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Interplay between population density and mobility
in determining the spread of epidemics in cities
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The increasing agglomeration of people in dense urban areas coupled with the existence of
efficient modes of transportation connecting such centers, make cities particularly vulnerable
to the spread of epidemics. Here we develop a data-driven approach combines with a meta-
population modeling to capture the interplay between population density, mobility and epi-
demic spreading. We study 163 cities, chosen from four different continents, and report a
global trend where the epidemic risk induced by human mobility increases consistently in
those cities where mobility flows are predominantly between high population density centers.
We apply our framework to the spread of SARS-CoV-2 in the United States, providing a
plausible explanation for the observed heterogeneity in the spreading process across cities.
Based on this insight, we propose realistic mitigation strategies (less severe than lockdowns),
based on modifying the mobility in cities. Our results suggest that an optimal control strategy
involves an asymmetric policy that restricts flows entering the most vulnerable areas but
allowing residents to continue their usual mobility patterns.
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into an interconnected society driven by the existence of a

vast mobility network connecting different areas around
the globe. In particular, the striking growth experienced by the
international mobility network! has helped to bridge socio-
cultural>~4 and economic gaps®. Accompanying this is the phe-
nomenon of urbanization, whereby a majority of the world’s
population resides in densely packed urban centers, with the
trend only accelerating®’, given the socioeconomic advantages
that cities afford®®. Allayed against these benefits, the increase in
mobility has removed the main bottleneck limiting the spatial
diffusion of confined epidemic outbreaks. Once the disease
spreads to different regions, it takes advantage of the high
population density and infrastructure networks in cities!® to
rapidly spread through the local population. As a consequence,
over the past few years, several contagious disease outbreaks have
emerged, notable among them HINT1 in 2009!!, Ebola in 201412,
Zika virus in 201513, and of course more recently SARS-CoV-
21415 Tndeed, the frequency with which these pandemics occur is
troublingly increasing!®.

Despite the different nature of the pathogens, their spreading,
both globally and locally, is primarily explained by the sequential
combination of case importation from contagion sources, followed
by local community transmission converting initially unaffected
regions into new endemic areas. Different flavors of mobility play
a role in each process: on the one hand, long-haul flights!” are
usually the drivers facilitating the entry of pathogens into a given
country, to the extent that the airport mobility network has proved
to be a reliable proxy to determine pathogen arrival times!$,
international infection routes!®, and to complement phylogeo-
graphic inference of emerging pathogens such as SARS-CoV-220,
On the other hand, once index cases are found within a given
region, a complex combination of the local mobility?! and socio-
economic features of the population22-24 determines the speed of
epidemic spread and the extent of its outbreak.

Quantifying the impact of local mobility on the global diffusion
of a pandemic constitutes a challenging task. In this sense, several
examples addressing the impact of daily recurrent mobility pat-
terns on the spread of contagious diseases can be found in the
literature?>-32. The majority of these, however, are theoretical
frameworks analyzing the features of synthetic mobility networks,
and the influence of the total volume of travelers on the course of
the epidemic. Nonetheless, recent advances made in data-
gathering techniques allow for obtaining accurate representa-
tions of daily urban rhythms constructed from mobile phone
traces33, geolocalized tweets34, location-based social networks3>,
or extensive census surveys. These data sets enable the extension
of the theoretical machinery to address real epidemic scenarios.
Indeed, recurrent mobility patterns have been already useful for
identifying the most exposed areas in some epidemic scenarios3®
as well as reproducing the infection routes of HIN1 influenza’,
Malaria3®, and more recently SARS-CoV-239-42,

While much attention has been spent on reconstructing past
infections, or epidemic forecasting in the case of extant pan-
demics, an important question that immediately arises, is what
makes regions—in particular urban agglomerations where most
people reside—vulnerable to the spread of pathogens in the first
place? While factors such as population density, levels of
healthcare, quality of infrastructure, and socioeconomic dis-
parities play a major role*3, vulnerability to spread is a complex
interplay between these features that is, in general, difficult to
disentangle. For instance, the role of population density is an
open question with evidence both for and against its influence on
epidemic spreading*4%>. Indeed, merely the density of contacts,
while relevant at a neighborhood level, is not enough to explain
the mechanisms of spread; one would also need to consider the

D uring the last century, humankind has rapidly evolved

mobility network of flows that govern the exchange of people
between the regions. In such a setting, the spatial distribution of
the population densities and the strength of interaction between
the regions become especially relevant.

In other words, it is reasonable to assume that the morphology
of the city in terms of how its residents are distributed and how
they navigate the city plays a crucial role in their susceptibility to
pandemics. Recent studies have shown that the spatial patterns of
how residents utilize transportation infrastructure are a strong
indicator of that regions’ levels of social inclusion, quality of
infrastructure, and wealth creation®®. Bassolas et al.*” propose a
measure of a city’s dynamical organization based on mobility
hotspots*® to classify them in a spectrum between compact-
hierarchical and sprawled layouts. They find that the extent to
which cities are compact or sprawled serves as a low-dimensional
proxy for various urban indicators related to the quality of life,
health, and pollution.

