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A B S T R A C T   

This paper proposes using multivariate methodology to authenticate the geographical origin of monovarietal 
Arbequina extra virgin olive oils from two geographically adjacent Catalan PDOs (protected designations of 
origin). Two spectroscopic techniques, fluorescence and FT-Raman were used to obtain multivariate data. The 
results obtained by principal component analysis (PCA), partial least squares–discriminant analysis (PLS–DA) 
and low and high-data fusion are discussed. The training and test samples were randomly chosen. To obtain 
greater representativeness in the results, the data set was independently divided three times. Thus, three different 
training and test sets were obtained and used to build independent classification models and carry out data fusion 
strategies. When the two fusion strategies were applied, the performance parameters (sensitivity and specificity) 
were better than when they were applied individually, which indicates that synergies between FT-Raman and 
fluorescence expand the information about the samples. It was also observed that the influence on the results of 
the type of data set obtained by the random division of the data set was minimized.   

1. Introduction 

The extra-virgin olive oil (EVOO) is a basic ingredient in the Medi-
terranean diet and is becoming increasingly more popular worldwide 
because of its nutritional and sensory qualities as well as for reducing the 
risk factor of some pathologies [1,2]. Therefore, considerable effort has 
been made to ensure both authentication and detection of adulteration 
of EVOOs, becoming an area of great interest. Authentication includes 
ensuring aspects such as its botanical variety and origin of the product 
[3]. To encourage the use of quality-differenced labelling to identify 
agricultural products and foodstuffs, a European regulation was pub-
lished in 1992 [4] which has been updated several times [5]. 

Because of both legislative and consumer interest, considerable 
research has been carried out into developing analytical methods for 
assuring the quality of EVOOs [6]. Recently, Meenu et al. [7] have 
published a critical review on analytical techniques for detecting the 
adulteration of EVOOs. Regarding authentication, in general, it is very 
difficult to find a marker that solves the problem by itself, so the usual 
approach is multivariate. Since authentication requires a qualitative 
response, the appropriate techniques are multivariate classification 
techniques [8–10]. 

In the bibliography it can be found that EVOOs have been analyzed 

using any instrumental technique that gives a multivariate response 
[11–15]. Spectroscopic techniques [16,17] are worthy of special 
mention because the spectrum is easy and quick to obtain, it does not 
require sample pretreatment (or little), and as a result is a cheaper and 
more environmentally friendly measurement. Raman spectroscopy is 
being applied for both adulteration [18–20] and authentication prob-
lems [21–23]. Fluorescence techniques are gaining attention as a 
method of food analysis. As Meenu et al. [7] point out, molecular 
fluorescence spectroscopy has been used to analyse the quality of 
EVOOs, although its applications to authentication and the detection of 
adulteration are limited. Some recent papers describe the application of 
fluorescence spectroscopy both, for identifying the adulteration of 
EVOOs [24–26] and for the authentication of cultivar and geographical 
origin [27]. There are several ways to work, such as fixing the excitation 
wavelength and recording the emission spectra [25,28], recording the 
synchronous emission spectra [24,26] and using front face mode 
[26,29]. 

If multivariate models are to be improved and complementary in-
formation obtained from various analytical techniques is available, the 
application of data fusion techniques would be a good strategy. In the 
literature, there is an increasing number of studies on the application of 
data fusion techniques to food analysis [30]. In the particular case of the 
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quality analysis of EVOOs, techniques such as liquid and gas chroma-
tography, UV, IR and other spectroscopies, physico-chemical parameters 
and sensorial data have been fused [31,32]. Of these, IR spectroscopies 
are by far the most widely used [33]. To our knowledge, just one paper 
has used confocal Raman and fluorescence spectroscopy to study the 
quantitative adulteration of EVOO [34], but no one has applied it to 
study authentication by means of qualitative approach. 

In this context, the aim of the present study is to establish a meth-
odology to authenticate the geographical origin of monovarietal Arbe-
quina extra-virgin olive oils from two geographically adjacent Catalan 
PDOs. The main challenges are, in the first place that the two types of 
EVOO‘s are from the same olive variety which implies that they would 
have similar instrumental response. In the second place, belonging to 
adjacent geographical origin allows to extrapolate that for no adjacent 
PDO the results would be better or equal. 

