form of calculation with three hidden layers) based on 697 molecules data from.85,91 Based on the results, the
authors concluded that the proposed DL could offer effective prediction of hERG toxicity, and as a consequence, have a
great potential to aid developing novel drug candidates. Similar observations were described in another paper86 looking
at ML and DL algorithms using fingerprints and principal component analysis (including partition coefficient, molecu-
lar weight, H bond acceptors and donors, number of rotatable bond, rings and aromatic rings, as well as molecular frac-
tional polar surface area) as descriptors and a training set of 3991 compounds. Authors compared SVM methods
(linear, polynomial, radial), with random forest, and artificial neural network (layer size 100, 200, and 400) for
DL. Based on the results, it can be seen that accuracy of hERG-blocker prediction depends on the selection of

TABLE 1 Targets, selected descriptors, and statistics (classification accuracy, sensitivity, specificity) for selected models

Target Descriptors Statistics Ref.

Carcinogenicity
predictiona

H bond acceptors
H bond donors
Content of H and C

Sensitivity 89.6%, specificity
95.8%, accuracy 92.09%

66

H bond acceptor
H bond donors
Rotatable bonds
Polarizability
Polar surface area

Sensitivity 35.1%, specificity
88.3%, accuracy 69.3%

69

Oral acute
toxicity

Molecular fingerprint Accuracy 95.5% 77

Accuracy 71% 79

Molecular fingerprint (e.g., atom pairs, topological torsion, substructure,
hybridization)

Sensitivity 83.9%, specificity
99.6%, accuracy 82%

82

Cardiotoxicity Molecular fingerprint and 2D ChemoPy83 descriptors (e.g., connectivity,
topology, Kappa, Burden) or MOE 2D descriptors (surface areas,
connectivity, shape indices, atom, and bond counts)

Accuracy 78% 84

Molecular fingerprint Sensitivity 78%, specificity
61%

85

Molecular fingerprint and principal component analysis (PCA) (e.g., H bond
acceptors, H bond donors, rotatable bond number, number of rings and
aromatic rings, molecular fractional polar surface area)

Accuracy 87% 86

Molecular descriptor
Molecular fingerprint
Molecular graph-based features (atom types, number of degrees, number of

bound hydrogens, implicit valence, size of ring containing the atom, and
aromaticity)

Sensitivity 83.3%, accuracy
77.3%

87

SMILES and molecular fingerprint (number of tertiary amines (aliphatic),
Wiener index, number of carbon atoms, frequency of C–C at topological
distance, distance/detour ring index, centered Broto–Moreau
autocorrelation weighted by van der Waals)

Accuracy 90.1% 88

Note: Where Sensitivity = TPTP+FN�100%, specificity = TNTN+FP�100%, accuracy = TP+TNTP+TN+FP+FN�100%, TP and TN are the number of true
positives and negatives, respectively, while FP and FN are the number of false positives and negatives, respectively.

aCarcinogenicity prediction, as tumorigenic dose (TD50) in reference 66 and in vivo rodent carcinogenicity (IVRC) in reference 69.
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fingerprints. Better results for ML models were obtained with the use of integer-type fingerprints, while binary-type fin-
gerprints are appropriate for DL. Ryu et al.87 proposed a step further—model that predicts both hERG-blockers and
non-blockers for input compounds (DeepHIT). The criterion indicating the blocking or non-blocking properties of
hERG was the value of the half maximal inhibitory concentration (IC50): hERG-blockers had IC50 < 10 μM, hERG non-
blockers had IC50 ≥ 10 μM.92 The calculations required a preliminary standardization of the compounds by selection of
the largest fragment, removal of explicit hydrogens, ionization, and calculation of stereochemistry. The authors com-
pared six traditional ML algorithms (i.e., k-nearest neighbors, logistic regression, naive Bayes, shallow neural network
[simpler configuration, less neural layers], random forest, and SVM) with deep multilayered neural network with
molecular descriptor-, molecular fingerprint-, and graph-based feature datasets (Table 1). Their proposals are available
at websites.93,94 In the case of this cited study, it is worth emphasizing that the authors, based on the trained network,
indicated a new novel urotensin II receptor antagonists without hERG-blocking activity obtained from a seed com-
pound of a previously reported UT antagonist (KR-36676) with a strong hERG-blocking activity. Capsule networks also
showed excellent performance in the classification of hERG-blockers and non-blockers with prediction accuracies of
approximately 92%.95 This is the first example of using such a technique in drug discovery-related studies. Furthermore,
work88 presented an interesting comparison of ML prediction (linear regression, ridge regression, logistic regression,
naïve Bayes, neural network, and random forest) for results regarding 10 drug compounds (Table 2). The presented
model correctly predicted 8 out of 10 compounds with 80% accuracy, 60% sensitivity and 100% specificity, which indi-
cated that this model could be used for virtual screening in drug discovery.