In this work, we connect the dots between the morphology of
human activity in cities, in terms of its associated mobility flows
and the distribution of resident populations, and its effect on
shaping the transmission of infectious diseases and their asso-
ciated epidemic outbreaks. We collect data from 163 cities across
four continents, on their population density at the zip-code level,
and intra-urban mobility flows for the first half of 2020. Using
this we extract population density hotspots (i.e., those areas with
the highest concentration of residents) and measure the extent to
which flows between hotspots dominate the total flows in the city.
To capture epidemic spreading, we generalize a movement-
interaction-return epidemic model?® that captures the interplay
between recurrent mobility flows and the distributions of resident
populations. We derive the epidemic threshold, representing the
minimum infectivity per contact required to instigate an epidemic
outbreak and connect it with the distribution of flows among
population density hotspots. In particular, we show that, despite
their ostensible differences in terms of spatial layout, evolutionary
history, or levels of infrastructure, all considered cities lie on a
common curve capturing an inverse relationship between the
epidemic threshold and the extent to which mobility flows are
localized between hotspots.

The results suggest an increased susceptibility to epidemics as a
function of flows being concentrated between high population
centers. As a proof-of-concept, we analyze the current SARS-
CoV-2 pandemic by quantifying the epidemic growth from the
initial infection curves as an empirical proxy for city vulnerability
and plotting it against our calculated epidemic threshold. The
empirical trends match our theoretical formalism where cities
with mobility concentrated primarily between hotspots are more
vulnerable as compared to those with more egalitarian mobility
distributions. Based on this observation, we propose a realistic
mitigation policy that, being much less severe than draconian
lockdowns, lowers the susceptibility of cities that lie in the vul-
nerable spectrum.

Results
Data. The population density for cities at zip-code resolution was
collected from national census bureaus**->! and from high-
resolution population density estimates recently published by
Facebook?2. Each of these cities corresponds to the largest in their
respective countries in terms of population size. From this data,
we extract H population density hotspots for each city k (varying
from city to city) by applying a nonparametric method based on
the derivative of the Lorenz curve?’48 (for details of the calcu-
lation see Methods).

The mobility flows within each city are sourced from the
Google SARS-CoV-2 Aggregated Mobility Research Dataset, and
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contain anonymized flows mobility flows aggregated over users
who have turned on the Location History setting, which is off by
default. The flows are between cells of approximately 5km? for
the period ranging November 3, 2019 to February 29, 2020. For
the purposes of our analysis, we only consider the period before
any mobility mitigation measures were initiated as a response to
the SARS-CoV-2 pandemic (see Supplementary Note 1 for
further details). The flows are encoded in a matrix T whose
elements Tj; correspond to the population out-flows from i to j
and whose diagonal elements correspond to self-flows. For each
city k, given Hj hotspots, we calculate the hotspot concentration,
ki, defined as the fraction of total flows in the city that occur only
between hotspots thus,

Zi,‘eH Ti‘
Je€, Y

Kk =
2ij Ty

(1

This metric lies in the range 0<x; <1, with the limiting cases
corresponding to flows exclusively between hotspots or only
between hotspot and non-hotspot areas. The list of cities for each
country, the administrative unit, and the hotspot concentration is
provided in Supplementary Data 1. The results show a wide
spectrum of values (0.05 < x;<0.79) both within and between
countries, indicating significant variability in cities in terms of the
morphology of human flows between population centers.

In Fig. 1, we plot the spatial layout of the hotspots and the
mobile network for six representative cities in Australia and the
United States. The cities are organized in descending order of «,
and it is apparent that in those cities with high «, flows are mainly
confined around hotspots (marked in red), whereas they are
increasingly more distributed with decreasing x. An additional
feature is that hotspots are more spatially concentrated in those
cities with lower x and dispersed in those with higher «x,
indicating a more heterogeneous distribution of population
density in the former as compared to the latter.

Model. To characterize a city’s vulnerability to disease spread, we
calculate the epidemic threshold by generalizing the formalism
introduced in28, In what is to follow, we incorporate susceptible
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(S), infectious (I), or recovered (R) dynamics, however, we note
that the formalism is easily generalizable to more elaborate
compartmental schemes. An infectious individual transmits the
pathogen to healthy counterparts via direct interaction at a rate A.
In turn, infectious individuals enter the compartment R at a rate
> which typically encodes the inverse of the expected contagious
period. The mixing among healthy and infectious individuals is
governed by the spatial distribution of the population and their
mobility patterns, which are accommodated in the formalism by
using metapopulations. A metapopulation is a complex network
where nodes (patches) represent locations where agents are
placed and movements between patches are represented by links
connecting them.