Two methods, fluorescence and FT-Raman spectroscopies were used. 
Those techniques have been selected based in its own characteristics 
previously mentioned. In addition, they can present some synergies and 
the synergies study have been not deeply explored with qualitative 
multivariate purpose. As a result, we expect to obtain valuable infor-
mation about their combination. 

In relation to the classification technique, two main approaches can 
be followed: discriminant or modeling. Among them, the partial least 
squares–discriminant analysis (PLS-DA) has been selected, since it fo-
cuses on the search for a delimiter between the classes. Principal 
component analysis (PCA) has been applied to visualize sample distri-
bution, possible presence of trends and outliers. To improve the classi-
fication results obtained from the individual models, low and high-data 
fusion are applied and discussed in detail. 

2. Materials and methods 

2.1. Samples 

A total of 84 single-variety (Arbequina) EVOO samples from the 
2019 harvest in two geographical origins in Catalonia (Spain) were 
analysed: 47 samples from Siurana (S) and 37 from Les Garrigues (LG). 
The Catalan Government’s Official Tasting Panel of Virgin Olive Oils of 
Catalonia supplied the samples and confirms the status of the oils. 

Approximately 65% of the samples were used for training and the 
rest were used for validation. Hence, the training set consisted of 54 
samples (22 LG and 32 S) and the test set of 30 samples (15 LG and 15 S). 

The training and test samples were randomly chosen. For greater 
representativeness in the results, the overall sample was randomly and 
independently divided three times, thus obtaining three independent 
random data sets which were used for the independent classification 
models and the data fusion strategies. 

2.2. Instrumentation and software 

Thermo Nicolet 5700 FT-IR (Wisconsin, USA) equipped with the FT- 
Raman module NXR, an InGaAs detector, a CaF2 beam splitter and a 
1064 nm Nd-YAG laser was used. The spectrum was recorded by filling a 
48-well plate with an oil’s drop. Measurement conditions were: room 
temperature, 1064 nm laser, 0.25 W power, number of scans 124, 4 
cm− 1 resolution, and range measurement from 100 to 3700 cm− 1. No 
sample pretreatment was applied. 

Fluorescence spectra were recorded using a Shimadzu RF-5301PC 
instrument (Shimadzu Corporation, Kyoto, Japan). The slit width was 
5 nm for excitation and for emission. The fluorescence emission spectra 
were collected between 360 and 800 nm using an excitation wavelength 
at 350 nm. The integration time was 0.1 s, and the sampling interval was 
10 nm. No sample pretreatment was applied. 

For chemometric treatment, MATLAB software, version 8.0.0.783 – 
R2012b (Natick, MA, USA), and PLS Toolbox 7.0.2 (Eigenvector 
Research Inc., Wenatchee, WA, USA) were used. 

2.3. Data analysis 

The VIP method [35–36] was applied to detect and select the most 
important variable in Raman data. They provide information about the 
significance of each variable on the latent variables (LV). The greater the 
VIP scores (usually greater than 1), the more important the corre-
sponding variable is. 

Principal component analysis (PCA) compresses the data, and reduce 
it from the high dimensional variable space to a lower dimensional 
principal component space. It was applied to explore sample distribution 
in the multivariate space, check any natural clustering and identify 
possible outliers. 

PLS-DA [37] establishes a PLS linear regression between a matrix of 
independent variables (fluorescence or FT-Raman spectra) and a matrix 
of dependent variables (class code). For instance, the class code can be 
one if the sample belongs to the class and zero if it does not belong. Once 
the model was established, the results obtained for each sample will 
have values in an interval between zero and one. A threshold based on 
minimizing false assignments is set, which allows the samples to be 
assigned to one or another class, [31,38]. 