It should be noted that in all cases of these cardiotoxicity predictions, the chemical structure of the compounds
played an important role. The analysis indicates that most hERG channel blockers have in their structure a tertiary
amine group and aromatic rings. The first fragment has the ability to protonate at physiological pH and plays a signifi-
cant role in the binding of the channel blocker and the hERG channel. Aromatic rings are associated with π-stacking or
hydrophobic interactions with the aromatic rings of amino acids within the hERG channel cavity.96

Known for their ability to be creative, generative adversarial neural (GAN) networks have also found application in
de novo drug design. Based on compound databases such as ChEMBL or ZINC Database, the application of these net-
works allows the generation of new structures—drug-like compounds which can be treated as potential new drugs with
desired properties.52,97,98 For example drug-like Prykhodko et al.99 successfully proposed latent vector based generative
adversarial network (LatentGAN), combination of autoencoder and Wasserstein GAN, for generation of drug-like com-
pounds (set limited to SMILES of containing only [H, C, N, O, S, Cl, Br] atoms and a total of 50 heavy atoms or less)
and target-biased compounds (EGFR, HTR1A and S1PR1 targets, based on ExCAPE-DB). The authors of this paper
indicated that the proposed model allows the prediction of compounds according to the planned target, while also indi-
cating that a significant portion of the compounds are new with respect to the training set. Another example of
adapting the GAN for drug design is its connection with reinforcement learning (RL), known as Objective-Reinforced
Generative Adversarial Networks (ORGAN)100 or its implementation for inverse-design chemistry (ORGANIC).101

Based on two drug-likeness indicators: chemical beauty102 and Lipinski's rule-of-five37 Aspuru-Guzik group101 showed
that ORGANIC allows to generate molecules (based on SMILES sequences format) which are consistent with a compa-
rable list of FDA-approved drugs in the amount of 148 and 207, for both indicators respectively. Among the substances
proposed by the model were very well-known compounds, for example, paracetamol and salicylic acid. There are also

TABLE 2 Prediction results of 10 drug compounds88

Drug In vivo results Model results

Haloperidol Toxic Toxic

Chloropromazine Toxic Toxic

Disopyramide Toxic Toxic

Cimetidine Nontoxic Nontoxic

Terazosin Nontoxic Nontoxic

Spironolactone Nontoxic Nontoxic

Cefazoline Nontoxic Nontoxic

Loratadine Nontoxic Nontoxic

Sotalol Toxic Nontoxic
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proposals in the literature for drug design software based on neural networks, including GANs. For example, MolAICal
software can be successfully used to generate 3D structural ligands in the 3D pocket of protein targets.103 The software
is based on two modules: fragments of FDA-approved drugs or from the ZINC drug database are used to train the
WGAN model, and then the generated fragments are used to grow 3D ligands in the protein pocket. In this approach
molecular docking is used for check the affinities between the generated molecules and proteins. It is worth noting that
the software supplies the filter rules, for example Lipinski's rule-of-five, synthetic accessibility (SA) and pan-assay inter-
ference compounds (PAINS). Moreover, other user-defined rules can be added. The authors indicate that the proposed
software can create ligands with 3D structural similarity to the crystalline ligand of GCGR or SARS-CoV-2 Mpro and
could become a useful tool for drug design.