In our case, the different zip-codes of the city are represented
as patches i, which are initially populated by »; residents. The
activity of the residents is considered on a daily basis and split
into three following stages: Movement, Interaction, and Return.
First, agents decide whether or not to move with a probability p.
If moving, they choose their destination according to the origin-
destination matrix R, being the elements R;; the probability of
moving from patch i to patch j. We construct this matrix from
mobility data, encoded in T, as

T.

i
= ‘ 2
B 25 Ty @

After all movements (or lack thereof) have been completed,
interactions occur within patches according to a mean-field
assumption where every individual makes the same number of
contacts proportional to the population density via a function f..
Finally, as we want to reflect the most commuting nature of
human mobility, we force all the individuals to return to their
residence and repeat the same process for a new time step (day).

Under these assumptions, the dynamics are totally character-
ized by a set of 2x N coupled discrete equations governing the
temporal evolution of the fraction of infected and recovered
individuals with residence in each patch. In particular, the
fraction of infected, p/(t+ 1), and recovered individuals,
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Fig. 1 Spatial representation of the urban mobility network for selected cities in Australia and the United States. Areas marked blue correspond to
population density hotspots. The cities are organized in descending order according to the extent to which mobility flows are concentrated between areas
of high population density, k (Eq. (1)). Line color encodes the number of inhabitants following each route normalized by the highest flow observed within

each city.
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pR(t + 1), associated to patch i at time ¢+ 1, read
pi(t+1) = (1= wpi(t) + (1 = pi(1) = p{ENTIAE),  (3)

PRt +1) = () + ppi(D). (4)

Eq. (4) determines the evolution of recovered patients. As the
SIR model assumes that the compartment R constitutes the final
epidemiological state, this evolution is just given by the number of
infected individuals overcoming the disease. Regarding the
evolution of infectious individuals, the rhs. of Eq. (3)
corresponds to those infected overcoming the disease and the
second one involves contagions of susceptible individuals. In this
sense, the probability that a susceptible individual living inside i
contracts the disease at time ¢, IT(f), can be expressed as

N
L) = (1= pIP(D) +p 32 RyP0). 5)

The first term identifies those contagions occurring inside the
residence patch whereas the second term contains those taking
place inside neighboring areas. Likewise, the probability of
contracting the disease inside a given node i at time t, P(t), is

given by
fi
t=1— — ) 6
P(t) =1 (1 )tneff ) (6)

where f; determines the number of contacts per day of individuals
inside i. The explicit forms assumed for the function f are

explained in the Methods sections. Finally, the terms nieff and

Iieff (t), which denote the effective population and effective
number of infected individuals inside patch i at time ¢ after
population movements, read

ff_ -
nie = J; n; (6ij(1 -p+ Rji)’ 7
N
reff — j; njp]!(t)(&j(l -p+ Rji)- 8)

Eq. (8) implies that infected individuals move analogously to the
susceptible population regardless of their epidemiological condi-
tion. To account for possible mobility restrictions of symptomatic
agents with respect to asymptomatic or mildly ill patients, one
must introduce more complex compartmental schemes such as
the ones tailored for specific diseases!43°. Nevertheless, the
results presented here on the interplay between city morphology
and epidemic spreading are general enough to remain valid when
considering more elaborate models.

Connecting the epidemic threshold to hotspot flows. Given the
quantitative description of human flows composing the mobility
backbone of each city, we now focus on determining the effect
that their morphology has on the epidemic threshold, defined as
the minimum infectivity required to observe a macroscopic
outbreak. Specifically, to get a fair comparison of the effects of
mobility in cities with disparate average population densities, we
use the normalized threshold A, =Ac(p = 1)/A(p =0), as
detailed in the “Methods” section. A complete analysis of the
dependence of the normalized threshold for mobility values dif-
ferent from p =1 is included in Supplementary Note 2. In Fig. 2a
we plot A as a function of « for all the cities in our dataset,
represented as filled circles colored according to their respective
countries. We find a clear trend, whereby all cities fall into a curve
marking an inverse relationship between the vulnerability of the
cities and the extent to which flows are concentrated between

hotspots. A fit to the data yields a relation A. ~ «* with B~
—0.25. This exponent may vary when studying each country
individually because of the different spatial resolutions here
analyzed. We characterize this phenomenon in Supplementary
Note 3 and Supplementary Table 1. For the sake of completeness,
in Supplementary Fig. 2, we show the equivalent of Fig. 2a but
now split by country finding the same trend attesting to the
robustness of the inverse dependence. In particular, for cities
where there is a more egalitarian distribution of flows (lower x),
the epidemic threshold is higher for a mobile population as
compared to a static population, indicating that movement
between regions lowers the risk of an epidemic outbreak. Con-
versely, in those cities where the population moves primarily
between hotspots, there is a little-to-no difference in risk in terms
of whether residents stay in their patches, or whether they move
to different ones. As a comparison to other population-related
measures, we analyze the relation between different metrics such
as «, the average population density, the Lloyd mean crowding>3

and A for the 50 American cities in Supplementary Note 4. In
particular, we represent in Supplementary Fig. 3, the Spearman
correlation between each pair of variables, proving that the
concentration of flows between areas of high population density,
%, is a much better predictor of the vulnerability of cities than the
other two measures.