Fig. 1. Raw spectra of, a) mean FT-Raman spectrum of the two classes, b) mean 
Fluorescence spectrum of the two classes. In both, the spectrum of Les Garrigues 
(red) is at the top and Siurana (blue) at the bottom. 
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High-level data fusion [39,40], uses the results obtained for each 
sample by the FT-Raman and fluorescence individual PLS_DA models. 
Several operators are applied to the individual results keeping just the 
highest value and assigning the sample to that class. The final sample 
assignation (ensemble decision) was fixed considering the majority of 
the decisions from each operator (majority vote). Of the operators 
available, the minimum, maximum, average and product operators were 
applied. 

In the low-level fusion approach data from VIP-Raman and fluores-
cence were concatenated (joined together in a single matrix). Before the 
model was calculated, data were balanced to have all variables in the 
same scale [39–41]. 

To assess the performance of the classification model, sensitivity, 
specificity and efficiency were calculated [9,40,42] on the basis of true 
assignations (true positive and true negative) and false assignations 
(false positive and false negative). 

3. Results and discussion 

Fig. 1 shows the mean FT-Raman (Fig. 1a) and fluorescence (Fig. 1b) 
spectra of the EVOOs for each of the geographical PDOs considered. At 
first glance, no differences are observed between the spectra 

corresponding to each of the classes (LG and S). The bands and their 
intensities appear as expected when EVOOs are analyzed, both for FT- 
Raman [43] and fluorescence [44]. 

Prior to multivariate analysis, a 15-point smoothing was applied to 
the FT-Raman spectra and variables were selected by considering the 
VIP scores, which reduced the number of variables from 6431 to 1681. 
Fluorescence spectra were not pre-treated. 

Principal component analysis (PCA) was applied to the centered VIP- 
FT-Raman spectra and centered fluorescence spectra of the data set (84 
samples). The score plot PC1 vs PC2 of the fluorescence spectra (Sup-
plementary figure 1) showed not a clear separation between the two 
classes but a trend of separation was observed. Similarly, the separation 
between classes was not clear in the score plot of the FT-Raman spectra, 
although a trend was observed when PC1 was plotted against PC3 
(Fig. 2S). In both cases, based on the score plot, no outliers were 
detected. 

First, independent two-class models were built for each data source 
(FT-Raman and fluorescence) and for each of the three random data sets. 
Each model was validated by leave-one-out cross-validation. The 
optimal number of LVs used to build the PLS-DA models was selected on 
the basis of the RMSECV. For FT-Raman and fluorescence models, the 
first two and four PCs were considered, respectively. Looking at the PLS- 

Fig. 2. PLS-DA score plot of the first two LV́s for Les Garrigues PDO (red triangle) and Siurana PDO (blue square): a) of the fluorescence data and b) of the FT- 
Raman data. 
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DA score plots, it can be seen that with the first two LV’s, with the 
fluorescence spectra the trend observed in the PCA score plot was kept 
(Fig. 2a), while with the FT-Raman, the trend is highlighted and a sep-
aration between the two classes was observed (Fig. 2b). 

Table 1 shows the performance parameters of the models developed 
from the data obtained by the individual techniques and by the low-level 
data fusion strategy. In the training set, it can be observed that FT- 
Raman presents excellent results with values higher than 95% for both 
sensitivity and specificity, regardless of the random subset considered. 
In the case of the models obtained with fluorescence data, the values are 
slightly lower (from 77% to 94%). The influence of the random set was 
also observed. For instance, with random set 1 approximately 23% of the 
Les Garrigues samples were wrongly assigned as Siurana while with 
random sets 2 and 3, the erroneous assignation dropped to 9 and 14%. 

The performance parameters obtained with the test samples were 
generally worse and, with both techniques, the random set used was also 
observed to have an influence. This was more evident in the case of FT- 
Raman and Les Garrigues. It is to be expected that the more samples 
there are, the lower the influence of random choice will be. However, in 
a real application, it is not always easy to find a large number of samples 
of guaranteed origin. 

Since the results are susceptible to improvement, we applied two 
data fusion strategies: low- and high-level. The low-level PLS_DA models 
built by concatenating and normalizing the 1681 FT-Raman with the 
440 fluorescence variables required 3 or 4 LVs depending on the random 
data set considered. Table 1 shows that the performance parameters of 
the test set improved for both techniques and also for the fluorescence 
training set (there was little change in the FT-Raman set) which in a way 
shows the synergy between both techniques. 

