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Abstract—The decentralized nature of federated learning, that often leverages the power of edge devices, makes it vulnerable to
attacks against privacy and security. The privacy risk for a peer is that the model update she computes on her private data may, when
sent to the model manager, leak information on those private data. Even more obvious are security attacks, whereby one or several
malicious peers return wrong model updates in order to disrupt the learning process and lead to a wrong model being learned. In
this paper we build a federated learning framework that offers privacy to the participating peers as well as security against Byzantine
and poisoning attacks. Our framework consists of several protocols that provide strong privacy to the participating peers via unlinkable
anonymity and that are rationally sustainable based on the co-utility property. In other words, no rational party is interested in deviating
from the proposed protocols. We leverage the notion of co-utility to build a decentralized co-utile reputation management system that
provides incentives for parties to adhere to the protocols. Unlike privacy protection via differential privacy, our approach preserves
the values of model updates and hence the accuracy of plain federated learning; unlike privacy protection via update aggregation,
our approach preserves the ability to detect bad model updates while substantially reducing the computational overhead compared to

methods based on homomorphic encryption.
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1 INTRODUCTION

EDERATED learning [5], [12] is a decentralized ma-
Fchine learning technique that allows training a
model with the collaboration of multiple peer devices
holding private local data sets that include class labels.
This approach favors privacy because the peers do not
need to upload their private data to a centralized server.
It is also naturally scalable, because the computational
load is split among the peers, which may be edge devices
such as idle smartphones, and thus widely available.

In federated learning, a special peer, which we will
call the model manager, sends an initial model to all
peers. Each peer then computes a model update by
correcting the model so that, when input the records
in the peer’s private data set, the model’s output fits
the corresponding class attribute labels. Then the peer
returns the update to the model manager. The model
manager aggregates the updates and distributes a new
model to the peers. A new learning iteration can now
start. Iterations carry on until the models learned in
successive iterations converge.

Unfortunately, as we discuss in Section 2, the decen-
tralized nature of federated learning makes it vulnera-
ble to attacks against privacy and security. Substantial
literature has been devoted to the privacy risks for
peers [10]: to what extent the model update returned
by a peer can leak her private data. Privacy-protection
techniques include secure aggregation of updates, which
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hides individual updates to the model manager, and
distortion of updates via differential privacy, which may
significantly hamper the model’s accuracy.

Even more obvious are security attacks, whereby one
or several malicious peers return wrong model updates
in order to prevent the convergence of the model (Byzan-
tine attack) or cause a wrong model to be learned (poi-
soning attack). Protection from Byzantine and poisoning
attacks requires the model manager to analyze individ-
ual peers’ updates, thereby making privacy-enhancing
techniques based on secure aggregation of updates in-
adequate.

Contribution and plan of this paper

In this paper we build a federated learning framework
that offers both privacy to the participating peers and
security against Byzantine and poisoning attacks. Our
framework consists of several protocols designed in such
a way that no rational party is interested in acting mali-
ciously. This makes our protocols robust against security
attacks. Our protocols also provide strong privacy to
the participating peers via unlinkable anonymity and
without requiring the aggregation of model updates.
In this way, peer updates reach the model manager
individually, while being, at the same time, perfectly
accurate. This provides an optimum balance between
security, privacy and learning accuracy.

To be rationally sustainable, our protocols are based
on the co-utility property [7]. We also use reputation
as a utility to reward well-behaved peers and punish
potential attackers. In order to properly integrate repu-
tations in the federated learning scenario, our reputation
management is decentralized and itself co-utile.
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We report empirical results that show the effectiveness
of our protocols at mitigating security attacks and at
motivating rational peers to refrain from deviating.

Section 2 discusses privacy and security attacks
against federated learning. Section 3 introduces a co-
utile protocol suite for privacy-preserving and secure
federated learning. Section 4 shows that the proposed
protocol suite achieves co-utility (and hence is rationally
sustainable), privacy and security. Experimental results
are presented in Section 5. Finally, conclusions and future
research lines are gathered in 6.

2 ATTACKS ON FEDERATED LEARNING PRI-
VACY AND SECURITY

In this section, we will discuss the main attacks on
privacy and security that are applicable to federated
learning. For a recent and exhaustive survey, see [10].

2.1 Privacy attacks

Privacy attacks to federated learning exploit the update
sent by a peer to infer information on that peer’s private
data.

In federated learning the private data sets held by the
various peers are unlikely to be identically distributed.
What is more, federated learning is explicitly designed to
improve the learned model by capturing the differences
among the peers’ private data sets. Data inference attacks
can be mounted that aim at inferring how each class is
represented in a certain peer’s private data set.

In [9], a powerful data inference attack against fed-
erated deep learning is presented that relies on GANs
(Generative Adversarial Networks). This attack assumes
an attacker that can see and use internal parameters
of the learned model. The attacker participates as an
honest peer in the collaborative learning protocol, but
she tries to extract information about a class of data she
does not own. To that end, the attacker builds a GAN
locally and crafts gradient updates before returning them
in order to influence other participating peers to leak
more information on their data. If the attacker is the
model manager rather than a peer, she can do more:
the model manager can isolate the shared model trained
by the victim peer. The victim peer’s update trained on
the victim’s data is used to train the model manager’s
GAN, that can eventually re-create the victim’s data. As
explained in [9], not even differential privacy used as
proposed in [17] can protect against the proposed GAN
attack.

A common requirement of all data inference attacks
in federated learning is that the attacker must be able to
link the successive updates submitted by a certain peer.
Our aim is to make sure that such a linkage is not possible
by making peers” updates unlinkably anonymous in the model
manager’s view.

2.2 Security attacks

Security attacks on federated learning aim at disrupting
model convergence and thereby the learning process.
They can be subdivided into Byzantine and poisoning
attacks.

Byzantine attacks consist of malicious peers who submit
defective updates in order to prevent convergence of the
global model [3].

Subtler than Byzantine attacks are model poisoning
attacks. Rather than preventing convergence, the latter
aim at causing federated learning to converge towards
a false global model, normally one that misclassifies a
specific set of inputs.

In [2] it is shown that a single, non-colluding malicious
peer is enough to mount a poisoning attack. Yet, security
attacks can also be mounted by collusions of peers or
by a single peer masquerading as several peers (Sybil
attack).

Countermeasures against Byzantine or poisoning at-
tacks require seeing the exact values of the individual
updates, in order to assess their goodness. This is why
some techniques that are good to protect the privacy
of peers, such as secure aggregation of peer updates
via homomorphic encryption [5], may impair the model
manager’s ability to thwart security attacks. Our aim is
to protect privacy in such a way that malicious updates can
still be attributed.

3 A CO-UTILE FRAMEWORK FOR PRIVACY-
PRESERVING AND SECURE FEDERATED LEARN-
ING

The foundations of our proposed protocol suite are: i)
the notion of co-utility applied to protocol design and
ii) the use of reputations (computed themselves in a
decentralized and co-utile manner) to motivate all ratio-
nal players to behave honestly. We start by giving some
background on co-utility and decentralized reputation.
Also, for convenience Table 1 summarizes the notation
used in the rest of this paper.