To further characterize the relation existing between cities’
vulnerability and the concentration of mobility between density
hotspots, we next analyze the impact of reshuffling the flows at a
local scale for each of the analyzed cities. In particular, we
preserve the total amount of flows, by removing all links
connecting hotspots (thus setting ¥ = 0) and redistributing them
across non-hotspot locations, respecting the relative proportion
for the flows from hotspots to non-hotspots areas, as dictated by
the original R matrix.

To quantify the effect of such intervention, we represent in Fig. 2b

the distribution of the values for the ratio /NXIZIOD /Ao, where the
numerator is the re-calculated threshold after the intervention. As the
figure indicates for the vast majority of cities (irrespective of their
original value of k), the effect of switching off the flows between
hotspots leads to an increase in the epidemic threshold, in turn
lowering their vulnerability to epidemic spread. In particular, we split
the cities into two categories as a function of the outcome of the
reshuffling process: beneficial, those where the threshold is increased
greater and detrimental, those where the threshold is instead lowered.
The number of cities belonging to each category is plotted as a bar-
chart in Fig. 2¢, indicating that around 91% of cities experience a
beneficial effect while the remaining 9% experience an increased
susceptibility (interestingly this category is dominated by American
cities). For this small number of cities, listed in Supplementary
Table 2, it is likely that there are other more complex features at play
not considered in this analysis.

Nevertheless, these results provide evidence that, in most cases,
the concentration of human mobility between densely populated
areas is a feature that enhances disease spreading and makes such
cities vulnerable to epidemics. Moreover, the beneficial effect
caused by the reorientation of intra-hotspot flows toward less
densely populated areas seems to be rooted in a homogenization
of the distribution of the underlying density, which enforces
infected individuals to stay away from the contagion focus, thus
reducing their infection power?>32. In turn, this homogenizing
flow structure appears naturally in cities with low x and, as
suggested by the empirical trends in Fig. 2a, characterizes the
most resilient cities. Therefore, a lower « translates into a greater
mix of populations, between high and low population density
centers, where they can actually take advantage of mobility
between city sub-regions to prevent outbreaks.
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Fig. 2 Connecting morphology to vulnerability. a Normalized epidemic threshold )~LC vs. population density hotspot concentration « for cities in each of the
chosen four countries (color code). The Spearman correlation coefficient is ro = —0.45 (p-value <10~9), showing a moderate but statistically significant
correlation. The solid line shows the result of fitting the data to a power-law function ic ~ &P, obtaining #~ — 0.25 via least squares regression. The

shadowed region covers 68.2% confidence intervals for the estimated parameters. b Histogramf’ar Et)hejmpact of reshuffling the flows connecting hotspots
among their non-hotspots neighboring areas on the epidemic threshold, measured by the ratio A_ ~~ /A., where the numerator represents the recomputed
threshold after reshuffling. The green-colored (red-colored) zone corresponds with a beneficial (detrimental) effect of such intervention translated into an
increase (decrease) of the epidemic threshold. ¢ Bar plot containing the count of cities within each category according to the outcome of the removal of

flows connecting hotspots for each country here analyzed.

Application to real pandemic settings. The formalism proposed
here can be readily applied to assess the exposure of cities to
actual outbreaks. To illustrate this, we next focus on the spread of
SARS-CoV-2 in the 50 most populated core-based-statistical-
areas (CBSA) in the United States, chosen due to the appropriate
spatial resolution in terms of infection data. Note that, although
thus far, we have focused on the SIR model, the following will
illustrate the generality of the results, in the context of the spread
of SARS-CoV-2, which has been recently analyzed with more
elaborate compartmental models3%->3-6,

As a proxy for a city’s vulnerability to epidemic spread, we
make use of the number of confirmed infected cases at the county
level collected from the New York Times (https:/github.com/
nytimes/covid-19-data) and USAFacts (https://usafacts.org/
visualizations/coronavirus-covid-19-spread-map/). Given the
inherent noise due to reporting artifacts, and assuming an
exponential growth, I, (t) ~ exp(b,t) during early onset, we apply
a smoothing procedure to extract the growth rate by of the
number of infected cases and use that as a proxy for a city k’s
susceptibility to disease spread. To remove any effects due to non-
pharmaceutical interventions and behavioral changes in the
population, we focus on the period before mitigation measures.
The full details of the procedure explained in the Methods
section, and the temporal infection plots for each city along with
the fits are shown in Supplementary Fig. 4.

