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A B S T R A C T   

In 2005, the European Union launched its Emissions Trading System (ETS), the first and one of the largest in
ternational carbon markets aimed at reducing member states’ CO2 emissions. Policymakers tend to use the 
carbon price as an indicator of the “health” and effectiveness of the ETS mechanism, although this measure is 
influenced by many other energy and climate policies, energy market fundamentals, and speculative shocks. This 
paper develops a model that links the energy sector (oil, natural gas, coal, electricity prices, and the share of 
fossil fuels in electricity generation), economic activity, and the carbon price. The model can be used as a 
monitoring tool for carbon price dynamics. We represent the model empirically through a Structural Vector 
Autoregression and use frequency-domain analysis to distinguish the effects of changes in fundamental factors 
from shocks to market microstructure. Our empirical results show that up to 90% (65% on average) of the 
fluctuations in the carbon price, adjusted for supply effects, are explained by fluctuations in fundamental market 
variables; however, the individual contributions are not stable. Overall, our results suggest that the ETS has 
started to work well.   

1. Introduction 

European Union created the Emission Trading System (ETS) 15 years 
ago as part of its climate action plan. It consists of limiting the number of 
issued CO2 allowances and selling them via auction to eligible emitting 
entities, which can trade them further on a secondary market. In this 
way, a market for CO2 is established. If the CO2 emission permits price 
(carbon price, henceforth) becomes high enough, some industrial in
stallations may find it cheaper to implement energy efficiency initiatives 
or switch to alternative fuels associated with lower emissions than to 
continue paying for allowances. 

Since its inception in 2005, the ETS system has gone through four 
implementation phases, with Phase 4 covering the period 2021–2030. In 
all phases, the ETS system is based on market forces: the EU sets and 
limits supply, and the market determines demand. The carbon price is 
therefore determined by the interaction of these two market forces. Once 
the amount of CO2 available to the market is set, the demand side alone 

decides the price. In this case, demand may not provide prices high 
enough to switch to alternative fuels and implement other emission 
reduction measures. Such situations endanger technological change and 
the achievement of climate protection targets, as happened in 2010 due 
to the global financial crisis. 

In this paper we study the determinants of carbon price dynamics. 
We develop a theoretical framework to build an empirical model linking 
the energy sector, economic activity, and the carbon price. Many other 
papers have studied the determinants of the carbon price. For example, 
Hintermann et al. [1] provide an excellent review of the ETS modeling 
literature for Phases I and II. Recent studies include Ji et al. [2], 
Chevalier et al. [3], Jimenez-Rodriguez [4], Wang and Guo [5], Tan 
et al. [6], Gong et al. [7], Tan and Wang [8]. 

Our work makes three important contributions to this literature. We 
first develop a comprehensive theoretical model for carbon price 
determination. The model incorporates the share of fossil fuels in elec
tricity generation among the carbon price determinants. This variable 
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allows us to account for changes in fossil fuel demand due to renewable 
energy policies that are not adequately captured by other model vari
ables such as energy prices or economic activity. Second, we propose an 
identification scheme to distinguish the effects of omitted policy and 
fundamental factors from carbon market speculation. The identification 
strategy, built in the frequency domain, assumes that long-term fluctu
ations in the carbon price due to the carbon market shock are entirely 
due to omitted policy and fundamental factors. At the same time, short- 
term fluctuations are (largely) due to speculation and market micro
structure noise. Third, we empirically represent the model as a structural 
vector autoregressive (SVAR) model that we estimate dynamically over 
a rolling window. The SVAR allows us to quantify the impact of each 
variable on the carbon price and assess the evolution of this impact over 
time. To quantify the impacts, we rely on impulse response analysis 
(IRF) and spillover indices based on the connectedness framework of 
Diebold and Yilmaz [9,10]. The spillover indices are calculated using the 
frequency domain approach of Barunik and Krehlik [11] to distinguish 
between short-, medium- and long-term interactions. 

The proposed model can be used for historical analysis of past pol
icies, showing the relative importance of different factors in carbon price 
dynamics in each period and providing insights into why a particular 
policy worked or did not work. It can also be used for forward-looking 
analysis by providing answers to the likely magnitude of changes in 
carbon prices due to shocks in fundamental market variables, such as 
fossil fuel prices. In general, our model provides a valuable monitoring 
tool for carbon price dynamics. This knowledge can help EU policy
makers anticipate market failure (rather than correcting it after the fact) 
and provide a timely signal to adjust the number of permits or other 
relevant policies. At the international level, the results provide useful 
information for policymakers designing and analyzing emissions trading 
schemes in other countries by showing the vulnerability of the European 
ETS to external factors. 

As the carbon market is now largely financialized, the model can 
help investors optimize their portfolios and hedge risks. According to the 
results of Crossland et al. [12], the EU ETS is not information efficient, so 
in addition to constructing the optimal investment portfolio, informa
tion about the relationships between markets can be used to determine 
excess returns. 

The paper is organized as follows. Section 2 summarizes the previous 
literature, highlighting the main differences with our work. Section 3 
presents a theoretical model in which the carbon price interacts with 
other fundamental variables of the energy system. The econometric 
framework is presented in Section 4. Section 5 develops the empirical 
model and discusses the econometric strategy. Section 6 discusses the 
results. Finally, Section 7 presents the implications of our results and 
makes some concluding remarks. 