A self-enforcing protocol is co-utile [7] if it results in
mutually beneficial collaboration between the participat-
ing agents. More specifically, a protocol IT is co-utile if
and only if the three following conditions hold:

1) II is self-enforcing;

2) The utility derived by each agent participating in II
is strictly greater than the utility the agent would
derive from not participating;

3) There is no alternative protocol II' giving greater
utilities to all agents and strictly greater utility to at
least one agent.

The first condition ensures that if participants engage
in the protocol, they will not deviate. The second condi-
tion is needed to guarantee that engaging in the protocol
is attractive for everyone. The third condition can be
rephrased in game-theoretic terms by saying that the
protocol is a Pareto-optimal solution of the underlying
game.
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TABLE 1
Notation in this paper

[ Notation [ Concept |

M Model manager
AM Accountability manager
P Peer
m Number of AMs per peer
0 Reputation reward /punishment
U Federated learning update
Ny Random nonce encrypted with update U
gi Peer P;’s reputation
PKjp(-) | Public key encryption under M’s public key
Sp(+) Digital signature under P’s private key
H(") Cryptographic one-way hash function
@ Flexibility parameter (Note 1)
p Forwarding probability
- Probability of discarding an update from a peer

with zero reputation

b Size of a batch of non-discarded updates

c Centroid of a batch of updates

Reputation threshold s.t. if a peer’s reputation
is at least 7', her updates are never discarded

We describe a framework based on co-utility that
ensures that peers can keep their private data sets con-
fidential and, at the same time, makes them rationally
interested in returning honest updates to the model
manager.

3.1

The players in our framework and their security prop-
erties are as follows:

Players and security model

o Model manager. The model manager M is a player
who wants to train a machine learning model on
the private data of the peers in a peer-to-peer (P2P)
network. Her interest is to obtain a good quality
model, but she might be curious to learn as much
as possible on the peers’ private data sets. Hence,
M can be viewed as rational-but-curious: rational to
adhere to her prescribed function, but curious on
the peers’ private data.

o Peers. They are participants in the network who
compute model updates based on their local private
data sets. Peers want to preserve their private data
confidential. We assume that a majority of peers are
rational-but-curious: like M, they are interested in
obtaining a good quality model, but they also want
to influence the model based on their own respective
data; further, they might be curious to learn as much
as possible on the other peers’ private data sets. On
the other hand, there may be a minority of mali-
cious peers that wish to impair the learning process,
because they do not have the same utility function
and/or do not respond to the same incentives as the
rest of peers.

o Accountability managers. Accountability managers
(AMs) are randomly chosen peers that manage
the reputations of other peers. Being peers them-

selves, most accountability managers are rational-
but-curious, but a minority may be malicious.

3.2 Requirements

The assumption that peers are rational rather than honest
calls for incentives to make honest behavior attractive to
them. We will use reputation as an incentive to reward
or punish peers. In order for this to be effective, the
following requirements need to be fulfilled:

o Reward. If a peer contributes a good update, her
reputation must increase.

o Punishment. If a peer contributes a bad update, her
reputation must decrease.

o Unlinkable anonymity. Peers contributing good up-
dates must stay not only anonymous, but their
successive updates must be unlinkable.

o Reputation utility. Having high reputation must be
attractive for peers. Specifically, it must be easier
for peers with higher reputation to contribute their
updates while preserving their privacy. Thus repu-
tation translates to influence without privacy loss.

Unlinkability is our approach to thwarting the privacy

attacks sketched in Section 2.1 while perfectly retaining
the accuracy of the updates. On the other hand, reward,
punishment and reputation utility are our tools to pro-
tect against the security attacks described in Section 2.2.
This will become clear in this section and in Section 4
below.

3.3 Co-utile decentralized reputation

Whereas we assume that a majority of peers want to
learn a good model, we still need to incentivize rational
peers to abstain from free-riding: if they find greater
utility in deviating from the federated learning pro-
tocol, they might seriously impair the overall quality
of the learned model. Also, we need a way to stig-
matize/recognize malicious peers in order to mitigate
their attacks. To meet the above purposes, we will use
reputation management. In this section we present a
reputation management system that does not require
direct interaction between peers and has the following
interesting properties: pseudonymity of peers, decentral-
ization, resistance to tampering with reputations, proper
management of new peers (to discourage whitewashing
bad reputations as new identities and creating fake peers
in Sybil attacks) and low overhead.

Our reputation protocol maintains a public reputation
for each peer P that is the result of updating P’s previous
reputation according to the behavior of P reported by
the model manager M. Next we explain how the above
interesting properties are satisfied:

o Pseudonymity of peers. Only the pseudonym of peers
is known, rather than their real identity. Further-
more, updates that are sent over the network cannot
be linked to the peers that generated them.

o Decentralization. The reputation of every peer P is
redundantly managed by a number m of peers that
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act as accountability managers for P. Typically, m
is an odd number at least 3 and the (pseudony-
mous) identities of P’s accountability managers
are (pseudo)randomly determined by hashing the
peer’s pseudonym P. In this way, P cannot choose
her m accountability managers, which makes the
latter more likely to perform their duty honestly.

o Tamper resistance. Since M does not know the iden-
tity of peers nor is able to link the updates to
peers, M cannot leverage her position to promote or
slander any particular peer M likes or dislikes. As a
consequence, M’s rational behavior is to exclusively
base her reports on the quality of the received
model updates. Regarding tampering by account-
ability managers, it is thwarted by their redundancy
(see the previous item on decentralization).

o Proper management of new peers. Reputations take
values in the range [0,1]. New peers start with
reputation 0, which makes whitewashing and also
Sybil attacks unattractive.

Let us describe the dynamics of reputation. Call epoch
the period between two successive changes of the global
model by M. During an epoch, peers generate and send
model updates based on their private data, with the aim
of influencing the next global model change. Depending
on their actions, peers can earn or lose reputation. Gener-
ating a good update increases the generator’s reputation
by a certain quantum 6/2 fixed by the model manager;
furthermore, helping a good update reach the model
manager in a way unlinkable to the generator brings a
/2 reputation increase to one of the helping peers. Thus,
every good update results in a total § reputation increase.
On the other hand, generating a bad update decreases
the generator’s reputation by d. Thus, the overall reward
for a good update equals the punishment for a bad
update.

Some peer reputations may become negative and some
may become greater than 1 as an epoch progresses. At
the epoch’s end, reputations are re-normalized into the
range [0,1] as follows. First, accountability managers
reset any negative reputation to 0. Then, if there are
reputations above 1, all reputations are divided by the
largest reputation. To that end, when a peer’s reputa-
tion becomes larger than 1, the peer’s accountability
managers broadcast that reputation, which allows all
accountability managers to compute the maximum rep-
utation reached in that epoch and thereby normalize all
reputations into the interval [0, 1].