In order to properly connect with the growth rate, we need to
reintroduce the effect of the population distribution and,
therefore, the relevant variable is the epidemic threshold A.(p =
1). Note that, by choosing p =1, we force all the inhabitants
within a city to follow the flow matrix T, but not all of them leave
their residential area due to the existence of self-loops in this
matrix. Indeed, according to the available data for the cities
analyzed here, around 36% of the population remains on average
inside their residential administrative unit. In Fig. 3a we plot the
empirically extracted growth rate b as a function of the epidemic
threshold, A, finding once again an inverse trend, confirming the
role of the threshold as a proxy for vulnerability. Those cities
which experienced a faster epidemic growth during the early
onset of the pandemic indeed had a lower threshold according to
our formalism.

Next we connect, the localization of flows to hotspots to the
empirical vulnerability in each of the cities. Since « only takes into
account flows between hotspots but does not account for their
population density, the variable that captures the effective
interaction between the residents in hotspots areas should be a
combination of both factors. Specifically, we have chosen

(dnor? 1943, where the first term corresponds to the average
population density within hotspots and the second term reflects
the scaling obtained for the normalized epidemic threshold in the
individual case of CBSA from the United States (see
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exponent 0.43 is introduced to reflect the dependence obtained when fitting the normalized epidemic threshold to « for the United States (Table S2). In
both panels, rp and rs denote the Pearson and Spearman rank correlation coefficients among the represented quantities. Error bars correspond to the 95%

confidence interval.

Supplementary Note 3 for further details). In Fig. 3b we plot b as
a function of this quantity finding a clear monotonically
increasing trend.

We note that the cities with the highest values of b are large
transportation hubs with major airports (New York, Miami, and
Boston for instance). The higher infection rates do not necessarily
reflect the fact that these cities were exposed to international
(domestic) travelers that seeded the infection. To check to what
extent b is explained by x controlling for the large inflows in such
cities, we conduct a PCA analysis of «, b, the inflow per-capita,
defined as the total number of international flows arriving in a
given city, as well as the population density. In Supplementary
Fig. 5, we plot the two most important components accounting
for 63% (PC1) and 24% (PC2) of the variance in the data. We see
that the quantity « is roughly orthogonal to the inflow per capita,
and contains unique information about the epidemic spread,
quite apart from inter-city travel. Thus taken together, the results
of Fig. 3 indicate that the empirical trends mirror our theoretical
formalism, whereby cities that experience strong early growth of
the epidemic have a lower threshold, a phenomenon for which
one of the main causative mechanisms is that the movement in
cities occurs primarily between hotspots.

Potential mitigation measures. The observations thus far,
immediately suggest the possibility of effective mitigation mea-
sures that may shore up the robustness of vulnerable cities to the
onset of epidemic spread. Before the availability of proven vac-
cines (and the continued limited efficacy of proven therapeutics)
for SARS-CoV-2, the predominant global strategy was the
adoption of non-pharmaceutical interventions of which a key
ingredient has been aggressive lock-downs. While ostensibly
being very effective in mitigating an active epidemic, significant
disruption to the socio-economic fabric is one of the unfortunate
consequences’>>8. Having demonstrated the key role played by
the interactions between population density hotspots, we next
investigate some targeted interventions, or even preemptions, that
are milder than completely restricting mobility city-wide and
assess their efficacy in reducing vulnerability. The strategy we
pursue is to modify flows between different types of locations in
the city without the need to isolate individuals at home. In the
first intervention (Intervention I), an asymmetrical strategy
involves restricting flows from non-hotspot (heretofore referred
to as suburbs) towards hotspot areas and converting them to self-
loops, while keeping all other flows the same. Intervention II

4.0

3.5

3.0

25

S\MOD/S\C

Int 1
(H#H)

Int.” IV
(S#5)

Int. Il
(H#AS)

Int. |
(S #H)

Reshuffling

Fig. 4 Impact of mobility interventions on the epidemic threshold for
cities in the United States. The impact is quantified with violin plots
representing the distribution for the ratio between the normalized threshold
after each intervention, i'\CAOD and the normalized threshold of the original
mobility network ;\C. The dots inside each violin plot shows the mean of
each distribution whereas the red dotted line shows the expected value of
this ratio in absence of intervention. Here, S and H refer to suburbs and
hotspots respectively, and S - H represents the restriction of flow from

suburbs to hotspots while keeping all other flows the same.

corresponds to the reverse situation where flows from hotspots to
suburbs are converted to self-loops. Finally, Interventions III and
IV reduce the connections among hotspots and suburbs
respectively.