Although in silico techniques are still relatively new, they are becoming increasingly important in drug design. On
the one hand, the enable the reduction of animal experiments, which is in line with general scientific trends. On the
other hand, these techniques enable an initial assessment of the broadly defined toxicity of a compound before it is syn-
thesized, thus at a very early stage of drug design. The above examples of use of such computational techniques for ana-
lyzing quantitative structure–activity relationship, ML and DL, undoubtedly justify the use of these methods in the
determination of toxicity in silico, especially when there are no experimental results, and the possibility of AI generali-
zation of data is very helpful.

3.2 | Drug mechanism

Another aspect to consider in drug design procedures is predicting the interaction between the drug and the target
(enzymes [E], ion channels [IC], nuclear receptors [NR], G protein-coupled receptors [GPCRs], known as gold standard
according to Yamanishi et al.).104 At the same time, such a procedure may facilitate understanding of the drug mecha-
nism of action, pathology of the disease and possible side effects of the drug.105 In a simplified form, it can be said that
the drug binds to the target molecule by formation of temporary bonds and reacts with the target to inhibit its function-
ing and to avoid certain catalyzed reactions occurring in the body in order to treat diseases. Depending on the type of
drug, its molecule interacts directly with the active site of the target to inhibit reaction (competitive inhibitors) or with
an allosteric site on the target to change the reaction (allosteric inhibitors).106 Regardless of the mechanism, assessment
of the drug–target interaction (DTI) potential should take into account the structure of both the drug and the target
under consideration, together with the possibility of bond formation and reaction.107 Identification of DTIs is a crucial
step in drug discovery. AI techniques are often proposed for the prediction of DTIs thanks to, as mentioned above, the
opportunity to use increasingly large databases and the ability of neural networks to generalize.108 For example, Rayhan
et al.109 proposed connection of two deep, CNNs for DRI prediction: FRnet-Encode and FRnet-Predict. The first of them
was used to generate 4096 features for dataset, and the second one to classify and identify probability of interaction with
an accuracy of over 97%. This approach of analyzing data using two models is very effective. The authors also proposed
new pairs of compounds with a high probability of interaction in all four gold standard datasets (i.e., [E] protein ID
hsa:10825/drug: threonine with score: 0.8351, [IC] protein ID hsa: 285242/drug: diazoxide with score: 0.9823,
[NR] protein ID hsa: 2099/drug: tazarotene with score: 0.9912, [GPCR] protein ID hsa:9052/drug: isoetharine with
score: 0.9013). However, these results were not verified by the authors and are only a hypothesis. An interesting
approach was also presented in a study.110 The authors used DL with convolution on protein sequences to predict DTI.
The model proposed by them employed raw protein sequences both for different target protein classes as well as protein
lengths. The model, similarly to other cited works, was validated by prediction DTIs from bioassays such as PubChem
BioAssays and KinaseSARfari with a high accuracy. Pliakos and Vens111 presented heterogeneous networks with bi-
clustering trees. They used descriptors based on chemical structure for drugs and descriptors based on the alignment of
protein sequences for proteins. This is the most frequently used method, and differences between authors are mainly
related to the amount of data of learners, databases, and network topology. As was suggested by the authors, use of
tree-ensemble learning models with output space reconstruction allowed obtaining higher prediction results in compar-
ison with traditional models. Moreover, such a solution is known for its scalability, interpretability and inductive set-
ting, which is very important in prediction. Li et al.112 showed usefulness of combinations of position-specific scoring
matrix (including protein secondary structure, protein binding site and prediction of disordered regions) and local
phase quantization methods, as well as rotation forest classifier in the prediction of DTIs with average accuracies equal
to 89.15%, 86.01%, 71.67%, 82.20% for the four targets, respectively. To confirm the validity of the predictive model
developed, the authors tested the algorithm on a commercial drug sulfasalazine (2-hydroxy-5-[(E)-2-{4-[(pyridin-2-yl)
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sulfamoyl]phenyl}diazen-1-yl]benzoic acid) and two target protein sequences: arachidonate 12-lipoxygenase, 12S-type
(ALLOX 12) and lipoprotein lipase (LPL). According to the prediction results, sulfasalazine interacts with ALLOX
12 with a possibility score of 0.844, and does not interact with LPL (possibility score = 0.3200). Another approach is the
method named DTiGEMS+ based on graph embedding, graph mining, and similarity-based techniques.113 Authors
proposed a heterogeneous network by connecting the known DTI graph with two complementary graphs based on
drug–drug and target–target similarities. An interesting approach was to validate the model on unknown data for a
group of drugs and targets (enzymes [E], ion channels [IC], nuclear receptors [NR], GPCRs) and to assess their interac-
tions on the basis of experimental data (e.g., from PubMed identifier, PMID or drugs base, DB) not included in the
teaching databases (Table 3). The authors did not mention which descriptors were used in the model. It can be assumed
that they were similar to those described in their previous work.114 In this work, random forest model using heteroge-
neous graph, containing known DTIs with multiple similarities between drugs and multiple similarities between target
proteins, was proposed. Chemical structure fingerprints, Gaussian interaction and side-effect profiles were considered
as descriptors for drugs, while amino acid sequence profiles of proteins, parameterizations of the mismatch and the
spectrum kernels, proximity within the protein–protein interaction network and the Gaussian interaction profile were
descriptors for target proteins. The authors also verified the correctness of the model proposed by analyzing new drugs,
with 22 out of 25 being correctly identified. Additionally to the models based on heterogeneous graph, a new DL model
multimodal deep autoencoder with a similarity network with drugs as nodes and drug–drug similarity values as the
weights of edges was proposed by Wang et al.115