Normalization has the beneficial effect of deterring
free-riding: even if a peer has attained high reputation,
she will lose it gradually if she stops participating. In-
deed, any peer’s reputation will decrease due to normal-
ization unless she continues to generate good updates or
helps routing them. This addresses the second condition
of the co-utility definition: the utility derived from par-
ticipating must be greater than the utility derived from
not participating. Fulfillment of the other two conditions
for co-utility will be justified in Section 4.1 below.

3.4 Downstream: from update generator to model
manager

We call downstream operation the submission of model
updates from the peers to the model manager M. In
order to preserve privacy and encourage security, we
propose Protocol 1. In Section 4, we will show that it
is co-utile.

The idea of Protocol 1 is that a peer, say P;, does not
directly send her update to M. Rather, P, asks another
peer, say P», to do so. P, randomly decides whether to
submit P;’s update to M or forward it to another peer,
say P3;, who stands the same choice as P». Forwarding
continues until a peer is found that submits the update
to M.

Protocol 1 (Update submission):

1) Let P, be a peer that generates an update U.
Then P, encrypts U along with a random nonce
Ny under the model manager’s public key, to ob-
tain PK (U, Ny) (we assume the message U, Ny
to have a certain format that allows distinguish-
ing it from gibberish at decryption). In this way,
only M will be able to recover the update U.
The generator P, never submits her own up-
date to the manager M; rather, P; forwards
Sp,(PKy(U,Ny), H H(H(U, Ny))), P2), where H
is a one-way hash function and Sp, is P;’s signature,
to another peer P, = SELECT(g;), where function
SELECT() is explained below.

2) If Pi’s reputation g; is such that g1 < min(g2,7T) — ¢,
where g is P’s reputation, 1" is a parameter such
that updates submitted by peers with reputation T
or above are never discarded, and « is a flexibility
parameter discussed in Note 1, then P, discards
the received update. Otherwise, P, makes a random
choice: with probability 1 — p, she submits

SPz(PKM(U7NU)7H(H(H(U3NU)))3M)
to M and with probability p she forwards
Sp,(PEy(U, Nu), H(H(H(U, Nu))), Ps)

to another peer P; = SELECT(g2).

3) If P)’s reputation is below min(gs,T) — a then P;
discards the received update. Otherwise, P; makes
a random decision as to submit or forward. If it is
forward, P; will use the SELECT() function and there
may be more peers involved: Py, Ps, etc.

4) Eventually M receives an update

Sp,(PKy(U, Ny), H(H(H(U, Nir))), M)

from a peer P;. Upon this, M does:

a) Directly discard the update with probability
po(1 — min(g;/T,1)), where po is a parameter in-
dicating the probability of discarding an update
submitted by a peer with 0 reputation, and g; is
P;’s reputation.

b) If the update has not been discarded, decrypt
PK (U, Ny), obtain U, check that the nonce Ny
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was not received before (to make sure U is not a
replay of a previously received update) and check
the hash H(H(H (U, Ny))).

c) Wait until a batch of b non-discarded updates
has been received in order to be able to decide
whether U is good or bad (see Section 4.3 below
on how to detect bad updates).

d) Change the model with the good updates in the
batch and publish the updated model.

e) Publish the value 6 = 1/b.

f) For every good non-discarded update U, publish
H(H(H(U,Nv)))-

g) For every bad non-discarded update U, call
PUNISH(F;) where P is the peer having submitted
U and PUNISH() is Protocol 2 in Section 3.5.

Function SELECT(yg;) is used by a peer P; to select
a forwardee. There are several ways in which this can
be accomplished. However, the rational choice is for P;
to select a forwardee P; with a sufficient reputation so
that A/ does not reject the update should P; submit it
directly to M. Hence, if P;’s reputation is g; > T — o,
P; can randomly pick any of the peers whose reputation
is T or above, because none of those peers risks update
discarding. However, if g; < T — «, P; chooses the peer
with the maximum reputation that does not exceed g;+«,
because no peer with reputation above that value will
accept to forward P;’s update.

Note 1 (On the flexibility parameter «): In Protocol 1 a
peer accepts to forward updates from peers that have at
least her own reputation minus a flexibility amount c.
Using a small value a > 0 introduces some flexibility
and helps new peers (that start with 0 reputation) to
earn reputation as generators or first forwardees of good
updates. Large values of a are not acceptable from the
rational point of view: high-reputation peers have little
to gain by accepting updates from peers who are much
below them in reputation, because the latter are likelier
to convey bad updates or to fail to reward the first
forwardee in case of good updates.

Note 2 (On loops, multiple paths and other misbehaviors):
Nothing is gained by any peer if loops arise accidentally
or intentionally in Protocol 1. As it will be seen in below
(Protocol 3 and Note 4) only the first peer chosen by the
update generator is rewarded. Hence, forwarding twice
or more times the same message brings no additional
benefit. On the other hand, a generator P might send
the same good update through several paths to increase
the reputation of several first peers. However, by pro-
moting more peers than necessary, P may experience a
decrease of her own reputation, because reputations are
normalized when any peer reaches a reputation above
1 (see Section 3.3). Finally, update generators could
systematically choose themselves as first forwardees of
good updates to collect additional reward; but if they do
so, they weaken their privacy.

Note 3 (Key generation): In Protocol 1, peers sign
the messages they send. To that end, each peer needs
a public-private key pair. At least the two follow-

ing alternative key generation procedures are conceiv-
able: i) identity-based signatures, in which the peer’s
pseudonym is her public key and the peer’s private key
is generated by a trusted third-party [16]; ii) blockchain-
style key generation [13], in which the peer generates her
own key pair without the intervention of any trusted
third-party or certification authority, and then obtains
her pseudonym P; (her address in the blockchain net-
work) as a function of her public key.

3.5 Upstream: from model manager to update gen-
erator

By upstream operation we denote the punishment of bad
updates and the reward of good updates. Let us start
with Protocol 2 that seeks to penalize the generator of a
bad update by retracing the reverse path from M to the
generator. The peer P; who submits an update found to
be bad by the manager can escape punishment if P; can
show to her accountability managers that she received
the bad update from a previous peer, say P;_.

Protocol 2 (PUNISH(P;)):
Every accountability manager AM of P;’s does:

1) Ask P; whether P; can prove she did not generate
U.
2) If P; can show to AM a message

Sp._,(PEKy (U, Ny), HH(H(U, Nv))), P;)

then

a) Do not punish P; (the peer’s reputation is left
intact);

b) Call PUNISH(P;_1).

Otherwise, punish P; by decreasing her reputation

by o.

The punishment protocol must be initiated by M,
because the model manager is the only party that can
detect bad updates and that is interested in punishing
them. However, the punishment is actually executed
by the guilty peer’s accountability managers. Hence, M
cannot track which peer is actually punished for that
bad update, which prevents M from identifying the
generator of an update by (falsely) claiming that the
update is bad.

Unlike the punishment protocol, the rewarding proto-
col is initiated by the peer who submitted a good update,
because that peer is the one interested in the reward. As
we will later justify, the first peer (and only the first peer)
who is asked by the generator to submit or forward a
good update is also entitled to a reward. We will call
that peer the “first forwardee”.