To quantify the impact of each intervention, we represent in
Fig. 4 the distribution of the ratios between the normalized

. . . . 7MOD . .
epidemic threshold after the intervention A, and the original

normalized threshold A for each of the cities in the US. As a
control, we also include the (unrealistic) case of reshuffling all
flows according to the procedure described in Fig. 2. We find that
Intervention I has the effect of increasing the epidemic threshold,
thus enhancing robustness to spread. Given that a potential
epidemic has a high probability of being seeded and correspond-
ingly spreading extensively in high population density areas,
preventing the residents in suburbs from visiting these locations
protects them from being exposed to the disease. Conversely,
restricting residents in hotspots to travel to suburbs has the
opposite effect in further decreasing the threshold. This
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counterproductive effect emerges due to a phenomenon discussed
in2%, When there is an asymmetry between the population density
in cities, mobility from hotspots to suburbs leads to an increase in
the threshold due to the dilution of the effective population in the
hotspots thus reducing the number of contacts, as well as
diverting potentially infectious individuals to lower-density
regions where their impact is mitigated. Removing this route
makes the situation significantly worse. Therefore, the spread of
diseases across a given city is explained by a combination of the
creation of contagion sources due to the movement of individuals
between hotspots (governed by «) with the spatial dissemination
of cases prompted by those moving from less populated areas to
these sources. Finally, limiting both the mobility between
hotspots or between suburbs has a mostly neutral effect, although
the trends are noisier given that its effectiveness is closely related
to the underlying population density distribution inside them.
The results suggest that, among the scenarios outlined, the most
beneficial policy is to restrict residents in suburbs from visiting
hotspots, while at the same time allowing residents in hotspots to
continue with their regular mobility behavior. Note, that several
other combinations are possible, for instance, a combination of
interventions I and IIT which is likely to have even more of a
beneficial effect.

Discussion

Similar to how a virus enters the human body and replicates from
cell to cell, the spread of pathogens in susceptible populations is
influenced by the interaction between its hosts. Thus, it is the
social interactions, mediated by behavioral and mixing patterns,
that shape the spread of disease in human populations. Among
these aspects, human mobility is a key factor underlying the
unfolding patterns of epidemic outbreaks. Understanding how
human mobility shapes the spatiotemporal unfolding of con-
tagious diseases is essential for the design of efficient containment
policies to ameliorate their impact. In this paper, we investigate
the interplay between the population density and the spatial
distribution of flows in urban areas, and its impact on deter-
mining exposure to epidemic outbreaks. We report a clear trend
worldwide: the existence of a high volume of individuals com-
muting among the population density centers of a given city
makes it more vulnerable to the spread of epidemics. The extent
of a city’s vulnerability as determined from our formalism, allows
us to shed light on a real epidemic scenario: the spread of SARS-
CoV-2 across the United States. In particular, the epidemic
threshold determined by the population density profiles and
urban mobility patterns provides one of the potential mechanisms
behind the different levels of infection observed across cities in
the United States. Of course, many other factors such as the
socioeconomic differences between regions, political affiliations,
and behavioral traits play a key role, although these factors are
outside the scope of this study.

Controlling for these other factors, as an application to
potential epidemic waves, our indicator allows for identifying
those cities that are likely to become epidemic centers once the
first imported cases arrive there. This is of importance, given that
it can guide authorities to identify places where timely contain-
ment policies can be locally implemented to avoid large outbreaks
caused by massive community transmission. It is precisely the
lack of anticipation of the SARS-CoV-2 pandemic, that has led
countries to enforce aggressive containment measures aimed at
ameliorating the impact of the disease. The predominant strategy
has been the implementation of lockdown policies, forcing a large
fraction of the population to stay isolated at home, thus reducing
considerably their number of interactions. While there is con-
sensus on the effectiveness of these interventions to mitigate an

ongoing outbreak, the collateral socio-economic damage caused
by lockdowns requires a change of direction toward less aggres-
sive containment measures.

In the case of SARS-CoV-2, the strict individual isolation
characterizing the first interventions has given rise to more
relaxed lockdown scenarios combined with efficient Test-Track
and Isolate policies®-6!. Along these lines, we present different
scenarios based on modifying mobility habits to actively avoid the
emergence of large areas of contagion. Our analysis suggest that
an effective policy involves an asymmetric closure of neuralgic
centers of the cities, restricting movement to population density
hotspots from residents of other areas, while allowing those living
in hotspots to commute, in order to dilute the number of contacts
in the most vulnerable areas. Teleworking and effective dis-
tribution of key services in a city are practical manifestations of
such interventions. Of course, one must take care in executing
such a policy, keeping in mind for instance, that while it might
advantage wealthier populations that typically live in suburbs, it
might inadvertently leave relatively less affluent (the urban poor)
at a disadvantage.