To apply high-level fusion, given the nature of the operators, the 

results that were the same for both techniques will still be the same after 
the fusion so, for practical purposes, only non-concordant results were 
fused. Table 2 shows the number of non-concordant samples and the 
group to which they belong. It can be observed that most of them 
belonged to the Les Garrigues class. The percentage of non-concordant 
samples oscillates around 20%. It must be emphasized that all concor-
dant samples were positive (properly assigned to their own class). 

The fusion operators were applied to the values predicted by the 
PLS_DA models obtained with the individual techniques, and the higher 

Table 1 
Model performance parameters obtained from individual techniques and low-level data fusion.   

TRAINING TEST  

Sensitivity Specificity Efficiency Sensitivity Specificity Efficiency 

FT-Raman LES GARRIGUES 
Random 1 95 100 98 53 93 73 
Random 2 100 100 100 80 93 97 
Random3 100 97 98 47 100 73  

SIURANA 
Random 1 100 95 98 93 53 73 
Random 2 100 100 100 93 80 97 
Random 3 97 100 98 100 47 73 
Fluorescence LES GARRIGUES 
Random 1 77 91 85 93 93 93 
Random 2 91 91 91 67 93 80 
Random 3 86 94 91 67 93 80  

SIURANA 
Random 1 91 77 85 93 93 93 
Random 2 91 91 91 93 67 80 
Random 3 94 86 91 93 67 80 
low-level LES GARRIGUES 
Random 1 100 100 100 100 93 97 
Random 2 91 84 97 80 80 80 
Random 3 100 100 100 67 100 83  

SIURANA 
Random 1 100 100 100 93 100 97 
Random 2 84 91 87 80 80 80 
Random 3 100 100 100 100 67 83  

Table 2 
Number of samples submitted to high-level fusion.  

Samples type Ramdom 1 Random 2 Ramdom 3 

Les Garrigues Training 6 2 3 
Test 8 8 13 

Siurana Training 3 3 3 
Test 2 2 1  

Table 3 
Representative examples of class assignation using high-level data fusion.    

y predicted value  

real sample type  LG class S class Ensemble decision 

S training (2116) FT-Raman 0,325 0,675   
Fluorescence 0,698 0,302   
Minimun 0,325 0,302 LG  
Maximum 0,698 0,675 LG  
Product 0,227 0,204 LG  
Mean 0,512 0,488 LG  
majority vote   LG 

S training(0336) FT-Raman 0,312 0,688   
Fluorescence 0,525 0,475   
Minimun 0,312 0,475 S  
Maximum 0,525 0,688 S  
Product 0,164 0,327 S  
Mean 0,419 0,581 S  
majority vote   S 

LGtest(3148) FT-Raman 0,633 0,367   
Fluorescence 0,318 0,682   
Minimun 0,318 0,367 S  
Maximum 0,633 0,682 S  
Product 0,201 0,250 S  
Mean 0,476 0,524 S  
majority vote   S 

LGtest(0355) FT-Raman 0,489 0,511   
Fluorescence 0,842 0,158   
Minimun 0,489 0,158 LG  
Maximum 0,842 0,511 LG  
Product 0,412 0,081 LG  
Mean 0,666 0,334 LG  
majority vote   LG  
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values (indicated in bold, Table 3) were considered for the final 
ensemble decision. As an example, Table 3 presents the result of the 
ensemble decision of four samples selected to show different fusion 
outcomes: that is, samples of both classes that were properly assigned 
(Straining0336 and LGtest0355) and samples not solved (Straining2116 
and LGtest3148). 

Most of the non-concordant samples submitted to high-level fusion 
were favourably resolved. Table 4 shows the values of the performance 
parameters obtained and that the results were slightly better than after 
low-level data fusion, although both data fusion strategies improved the 
classification of EVOOSs. 