Protocol 3 (REWARD(U)):

1) When M publishes H(H(H(U,Ny))) for a good
update, then the update generator, say P, sends to
the first forwardee, say P>, Sp, (H(H(U, Ny)), Ps).

2) P; checks that the hash of H(H (U, Ny)) matches
H(H(H(U,Ny))) published by M. If it is so, P
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returns a receipt Sp,(H(H (U, Ny)), P1) to the gen-
erator P;.

3) Pi proves to her accountability managers that
she is the generator by showing H(U,Ny) to
them and proves that she has acknowledged

her first forwardee by showing the receipt
Sp,(H(H(U, Nu)), Pr).
4) Every accountability manager AM of Pi’s

checks P»’s receipt and checks that the double
hash of H(U,Ny) received from P; matches
H(H(H(U,Ny))) published by M. If both checks
are fine, AM increases P;’s reputation by ¢/2.

5) P, sends Sp, (H(H (U, Ny)), P») to her accountability
managers to claim her reward.

6) Every accountability manager AM of R's
checks that the hash of H(H(U,Ny)) matches
H(H(H(U,Ny))) published by M. If it is so, AM
increases P»’s reputation by ¢/2.

Note 4 (On rewarding the first forwardee only): In Proto-
col 3 only the first forwardee is rewarded, rather than all
forwardees. The reason is that we want the total budget
to reward a good update to be fixed and equal to the
budget ¢ used to punish a bad update. We also want
the reward share for the generator of a good update
to be fixed, say /2, and independent of the number
of hops the update travels before reaching M. Hence,
if we chose to reward all forwardees, the fixed reward
share §/2 for forwardees ought to be distributed among
them. Therefore, every forwardee would be better off by
submitting the update to M rather than forwarding it to
another forwardee who would take part of the reward.
As a consequence, there would be only one forwardee,
who would know that the previous peer is the generator
of U. This would break privacy. Rewarding only the
first forwardee avoids this problem and is a sufficient
incentive, because any forwardee can hope to be the
first (due to the protocol design, a forwardee does not
know whether she receives an update from the generator
or from another forwardee) and thus has a reason to
collaborate.

Note 5 (On peer dropout): Accidental (due to power
or network failure) or intentional peer dropout does
not affect the learning process: on the one hand, once
an update has been generated/forwarded, the genera-
tor/forwarder can disappear; on the other hand, the next
forwardee is chosen among the peers who are online.
Reputation management is also resistant to dropout of
accountability managers, because there are m of them
for each peer; m just needs to be increased if dropout
is very likely. Punishment is not affected: even though
a peer drops out, he will be punished with a reputation
decrease all the same. However, rewarding may be prob-
lematic in the very specific case that either the update
generator P; or the first forwardee P, drop out before
rewarding is complete: the one of the two that remains
online may not receive her/his reward.

4 DISCUSSION

In this section, we first demonstrate that the framework
formed by Protocols 1, 2 and 3 is co-utile, that is, that
those protocols will be adhered to by the players defined
in Section 3.1. Then we will show that the protocols
satisfy the requirements of Section 3.2, and thereby
preserve the confidentiality of the users’ private data and
protect the learned model from Byzantine and poisoning
security attacks.

4.1

To argue co-utility for Protocols 1, 2 and 3, we must
show that following them is a better option for M and
the peers than deviating.

Co-utility

4.1.1

The model manager’s goal is to train a model based
on the peers’ private data sets. For that reason, M is
interested in encouraging good updates and punishing
bad updates. On the other hand, M’s role is limited to
Step 4 of Protocol 1. Let us examine in detail the actions
of M in that step and whether M could gain by deviating
from them or skipping them:

Co-utility for the model manager

1) In Step 4a M directly discards an update with
a probability that is inversely proportional to the
reputation of the submitting peer. Discarding is only
based on reputation, without examining whether
the update is an outlier. M is interested to perform
this step at least for two reasons: first, it reduces M’s
computational overhead, and second, it allows M
to make reputation attractive for peers (only high-
reputation peers, those with reputation at least 7,
are sure of getting their updates examined). At the
same time, if M wants to keep the peer community
alive, M should allow a nonzero probability 1 — py
of examining an update submitted by a new peer
(that has 0 reputation). Also, setting up a threshold
T above which updates are examined for sure is a
way for M of not losing too many good updates.

2) Step 4b consists of decrypting the update, checking
its freshness and checking that the hash is correct.
Obviously, M is interested in carrying out these
steps. Without the updates, M cannot train the
model.

3) Step 4c is about deciding whether an update is good
or bad. M clearly needs to make this decision, in
order to use good updates to improve the model
and punish bad updates to discourage them.

4) Step 4d is about changing the model using the good
updates. This is exactly M’s main goal.

5) Step 4e publishes ¢ that determines the amount
whereby reputations must be increased/decreased
by the accountability managers. M is interested in
publishing ¢ to facilitate a correct reputation man-
agement that keeps peers incentivized. In fact, if the
number b of updates per batch is fixed, then J is also
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fixed and does not need to be published at each
protocol execution.

6) Step 4f publishes information that peers can use to
claim rewards for good updates. If M deviates and
does not publish this information, then peers cannot
claim rewards. This would discourage peers from
submitting good updates and would be against M’s
interests.

7) Step 4g launches the punishment procedure for each
bad update. If M did not perform this step, bad
updates would go unpunished, which would fail to
discourage them.

4.1.2 Co-utility for the update generator

In Protocol 1, the update generator only works in Step 1.
Let us analyze the actions in this step:

1) Update generation and encryption. The generator, say
Py, generates an update and encrypts it together
with a random nonce so that only A can decrypt
the update and check its freshness:

a) The intrinsic motivation for P, to generate an
update is to have an influence on the model being
learned: a rational peer wants to help obtain an
accurate model that is socially beneficial in some
sense, whereas a malicious peer wants to poison
the learned model.

b) The motivation for P; to generate a good update U
is to keep her reputation high. A high reputation
brings more influence on the model learning.
Specifically, a high ¢; allows P; to find P, such
that g1 > go — «, which means that P, does not
discard P;’s update, and with g, high enough for
P; to be confident that P, can be entrusted with
relaying U towards M with little or no probability
of U being discarded by M without examination
(see description of the SELECT() function in Sec-
tion 3.4). If U eventually reaches M, this brings P,
influence and further reputation increase, which
means more influence in the future.

¢) The motivation for P; to encrypt U under M'’s
public key is to prevent anyone else from claiming
the reward for that update, should U be good. The
motivation for P; to sign the forwarded message
is that the forwardee P, will not accept an un-
signed message, because P, will need that signed
message to escape punishment in case U is bad.