Limitations. These results should be interpreted in light of several
important limitations. First, the Google mobility data are limited
to smartphone users who have opted into the Google Location
History feature, which is off by default. These data may not be
representative of the population as a whole, and furthermore,
their representativeness may vary by location. Importantly, these
limited data are only viewed through the lens of differential
privacy algorithms, specifically designed to protect user anon-
ymity and obscure fine detail. Moreover, comparisons across
rather than within locations are only descriptive since these
regions can differ in substantial ways.

Despite the generality of these findings, the dimensionality
reduction here proposed by coarse-graining the complex nature
of the mobility flows into a single indicator x sometimes fails in
capturing the behavior of the epidemic threshold. The clearest
example is the set of few cities for which removing the
connections between hotspots accelerates epidemic spreading.
To improve our results, a more exhaustive formalism taking into
account, not only the differences between hotspots and suburbs
but also the hierarchies existing within each category, as defined
in Bassolas et al.#’, can be considered. Likewise, these results rely
on the assumption that population density centers are much
more vulnerable to contagious diseases than scarcely dense areas.
While this is arguably a logical assumption, the beneficial effect of
mobility from hotspots to suburbs could be reversed for diseases
with large reproduction numbers R,. In this scenario, suburbs
would also have the potential to develop large outbreaks so the
existence of infection routes across the city would lead to an
acceleration of the propagation of the epidemic front.

Nevertheless, an advantage of our formalism is its relative
simplicity, paving the way to extend the results to more general
scenarios. For example, the homogeneous assumption concerning
the contacts of individuals within each subpopulation can be
improved to account for the heterogeneous nature of human
contacts®>93. In addition, we have restricted our study to the
morphology of urban flows by neglecting the contribution
coming from movements between different urban areas. There-
fore, another obvious extension is to consider movement at
different geographical scales®% along with the typically longer
time scales associated with them®. Accounting for movement
between cities, for instance, could provide valuable information to
coordinate joint efforts among different regions to modify both
inter- and intra-urban flows in service of reducing the impact of a
pandemic. Needless to say, pandemics are complex processes
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involving a multitude of spatial and socioeconomic factors. The
results presented here provide one of the building blocks for
policy planners in devising effective preventive and mitigation
measures for future crises.

Methods

Hotspot classification. Hotspots are identified by setting a threshold on the
population densities of cells within a city. The threshold for hotspots is assigned by
applying a non-parametric method, the LouBar method*>4%, based on the deri-
vative of the Lorenz curve. The Lorenz curve is the sorted cumulative distribution
of population densities and is obtained by plotting, in ascending order, the nor-
malized cumulative number of nodes vs. the normalized cumulative population
density. The threshold is then obtained by taking the derivative of the Lorenz curve
at (1, 1) and extrapolating it to the point at which it intersects the x-axis. We
classify hotspots in cities according to this LouBar method applied to population
densities, in agreement with the reliance of the model on effective densities. A cell i
is considered a hotspot of city k, Hy if it satisfies:

dir> dkLou ©)

where d; is the population density of cell i in city k and dkLou is the threshold
determined by performing the LouBar method on the population densities of all
cells in city k. This allows us to place emphasis on zones within cities that
encourage the most relative interaction, as opposed to sharp biasing due to
population magnitude. We then examine the hotspots flow concentration in each
city k, &y, defined as the fraction of total flows in the city system that exist between
these population density hotspots of city. Therefore, x; is given by

ZLj{Hk Tij
)
Zij Ty

where Tj; denotes the flow of individuals going from patch i to patch j according to
the mobility data.

K = (10)

Estimating theoretical city vulnerability. Eqs. (3)-(8) can be used to estimating
the vulnerability to spread, for a given city. For this purpose, we study the epidemic
threshold defined as the minimum infectivity per contact needed to observe an
epidemic outbreak. Therefore, the lower the epidemic threshold is, the easier an
epidemic wave propagates, thus reflecting a higher city vulnerability to epidemic
outbreaks. To estimate the epidemic threshold, we recall that in the SIR model, a
super-critical outbreak grows exponentially following the initial infectious seed(s),
eventually covering a macroscopic fraction of the population. In contrast, in the
sub-critical regime, the number of infected individuals decreases in time. Here, we
must consider the case in which the number of initially infected individuals
remains constant. Considering the size of the initial infectious seed to be negligible
compared to the overall population size, we can assume that

P =TF0)=7 <« T. Furthermore, at the beginning of the outbreak, we
assume that there are no individuals belonging to compartment R by setting
PR = . Both assumptions allow us to linearize Eq. (6) which now reads
P, >~ M; ﬁ (11)
T ’nieff ’

After introducing Egs. (5)-(11) into Eq. (3) and taking into account the stationary
regime, we obtain

N . f. .
%fi :Jg (1—p)s; flff +p(1 —p) (Rijnijf +R;; %) +7 SRRy %] n; €.
]

e
n; i

M;

(12)

The former expression holds if § corresponds to an eigenvalue of matrix M. As our
goal is obtaining the minimum A value triggering epidemic outbreaks, the epidemic
threshold A, is given by

Lok
‘ Al’l’laX(M)7 (13)

with Apax(M) denoting the spectral radius of matrix M.