A comparison of the three random data sets shows that the results are 
worst for selection 3 in all cases studied (individual models, and low- 
and high-level strategies). Even if selection 3 is included, it can be 
concluded that the Siurana test samples are properly recognized by their 
own model and not assigned to the Les Garrigues class (values higher 
than 93% or 100%). Les Garrigues test samples were mistakenly 
assigned to the Siurana class in approximately 25% (random 3) and 7% 
(random 1 and 2) of the cases. 

In comparison with other reported methods, the classification 
models based on the individual techniques (FT-Raman and Fluores-
cence) gave similar performance as the referenced at the introduction 
section [21–23,27]. An added difficulty in this study is that all the 
samples belong to the same monovarietal type (Arbequina) and the two 
geographical areas are adjacent, although they have their own PDO. As 
for the data fusion strategy, the most widely applied according to the 
references, is the mid-level data fusion, even with other types of sam-
ples. Few references deal with high-level data fusion. The performance 
parameters of the high-level data fusion were comparable to the mid- 
level. Furthermore, high-level is really simple to implement since it is 
based on the combination of the results obtained from each individual 
model, which means that it is not necessary to develop another multi-
variate model. 

4. Conclusions 

FT-Raman and fluorescence with PLS-DA were used to authenticate 
EVOOs from two geographically adjacent Catalan PDOs. The data ob-
tained for each technique were randomly divided into two subsets: the 
training set and the test set. This division was carried out in triplicate to 
obtain three datasets (random 1, 2 and 3) so that the performance pa-
rameters were more representative. 

When the classification models were established with the data of 
each technique individually, the influence of the random set was 
observed. By way of example, sensitivities for the Les Garrigues oils 
varied significantly when they were evaluated with the three random 
test sets. Values were 47, 53 and 80% when FT-Raman was used and 67, 
67 and 93% with fluorescence. It is to be expected that the more samples 
there are, the lower the influence of random choice will be. However, in 
a real application, it is not always easy to find a large number of samples 
of guaranteed origin. 

After applying the two fusion strategies the performance parameters 
clearly improved, which indicates that there are synergies between FT- 

Raman and fluorescence when characterizing samples from both PDOs. 
Further improvement was observed when the samples were randomly 
divided into training and test sets. In these conditions the sensitivities of 
the Les Garrigues class from the test set were 73, 93 and 93%. The 
variation was clearly lower. 

Although the proposed strategy implies the use of more than one 
instrument, nowadays, many laboratories have a wide range of analyt-
ical equipment, which means that the data fusion strategy is a feasible 
way to obtain complementary information in a multivariate approach. 
Both FT-Raman and in fluorescence measurements are fast, simple and 
do not require the sample to be pre-treated, so we consider that the 
methodology presented is highly suitable to address the problem 
presented. 
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[9] M.I. López, M.P. Callao, I. Ruisánchez, Tutorial on the validation of qualitative 
methods: from the univariate to the multivariate approach, Anal. Chim. Acta 891 
(2015) 62–72, https://doi.org/10.1016/j.aca.2015.06.032. 

[10] E. Szymanska, J. Gerretzen, J. Engel, B. Geurts, L. Blanchet, L.M.C. Buydens, 
Chemometrics and qualitative analysis have a vibrant relationship, Trends Anal. 
Chem. 69 (2015) 34–51, https://doi.org/10.1016/j.trac.2015.02.015. 

[11] M. Pan, S. Sun, Q. Zhou, J. Chen, A Simple and Portable Screening Method for 
Adulterated Olive Oils Using the Hand-Held FTIR Spectrometer and Chemometrics 
Tools, J. Food Sci. 83 (6) (2018) 1605–1612, https://doi.org/10.1111/1750- 
3841.14190. 

[12] H. Miho, C.M. Díez, A. Mena-Bravo, V. Sánchez de Medina, J. Morala, E. Melliou, 
P. Magiatis, L. Rallo, D. Barranco, F. Priego-Capote, Cultivar influence on 
variability in olive oil phenolic profiles determined through an extensive 
germplasm survey, Food Chem. 266 (2018) 192–199, https://doi.org/10.1016/j. 
foodchem.2018.06.002. 
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