2) Update forwarding. In terms of privacy, it is bad for
Py to submit her generated update directly to M, as
it could leak information on her private data set. It is
still bad if P, directly submits with probability 1—p
and forwards with probability p, like in the Crowds
system [15]. If we used the Crowds algorithm, from
the point of view of M the most likely submitter of
an update would be the update generator: U would
be submitted by P, with probability 1 — p, whereas
it would be submitted by the i-th forwardee with
probability (1 —p)p’ < 1—p. Hence, P is interested

in looking for a forwardee P> who takes care of her
update, rather than submitting her update herself.
Specifically, P, wants a forwardee P> such that: a)
P, will accept to forward P,’s update; b) P, does not
risk update discarding (g2 > T') or risks it with the
smallest possible probability (see the description of
the SELECT() function in Section 3.4). Further, if P;
can choose among several possible P, with g» > T,
Py’s best option is to pick P randomly for the sake
of unlinkability of successive updates to each other.
Here we see a second benefit of a high reputation
for P;: the higher ¢;, the more peers with reputation
at least 7' P; can choose from and the higher is
unlinkability.

In Protocol 2, the update generator P, has a role only
if her update is bad. The generator’s role in this case
is a passive and inescapable one: when P; is asked by
her accountability managers to show that P; received the
bad update from someone else, P; cannot show it and
is punished.

In Protocol 3, the generator P, of a good update is
clearly interested in running Step 1 of the protocol to
claim a reward. In Step 1, P, is forced to give the first
forwardee P, the necessary information H(H (U, Ny )) so
that P, can claim his reward. The reason is that, without
Py’s receipt, P, cannot claim her own reward at Step 3
(this latter step is also self-enforcing if P, wants her
reward).

Py, could certainly decide to favor a false first for-
wardee P) of her choice, rather than the real first for-
wardee P,. This would still work well for P;, because
P would return a signed receipt for the same reasons
that P, would do it. However, if P; wants to favor Pj, it
entails less risk (of being discovered) for P; to use Pj as
a real first forwardee. Thus, there is no rational incentive
to favor false first forwardees.

4.1.3 Co-utility for the update forwardees

In Protocol 1, the forwardees P», Ps, ... work in Steps 2
and 3, which are analogous to each other. Let us examine
the actions expected from a forwardee:

1) Update acceptance or discarding. The incentive for a
forwardee P; to accept to deal with an update U is
to be rewarded in case U is good and P; is the first
forwardee (note that P; does not know whether she
is the first, but hopes to be). Thus, if P, receives
the update from a previous peer P;,_; with high
reputation, P;’s rational decision is to accept that
update: there are chances that U is good, which will
bring reward if P; turns out to be the first forwardee.
In contrast, if U comes from a peer P,_; with low
reputation, it is less likely that the update is good,
so P;’s rational decision is to discard U to avoid
working and spending bandwidth for nothing.

2) Update submission or forwarding. It takes about the
same effort for a forwardee P; to submit an update
to M or to forward it to some other peer Pi;;.
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Hence, it is rational for P; to make the decision
randomly according to the prescribed probabilities
(1 — p for submission and p for forwarding). In case
of forwarding, P;’s rational procedure is like the
generator’s: look for a forwardee with reputation
at least 7" if g; > T — o or the maximum possible
reputation that does not exceed g; + a otherwise (as
per the SELECT() function. Also, no matter whether
forwarding or submitting, P; has to replace the pre-
vious signature of the update by her own signature:
neither the model manager nor any forwardee will
accept from P; a message that is not signed by F;,
because they will need the signed message in case
U turns out to be bad and punishment is launched.

In Protocol 2, if P; did not generate a bad update
U, P; will rationally do her best to avoid punishment
(reputation decrease) by showing a message signed by
whoever sent U to her.

In Protocol 3, P»’s best option is to return the receipt at
Step 2, because P, could otherwise blacklist P, and never
make P» a first forwardee in future epochs. Finally, P»
is obviously interested in claiming her reward in Step 5.

4.1.4 Co-utility for the accountability managers

The accountability managers are a keystone in Proto-
cols 1, 2 and 3. In our security model (Section 3.1) a
majority of them is assumed to be rational and to be
interested in obtaining a well-trained model. Hence, a
majority of the m accountability managers pseudoran-
domly assigned to each peer can be expected to behave
honestly, which in turn means that the reputation of
every peer can be expected to be honestly managed.

In Protocol 1, there is no direct intervention of account-
ability managers. It suffices that they honestly maintain
and supply the reputations g; of all involved peers P; as
described in Section 3.3.

As to Protocol 2, it is launched at the request of
M in the last step of Protocol 1. In Protocol 2, the
accountability managers have the lead role. Most of each
peer’s accountability managers can be assumed rational
and therefore they can be assumed to discharge their role
as described in the protocol.

Finally, in Protocol 3, the accountability managers of
the generator reward the latter in Step 4. Then in Step 6
the first forwardee is rewarded by her accountability
managers. Again, since for each peer a majority of
accountability managers can be assumed rational, we
can expect them to honestly perform those two steps
as described in Protocol 3.

Note 6 (Non-collusion scenario): In fact, given that the
accountability managers assigned to a peer are randomly
chosen, it is reasonable to assume that in general they
do not know each other and hence they do not collude.
In the non-collusion scenario, not even a majority of
honest accountability managers is needed. If malicious
accountability managers do not collude, each of them
is likely to report different reputation results. Hence, as
long as fwo of the peer’s accountability managers act

rationally and follow the protocol, their correct result is
likely to be the most frequent one and thus to prevail.

4.2 Privacy

As mentioned in Section 2.1, ensuring the unlinkability
of updates goes a long way towards guaranteeing that
the private data sets of peers stay confidential. We can
state the following proposition.

Proposition 1: If the forwarding probability is p > 0
andthere is no collusion between the model manager
M and peers, the private data set of each peer remains
confidential versus the model manager and the other
peers. Confidentiality is based on update encryption and
unlinkability, and unlinkability increases with p and the
generator’s reputation.

Proof: The privacy guarantee is based on unlinkabil-
ity and update encryption.

Let us first consider linkability by A/. By the design of
Protocol 1, M knows that the submitter of an update U
is never the update generator. At best, M knows that the
probability that U was submitted by the i-th forwardee
is (1 — p)p’~1, and hence that the most likely submitter
is the first forwardee. However:

o The larger p, the greater the uncertainty about the
number of hops before the update is submitted, and
hence the harder for M to link a received update to
its generator.
o The next forwardee is selected using the SELECT()
function, described in Section 3.4. If gger, > T — ¢,
then Py, chooses the first forwardee randomly
among the set of peers with reputation at least T,
and this set depends on the current reputations and
varies over time; hence, as long as there are several
peers with reputation 1" or above, the fact that two
updates were submitted by the same peer does not
tell M that both updates were generated by the same
peer. If ggen, < T — v, then Py, chooses as a first for-
wardee the peer with the maximum reputation that
does not exceed g; + a: if reputations do not change
between two successive updates, P,., would choose
the same first forwardee for both updates; yet, M
cannot be sure that the submitter of both updates is
really the first forwardee, and hence M cannot be
sure that both updates were generated by the same
Pyepn. Hence, in no case can two different updates by
the same generator be unequivocally linked, even
if the probability of correctly linking them is lower
when ggen > T — o
On the other hand, neither the reward nor the punish
protocols allow M to learn who generated a good or a bad
update. Thus, M can neither link the updates he receives
nor unequivocally learn who generated a certain update
U. Therefore, M cannot obtain any information on the
private data set of any specific peer P.