The presented literature review indicates the possibility of predicting interaction between the drug and the target,
which allows a conclusion that AI, just as in the prediction of drug properties, is an interesting alternative in the pro-
cess of drug design, as well as drug ranking. In this second case, Geres et al.116 demonstrated the applicability of ML,
based on proteomics and phosphoproteomics data derived from 48 cell lines, for predicting therapy in cancer treatment,
by evaluating of >400 drugs for their antiproliferative efficacy in tumor cells.

3.3 | Drug repurposing

Drug repositioning allows finding new uses of existing drugs.117–119 It is also considered as a suitable method for finding
drugs for orphan and rare diseases. This procedure reduces the time needed to place a new drug on the market, simulta-
neously reducing the time and risk of failure because preclinical development and optimization issues can be omitted
in a large scale. There are three stages of the drug repurposing strategy: (i) identification of potential molecule;
(ii) preclinical tests—mechanistic assessment of the drug effect; (iii) phase II clinical trials—evaluation of efficacy.118 In
the first of these steps, computer-based calculations can be used successfully. The above-discussed DTI prediction is also
beneficial for searching novel uses of existing drugs. Based on the increasing access to medical databases,120–125 it is pos-
sible to analyze drugs in the context of their new uses by means of, that is ligand-based approaches. Another excellent
review concerning drug databases which could be helpful in DTI with their advantages and disadvantages has been
published.126 The basis of this method is the assumption that similar compounds have similar biological properties,

TABLE 3 Validation of DTiGEMS+113

Drug Target name Evidence (PMID or DB number)

Nifedipine E: CYP2C9 (Cytochrome P450 Family 2 Subfamily C Member 9) 9929518

Metyrapone E: CYP1A1 (Cytochrome P450 Family 1 Subfamily A Member) 9512490

Nicotine IC: CHRNA4 (Cholinergic Receptor Nicotinic Alpha 4 Subunit) 17590520
DB00184