If p =0, then the threshold would correspond with that associated with a static
population that never moves, whereas if p =1 then this accounts for a fully active
population which moves according to the commuting patterns encoded in the
matrix R. Note that, in general, the elements of the matrix M determining the
threshold are a combination of the average population density inside a city and
how the population moves across the city. To get a fair comparison about the
contribution of mobility in two cities with disparate population densities, we define
the normalized epidemic threshold A, = A.(p = 1)/A.(p = 0), which focuses on
how mobility alters the population distribution with respect to the static case. In
this sense, unlike the epidemic threshold, the dependence of the normalized

epidemic threshold on mobility is equal in two cities with the same OD matrices
and density profiles, despite possible differences in the average population density
in both cases.

Estimating empirical city vulnerability. We quantify the extent to which COVID-
19 is able to spread in a US city by examining the time series of confirmed cases per
county, from January 23 2020 to April 16 2020 (before truncating.) We aggregate
this data to the level of CBSAs by summing across each CBSAs component
counties. Given the noise in the data (due to collection and reporting artifacts, etc)
we perform preprocessing on the curves. We use a Savitzky-Golay Filter®” to
smooth the data by fitting intermediate windows®® with low-order polynomials.
We then truncate our data to a window of two weeks after 100 cases were con-
firmed in each county. This allows our window of observation to capture the
regime where COVID-19 awareness encouraged active testing, but before inter-
vention methods influence how the disease propagates within cities. This way, we
capture the disease behavior specific to the city structure, and not external sup-
pression. To estimate the vulnerability of each city, we fit the filtered cumulative
number of infections to an exponential function

I(t) = ae” (14)

and extract the growth rate b. Although more sophisticated approaches have been
proposed in the literature based on the estimation of the effective reproductive
number R,, our procedure is simple but effective to capture the vulnerability of
each city at the early stage of the outbreak.

Function governing contacts. Let us discuss the form of the function f, deter-
mining how the number of contacts that each individual makes inside each patch
depends on its density. To shed light on the role of mobility inside each city, we
follow a nonparametric approach by assuming that these contacts are linearly
proportional to the density inside each patch. This way, the results shown in Figs. 2
and 4 are obtained by assuming

= (s)

being g, the area of patch i.

Although useful for illustrating the role of mobility in each city, the
nonparametric linear relation does not correspond with a realistic scenario due to
the large difference in terms of contacts existing among zones with disparate
densities. To make a more fair comparison of the expansion of COVID-19 over
different cities, we choose a more complex function governing the number of
contacts. Following®®, we assume that

Leff
fi=2— e (16)

which is bounded such that f; € [1, 2). Here the parameter & is estimated by
maximizing the correlation among the theoretical and the observed vulnerabilities,
yielding £ =2 x 10~# square miles per individual. By including this function, we
estimate the epidemic threshold for each city, A, as

_ “
B Amax(M\p=1)’ a”

where we set y =1 for the sake of simplicity. Note that the latter parameter does
not have any influence on the cities’ ranking since it is inherent to the disease
features and does not depend on human interactions.

To check the robustness of the results presented in the manuscript, We show in
Supplementary Fig. 6 that the more realistic function provided by Eq. (16) yields a
better estimation for the vulnerability of the city while not losing the inverse trend
relating to the normalized epidemic threshold )~LE and the flow between population
hotspots «.

Data availability

The data for this work was taken from the following sources: the mobility flow data are
taken from the Google SARS-CoV-2 Aggregated Mobility Research Dataset, the
population density data are taken from national census bureaus (https://blog.splitwise.
com/2014/01/06/free-us-population-density-and-unemployment-rate-by-zip-code/,
https://www.abs.gov.au/, http://www.statssa.gov.za/) and estimates recently published by
Facebook (https://data.humdata.org/organization/facebook.) The empirical COVID-19
infection data was taken from data collected by the New York Times (https://github.com/
nytimes/covid-19-data) and USAFacts (https://usafacts.org/visualizations/coronavirus-
covid-19-spread-map/.) The rest of the data may be made available, upon request to the
authors.

Code availability

The code for the analysis was programmed using standard libraries in C and Python.
All the calculations can be reproduced with the equations provided in the main text or
the Supplementary Information. Even so, the code used here is available upon request
to the authors.
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