Consider now linkability by a peer P;:

o If P; is a forwardee for two different updates from
P,y and p > 0, P; does not know whether P;_;
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generated any of the updates or is merely forward-
ing them. P;’s uncertainty about F;,_; being the
generator is Shannon’s entropy H(p), which grows
with p for p < 0.5; for p > 0.5, what grows with
p is P;’s certainty that P;_; is not the generator. In
summary, P; can only guess right that P,_; is the
generator if p is very small: in this case, forwarding
hops after the first mandatory hop from generator
to first forwardee are very unlikely.

o The only exception is when P, is the first forwardee
for two good updates from the same generator
(because in this case he receives a message from the
generator in Step 1 of Protocol 3). However, in this
case P; can only link the encrypted version of updates
(that is, PK (U, Ny) and PK (U, Ny+)), but has
no access to the clear updates U, U’. Hence, P; gets
no information on P;_’s private data set.

o If P; is an accountability manager of a generator P;,
P; can link all encrypted good updates originated by
P;. However, since those updates are not in the clear,
P; gets no information on P;’s private data set.

L

Note that assuming there are no collusions is plausi-
ble because peers are pseudonymous: normally people
collude only with those they know.

A successful collusion must include one or more first
forwardees (who know the pseudonyms of the update
generators) and M (who can decrypt the updates). In
this way, M can attribute updates and perhaps link those
corresponding to the same generator; then M can infer
whatever information on the generator’s private data set
is leaked by the generator’s updates.

However, to allow update linkage, a collusion requires
a malicious model manager and a significant propor-
tion of malicious peers, whereas in our security model
(Section 3.1) we assume M and a majority of peers
to be rational-but-curious. A collusion of M with a
substantial number of peers is hard to keep in secret, and
if it becomes known that M is malicious, peers will be
unwilling to help M to train the global model. Therefore,
M'’s rational behavior is to abstain from collusion.

4.3 Security

Guaranteeing security means thwarting Byzantine and
poisoning attacks (Section 2.2), which consist of submit-
ting bad model updates. We first recall the approaches
that have been proposed in the federated learning lit-
erature for the model manager to defend against bad
updates. They fall into the following three broad classes
(see the surveys [10], [4] for more details):

o Detection via model metrics. An update is labeled as
bad if incorporating it to the model degrades the
model accuracy. This approach requires a validation
data set on which the model with the update and the
model without the update can be compared. Also,
the computation needed to make a decision on each
received update is significant.

o Detection via update statistics. An update is labeled
as bad if it is an outlier with respect to the other
updates.

o Neutralization via aggregation. Updates are aggre-
gated using operators that are insensitive to out-
liers, such as the median [18], the coordinate-wise
median [18], or Krum aggregation [3]. In this way,
updates too different from the rest have little or no
influence on the learning process.

In our protocol, we want to explicitly detect bad
updates in order to avoid interaction with the malicious
peers generating them. Hence, we discard methods in
the third class (neutralization).

Any detection method in the two other classes can
be used with our approach, including new methods
that may appear in the future. Yet, detection based on
model metrics is quite costly and requires validation
data. For this reason, in the experimental work we have
instantiated our implementation with a method based
on update statistics, more specifically a distance-based
method in line with [2], [3]. Given a batch of updates,
this method labels as bad an update U if U is much
more distant than the rest of updates in the batch from
the batch centroid C. One possible way to quantify what
“much more distant” means is to check whether the
distance between U and C is greater than the third
quartile (or greater than a small multiple of the third
quartile, say 1.5 times) of the set of distances between
updates in the batch and C'

Protocols 1, 2 and 3 are designed to incentivize the
submission of good updates. Thus, we can state the
following proposition.

Proposition 2: Provided that the model manager can
detect bad updates, the rational behavior for generators
and forwardees in Protocol 1 is to submit good updates.

Proof: See discussion on co-utility for generators and
forwardees in Section 4.1. O

As to collusions of irrationally malicious peers, they
can only disrupt the learning process if they are suffi-
ciently large so that the majority of updates received by
M are bad ones and coordinated in the same direction.
Note that uncoordinated bad updates are likely to cancel
each other to some extent. Such large collusions seem
hard to mount for the reasons explained in the previous
section.

4.4 Computation and communications overhead

Let us compare the computation and communications
overhead of the proposed method against alternatives
based on homomorphic encryption (HE), which offer
a comparable level of privacy (but cannot detect bad
updates, as argued below).

HE has been used in federated aggregation mecha-
nisms to prevent the model manager and the rest of
peers in the network from having access to the individ-
ual updates of peers. In HE-based mechanisms, peers
first encrypt their respective updates using an additive
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HE scheme (e.g. Paillier, [14]). Several protocols have
been proposed in the literature to aggregate HE updates
and decrypt the aggregated HE update. Let us focus
on a protocol that minimizes the number of required
messages and the amount of computation (which is the
most challenging benchmark when comparing with our
proposed method): (i) assume a sequence of peers is
defined such that the first peer sends her HE update to
the next peer, who aggregates it with her own HE update
and so on; (ii) after the last peer has aggregated her HE
update, she sends the encrypted update aggregation to
the manager, who can decrypt it to obtain the cleartext
update aggregation. In this protocol, each peer sends
only one message per update, just as in plain federated
learning.

Whatever the protocol used, HE-based solutions offer
privacy (no one other than the peer sees the peer’s clear-
text update), but they do not allow the model manager
to detect bad updates, because the manager does not
see the individual updates. In this respect, HE-based
solutions are inferior to our proposed method, which
offers privacy without preventing bad update detection.

Even so, let us compare HE-based systems and our
system in terms of computational overhead. HE-based
systems require the peers to encrypt, using a public-
key HE scheme, each individual model parameter at
each training epoch (an update contains values for all
parameters). The authors of [19] report an encryption
time of 3111.14 seconds for a model with 900,000 pa-
rameters (6.87 MB) using 3072-bit Paillier (a key size
of 3072 bits in factorization-based public-key cryptosys-
tems offers equivalent security to 128-bit symmetric key
schemes [1]). Expensive modular operations (with 3072-
bit long moduli in the case of Paillier) for each model
parameter are required to aggregate the update of each
peer.

In contrast, our approach requires each peer to com-
pute an encryption of her update using a regular non-
homomorphic public-key cryptosystem, three hashes
and one digital signature. With the usual digital enve-
lope approach, regular public-key encryption amounts to
encrypting a symmetric (e.g. AES) session key under the
manager’s public key, and then encrypting the bulk of
the update parameters using the much faster symmetric
cryptosystem under the session key. The encryption time
of AES on current smartphones using AES-128-GCM
is around 0.29 seconds for a model of the same size
as reported above!, to be compared with the afore-
mentioned 3111.14 seconds of HE. Finally, the model
manager just needs to decrypt the received updates and
aggregate them in cleartext as in plain federated learning
mechanisms (this is much faster than homomorphic
aggregation in ciphertext).