Nimodipine IC: CACNA1S (Calcium Voltage-Gated Channel Subunit Alpha1S) DB00393

Norethindrone NR: ESR1 (Estrogen Receptor Alpha) 27245768

Testosterone NR: PGR (Progesterone Receptor) 23229004
23933754

Clozapine GPCR: DRD3 (Dopamine Receptor D3) DB00363

Clonidine hydrochloride GPCR: ADRA1B (Adrenergic Receptor alpha-1B) DB00575
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thus, in the case of drug design, it could be concluded that similar ligands have similar activities in respect to
similar targets.127 The importance of this issue is underlined by the increasing volume of publications in this
area. Patrick et al.128 proposed a word-embedding-based ML approach for drug repurposing for nine cutaneous
diseases (including psoriasis, atopic dermatitis, and alopecia areata) and eight other immune-mediated dis-
eases. Based on the validation results, authors concluded that model could predict new drugs for psoriasis, with
the highest prediction scores for budesonide (a corticosteroid, currently used to treat asthma and inflammatory
bowel disease) and hydroxychloroquine (an antimalarial drug that is also used to treat lupus and rheumatoid
arthritis). Anderson et al.129 used Bayesian ML models for drug repurposing in chordoma. Of the available
data, the mTOR inhibitor AZD2014 was indicated as the most potent against chordoma cell lines (IC50

0.35 μM U-CH1 and 0.61 μM U-CH2). Moreover, two currently FDA-approved drugs, afatinib and palbociclib
(EGFR and CDK4/6 inhibitors, respectively) demonstrated synergy in vitro (CI50 = 0.43), alongside AZD2014
and afatanib which also showed synergy (CI50 = 0.41) against chordoma cells in vitro. As shown in the
paper,130 ML could be applied for prediction of a new therapeutic system for drugs. The authors proposed a
model based on decision trees (Bayesian tree-structured) with several molecular features as descriptors. They
showed that both 2D and 3D chemical similarity should be used. It is worth emphasizing here that often
authors use only one type of molecular similarity, but according to the conclusions in the cited work, it is better
to use both at the same time, because each of them transfers notation of different components to the model.
Moreover, the authors used new types of features: drug–gene phenotype similarity and the gene–gene expres-
sion profile similarity across different tissues. Such a solution allowed them to obtain 78% precision in the case
of top 50 predictions, and 48.2% for 500 predictions. Using the constructed neural network, the authors con-
cluded that the antipsychotic drug fluphenazine is a highly probable drug targeting the PRKDC gene which is a
potential target for treatment of ATM-deficient cancer.131 Thus, fluphenazine used for schizophrenia treatment
could be considered in cancer treatment. ML and DL approaches for cancer drug repurposing are also discussed
in detail in another paper.132

It is worth noting that cases discussed here do not exhaust the number of uses of AI in the analysis of drugs. For
example, there is the aspect related to drug metabolite prediction.133 Any additional information about a drug undoubt-
edly provides a basis for even better understanding of the potential ingredients of therapeutics and provides excellent
support for decisions regarding continuation of research into the development of new active compounds for
medications.

4 | CONCLUSION

In 2019, an article in Nature Machine Intelligence was published in which the author indicated that “Now AI is back —
this time, apparently, for good.”134 The review presented in this article confirms this hypothesis. Progress in computers
and computational algorithms has become an opportunity to support medicine. In the area of drug design, the widest
applications, as indicated in the literature, are found not only in networks with a very basic architecture such as MLP
or RBF, but also and especially in networks with a very complex design such as CNN, capsule or GAN. There is no defi-
nite indication which network is the best tool for such design purposes. However, DL solutions are currently the most
popular, as they are becoming more and more faithful reflection of complex ways of thinking characterized by human
mind. DL allows not only to analyze data, but also finds and determines the characteristics of the observed sets on its
own, while becoming an increasingly versatile tool to support the course of drug design. And although the role of a
computer cannot be overestimated, in the end there is always a human who makes the final decision. The promise
made by AI for the future are better drugs, discovered and delivered faster. It should also be noted that in the case of
drug design, basic properties of the molecules, for example, bonding, quantum and physicochemical properties, are not
the only aspects to be taken into account. Medicines may have multiple biological targets and effects, and their effi-
ciency depend on several factors such as bioavailability, effect of formulation and administration, as well as individual
genetic profiles of patients.
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