Regarding the communication overhead, we first refer
to the message expansion incurred by HE-based mech-

1. AES performance per CPU core https://calomel.org/aesni_ssl_
performance.html

anisms and our proposal. As stated above, HE-based
mechanisms require peers to encrypt each model param-
eter using an additive HE scheme. Model parameters are
usually 32-bit floating point values that, when encrypted
using Paillier with sufficiently strong keys, become 3072-
bit integers. This implies an increase in the message
size of two orders of magnitude. The proposal in [19]
substantially reduces the communication requirements,
but it is still one order of magnitude above plain fed-
erated learning with cleartext updates. In our proposal
and thanks to the digital envelope technique, updates are
encrypted using a symmetric encryption scheme, which
does not expand the plaintext models (save for potential
paddings, which are negligible for messages of the size
we are considering). Additionally, our messages include
the session key encrypted under the model manager’s
public key, a triple hash of the model, and a signature.
This additional information increases the size of the
message by approximately 6.5 KB with standard key
and hash sizes, which, if we consider the example given
before, amounts to a 0.09% increase in the total size of
the messages.

Finally, in the HE-based protocol considered the num-
ber of messages exchanged among participants does not
increase with respect to plain federated learning, i.e.
for each training epoch there is one broadcast of the
global model from the model manager to the peers and
one message from each peer containing her update. In
contrast, our proposal includes a forwarding mechanism,
which implies that for a forwarding probability p every
encrypted model hops across an expected number of
forwardees equal to

1

(1-p) Zz’pi_1 = —
i=1

1-p

For example, if p = 1/2 there are 2 additional hopping
messages with respect to plain federated learning. Ad-
ditionally, if each peer has m accountability managers:

e 2m+1 messages containing one hash of the update
and one digital signature of a hash value are re-
quired by the reward protocol;

o 2m messages, of which m are short polling messages
and m contain the signed encrypted update, are
required in the punishment protocol when a peer
wishes to avoid punishment.

All in all, our approach requires more messages per
epoch than plain and HE-based federated learning.
However, whereas the message expansion in our ap-
proach is almost negligible (as the bulk of encryption
is symmetric key), the HE-based approach increases
message length by one or two orders of magnitude with
respect to plain federated learning. In particular, if we
take say m = 3 and p = 1/2, the overall communications
overhead of our approach stays below that of HE-based
federated learning.

In summary, our method achieves much less compu-
tation overhead and less communication overhead than
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HE-based methods. Add to this performance advantage
the functionality advantage: our method offers both
privacy for peers and detection of bad updates for the
manager, whereas the latter feature is lacking in HE-
based methods.

5 EXPERIMENTAL RESULTS

In this section we report the results of the experiments
we conducted to test how the reputations of peers evolve
over time depending on whether they submit good or
bad updates.

First, let us explain the expected system behavior.
If our protocols are well designed, a peer’s reputation
should highly correlate with the probability that she
generates good updates. Furthermore, the reputation of
the peer who submits an update to the model manager M
should also highly correlate with the probability that the
peer who generated that update generates good updates.
Since the submitting peer’s reputation is used by M
to decide on processing or discarding an update, M
will only process a fraction of the received updates.
This reduces M’s overhead related to detection and
punishment of bad updates.

Now, let us go to the actual empirical results. We
bounded the range of reputations between 0 and 1. Then
we built a peer-to-peer network with 100 peers whose
initial reputations were set to 0. We let the network
evolve for 500 iterations (or global training epochs). At
each epoch, the model manager received one update
from each peer. Thus, the batch size was b = 100 and the
reward/punishment quantum was § = 1/b = 0.01. We
then experimented with two test scenarios, depending
on the proportion of honest peers:

o Scenario 1. Every peer is assigned a random goodness
probability 7, € [0,1]. With probability 7, the peer
generates a good update and with probability 1 -,
she generates a bad update. Reputation manage-
ment is used by peers to decide on accepting or
rejecting a forwarded update and to choose for-
wardees. That is, a peer P; accepts a forwarded
update only if the requesting peer’s reputation is
at least g; — o, where we set a = 0.03. In turn, a
peer P; chooses a forwardee based on reputations
as described when explaining the function SELECT()
in Section 3.4. Additionally, reputation management
is also used by the model manager M to decide on
processing or directly discarding an update submit-
ted by a peer Pj. That is, M directly discards the
update with probability po(1 — min(gx /T, 1)), where
we set pp = 0.5 and T = 0.5.

o Scenario 2. 90% of peers always generate good up-
dates whereas the remaining 10% have probability
0.2 of generating good updates and probability 0.8
of generating bad updates. Hence we can say that
90% of peers have goodness probability 7, = 1 and
10% of peers have goodness probability 7, = 0.2.

Like in the previous scenario, reputation manage-
ment is set up by taking o = 0.03, po = 0.5 and
T=0.5.

5.1 Test scenario 1

In large real federated learning networks with, say sev-
eral thousands or hundreds of thousands of peers (e.g.
smartphones), a small proportion of malicious peers
(even smaller than in Scenario 2) is the most realistic
assumption. Nevertheless, let us study an extreme sce-
nario with even proportions of good and bad updates.
This will allow us to demonstrate that the goodness
probability of a peer correlates with her reputation and
with the reputations of the peers submitting her updates.

Let us assign a random goodness probability in the
interval [0, 1] to each of the 100 peers. Thus, on average
we can expect peers to generate good updates only half
of the time. Reputations are computed after each of the
500 global training epochs and are used to decide, on the
one hand, on update acceptance and forwarding (peers
accept updates from and forward updates to other peers
depending on the flexibility parameter o« = 0.03), and
on the other hand, on update processing and discarding
by the model manager (it directly discards updates with
probability po(1 — min(g;/T,1)), with pp = 0.5 and T =
0.5).

Figure 1 displays the goodness probability versus the
reputation of every peer after the 500 global training
epochs. The goodness probability is represented in the
abscissae and the reputation in the ordinates. It can
be seen that both the goodness probabilities and their
corresponding reputations spread over the entire [0, 1]
range. Furthermore, the peers’ goodness probabilities
and their reputations are highly correlated (0.977).

Figure 2 displays, for every update during the 500
global training epochs (50,000 updates), the goodness
probability of the update generating peer versus the
reputation of the submitting peer. It can be seen that
both values are also highly correlated (0.833). In fact,
this correlation is even higher for peers with reputation
below T' = 0.5; for submitting peers with reputations
T = 0.5 or above, the precise reputation of the submitter
is not that relevant, because the model manager will
process all updates submitted by peers with reputation
T or above.

5.2 Test scenario 2

The previous scenario is highly unlikely in the real
world. As said above, in large real federated learning
networks a small proportion of malicious peers is the
most realistic assumption.

In Scenario 2, a clear majority of 90% of peers are com-
pletely honest (goodness probability m, = 1), whereas
the remaining 10% have a goodness probability of only
7y = 0.2. Reputations are computed after each epoch and
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Fig. 1. Scenario 1. Goodness probability vs reputation for
each peer. Correlation: 0.977.
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Fig. 2. Scenario 1. Generating peer's goodness prob-
ability vs submitting peer’s reputation, for all updates.
The grayscale indicates the number of peers in each 2-
dimensional interval. Correlation: 0.838.

are used to decide, on the one hand, on update accep-

tance and forwarding, and on the other hand, on update

processing and discarding by the model manager.
Figure 3 displays the goodness probability against the

reputation of every peer after 500 global training epochs.
Malicious peers (those with 7, = 0.2) are correctly
assigned low reputations, because most of the updates
they generate are bad and they are punished when
their updates reach the model. Besides that, it is hard
for such peers to be selected as forwardees of good
updates and thereby improve their reputation. On the
other side, all honest users (those with m, = 1.0) achieve
high reputation values that correspond to their good
behavior. Peers with a reputation 7" = 0.5 or above are
part of a “community” whose members improve the
reputations of each other, by forwarding or submitting
their respective updates.

reputation
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Fig. 3. Scenario 2. Goodness probability vs reputation for
each peer. Correlation: 0.998.

The evolution of the reputations of good peers (with
my = 1.0) and bad peers (7, = 0.2) is shown in Figure 4.
The average reputations of both types of peers swiftly
diverge from the very beginning.

Figure 5 shows how reputations evolve when peers
change their behavior (that is, their 7 ). In the figure,
peer 0 is a good peer (with 7, = 1.0) that suddenly
changes his behavior by setting 7, = 0.2 at epoch 100;
from that epoch onwards, peer 0 generates bad updates
with probability 0.8. We can see that his reputation drops
fast and stabilizes around the average reputation value
of bad peers (see Figure 4) around epoch 260. This shows
that our system reacts suitably when a peer’s behavior
worsens.

On the other hand, peer 98 in the figure represents a
malicious peer (with 7, = 0.2) that changes her behavior
by setting m, = 1.0 at epoch 100; from that epoch
onwards, peer 98 only generates good updates. In this
case we see that her reputation gradually and slowly
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Fig. 4. Scenario 2. Evolution of the average (depicted as
a line) and the standard deviation (depicted as a gray
band) of the reputations of good peers and bad peers as
a function of the epoch.

increases up to roughly the average reputation of good
peers (see Figure 5) around epoch 360. This shows that
not only malicious peers, but also newcomers (who have
zero initial reputation), can effectively reach high reputa-
tions if they behave well. However, the amount of effort
needed to rise from a low reputation clearly discourages
malicious peers from performing whitewashing or Sybil
attacks.
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Fig. 5. Scenario 2. Evolution of the reputation of nodes
who change their behavior 7,. At epoch 100, peer
0 changes from good to malicious, whereas peer 98
changes from malicious to good.

Figure 6 displays, for every update during the 500
global training epochs (50,000 updates), the goodness
probability of the generator versus the reputation of
the submitter. Both values are highly correlated (0.799).
However, the correlation is higher after the system stabi-
lizes (0.9854 from epoch 100 onwards) and all good peers
reach high reputations. Initially, reputations have not yet
adjusted and hence the updates generated by good peers
can be submitted by peers with reputation only slightly
above or even slightly below T

Finally, observe in Figure 7 the effectiveness of making
reputation-based decisions to filter out bad updates. Out
of the 50,000 updates generated over the 500 epochs,
around 46,000 are good, while around 4,000 are bad.
Based on the submitting peer’s reputation, the model
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Fig. 6. Scenario 2. Generating peer's goodness prob-
ability vs submitting peer’s reputation, for all updates.
The grayscale indicates the number of peers in each 2-
dimensional interval. Correlation: 0.799.

manager M discards 2,831 updates. The figure shows
that, when the system stabilizes, on average 80% of the
updates discarded by M are bad. This is the right pro-
portion, because malicious peers do not always generate
bad updates (they generate bad updates with probability
1—7, = 0.8).

o o
o o
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Fig. 7. Scenario 2. Ratio of bad updates discarded by the
model manager as a function of the training epoch.

Note that reducing the proportion of bad updates
processed by the model manager is also a good security
defense. Indeed, the fewer the bad updates processed
by the model manager, the more those bad updates are
likely to stand out as outliers, which will enable M to de-
tect and discard them. Additionally, fewer bad updates
processed by M also mean less detection overhead for
M and, especially, less punishment and tracing overhead
for peers (both normal peers and accountability man-
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agers).

6 CONCLUSIONS AND FUTURE WORK

We have presented protocols to improve privacy and
security in federated learning while perfectly preserving
the model accuracy. Our protocols rely on the notion of
co-utility, that is, they are self-enforcing if players are
rational. We use a decentralized reputation management
scheme that is itself co-utile to incentivize peers to
adhere to the prescribed protocols.

In this way, peers do not need to be honest-but-curious
per se: as long as they are rational they will behave
honestly, and even a minority of malicious peers that do
not respond to the same incentives as the other peers can
be tolerated. Confidentiality of the peers’ private data
is guaranteed by the unlinkability of updates: when a
peer generates an update, neither the model manager
nor the other peers can identify the update generator.
This way to provide privacy is superior to the state-of-
the-art alternatives:

o Unlike privacy protection via differential pri-
vacy [9], our protection mechanism does not alter
the value of updates and hence does not affect the
accuracy of the learned model. Furthermore, our
privacy notion based on unlinkability is also strong.

o Unlike privacy protection based on update aggrega-
tion, our solution is compatible with punishing the
peers that generate bad updates. Also, our solution
entails less computational overhead than aggrega-
tion based on homomorphic encryption.

Security, i.e. protection against bad updates, is pursued
in our approach via reputation. Whereas state-of-the-
art security countermeasures do nothing to reduce the
number of bad updates that are processed by the model
manager, we address this issue in a way to achieve
two beneficial effects: first, to decrease the overhead for
the model manager and the peers related to processing,
tracing and punishing bad updates; and, second, to
make the (fewer) bad updates processed by the model
manager more identifiable as outliers. The design of our
protocols also renders whitewashing and Sybil attacks
ineffective.

An interesting avenue for future research is to harden
the proposed protocols so that they can filter out a
greater proportion of bad updates in situations where
a substantial share of the peers are malicious. A possible
strategy is for the model manager to preventatively reject
(without further examination) any update submitted
by a peer whose reputation is less than the average
reputation of peers who submitted updates detected as
bad in the past. Note that the peer submitting the update
is not the peer having generated it, but as shown in
the experimental section above, the submitter’s and the
generator’s reputations are correlated.

Another interesting direction is to incorporate new
methods to detect bad updates that are better suited for
non-independent and identically distributed (non-IID)

private data than distance-based methods. Most current
detection methods mentioned in Section 4.3 are ill-suited
when the private data of the different peers follow very
different distributions. In fact, the extremely non-IID case
is challenging for the very notion of federated learning
even if all peers compute their updates honestly: con-
verging to an accurate model is more difficult than in
the IID case.
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