2. Literature review 

The EU ETS has attracted much attention from the scientific com
munity. Most studies examine the main drivers of the carbon price, or 
the dynamic relationship between the carbon price and other energy 
markets. These two questions are closely related, as the financial inte
gration across markets makes it difficult to determine whether a market 
is a driver or a follower. 

Early research included pure, time-series modeling studies of carbon 
price (e.g., Paolella and Taschini [13]; Benz and Trück [14]; Daskalakis 
et al. [15]). However, most of the literature focuses on the determinants 
of carbon price. For example, Christiansen et al. [16] suggested that 
market fundamentals such as weather, fuel prices, fuel switching, and 
regulation play a significant role in determining the carbon price. Sub
sequent studies concluded that fuel price is one of the most important 
determinants of carbon price (e.g., Mansanet-Bataller et al. [17]; 
Alberola et al. [18]; Keppler and Mansanet-Bataller [19]; Hintermann 
[20]; Chevallier [21]; Creti et al. [22]; Aatola et al. [23]). Most of these 
authors also emphasized that economic activity is an important driver of 

carbon prices, generally using stock market indices as indicators of 
economic activity. 

Even at this early stage, some authors emphasized that the rela
tionship between carbon prices and other variables changes over time. 
For example, Alberola et al. [18] tested for structural breaks, Chevallier 
[21] used Markov switching VAR to account for possible nonlinearities, 
Creti et al. [22] analyzed the stability of the determinants of the carbon 
price during Phases I and II, Chevallier [24] evaluated the dynamic 
relationship between oil, gas, and carbon prices in BEKK, CCC, and DCC- 
MGARCH models. Hammoudeh et al. [25] used quantile regressions to 
determine the impact of energy prices on carbon price. In addition, 
Hammoudeh et al. [26] used impulse response analysis from a Bayesian 
SVAR model to analyze the dynamics of carbon pricing in response to 
changes in other energy prices. The authors found a positive impact from 
the oil price shock in the short run, negative impacts from the natural 
gas and electricity price shocks, and a statistically insignificant response 
from the coal price shock. 

Chevallier et al. [3] applied a conditional Vine Copula approach to 
model the dependence structure between EU emission allowance returns 
and primary energy price returns (coal, gas, oil, and electricity). The 
authors found that the carbon price is only weakly related to energy 
prices, and that the link to oil and gas prices is negative. Also, Jimenez- 
Rodriguez [4] tested the causality between a common factor calculated 
from the main European stock market indices and EU ETS prices, 
concluding that there is a relationship between the stock market and the 
EU ETS. 

Wang and Guo [5] and Ji et al. [2] estimated a moving window VAR 
on returns and volatilities of carbon and energy prices, and other vari
ables, to quantify dynamic connectedness based on Diebold and Yilmaz 
[9,10]. Both papers highlighted the crucial role of Brent oil returns on 
carbon price returns. Ji et al. [2] found evidence of spillover effects from 
the carbon market to other energy markets and emphasize that elec
tricity returns are the most important recipient of spillover effects in the 
system. Wang and Guo [5] also reported a significant spillover effect 
from natural gas to the carbon market. Tan and Wang [8] analyzed the 
quantile-based dependence between EU allowances, energy prices and 
macroeconomic risk factors. They found that the two variables have a 
significant impact on carbon pricing, although the magnitudes change 
during the three phases of the EU ETS. 

In recent papers, Tan et al. [6] used the Modified Lanne-Nyberg DY 
variance decomposition to compute the directional connectedness in the 
“Carbon-Energy-Finance” system. They concluded that the carbon 
market is closely related to the stock and non-energy commodity mar
kets and less related to the bond market. Zhao et al. [27] and Adekoya 
[28] studied the predictive power of crude oil, natural gas, and coal 
prices in predicting the European carbon price. Vulin et al. [29] used a 
momentum strategy and a geometric Brownian motion simulation to 
predict long-term EUA price probabilities. The authors found that car
bon price changes are only weakly correlated with coal price changes, 
but strongly correlated with natural gas. Duan et al. [30], using quantile- 
on-quantile (QQ) regression and the causality-in-quantiles approach, 
evaluated the marginal effects of energy prices on carbon price fluctu
ations in Phase III of the EU ETS. 

Wang and Zhao [31] used a Bayesian network to select the most 
important variables/markets for predicting carbon prices. The authors 
investigated the impact of the selected markets on the carbon market. 
They found that natural gas and crude oil directly affect the carbon 
price, while the S&P500 and the Global Clean Energy Index have an 
indirect impact. Wu et al. [32] used partial wavelet analysis to investi
gate the dynamic multiscale interactions between European carbon and 
Brent oil futures prices. They found a stable relationship between the 
two markets, with oil leading at medium and low frequencies. Ye and 
Xue [33] analyzed the impact of news on carbon price returns. Yuan and 
Yang [34] provided evidence of an asymmetric risk spillover from 
financial market uncertainty to the carbon market. Gong et al. [7] 
analyzed spillover effects between carbon and fossil energy markets due 
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to time-varying VAR with stochastic volatility. They found that, in the 
second phase of the EU ETS, there was a strong spillover effect of coal on 
the carbon market and, in the third phase, the natural gas market was 
increasingly important. 

Finally, there is related literature that examines the interactions 
between energy and carbon market volatilities. This literature typically 
relies on GARCH specifications to assess interactions in conditional 
variances (e.g., Liu and Chen [35]; Reboredo [36]; Balcilar et al. [37]), 
or relies on indices from Diebold and Yilmaz [9,10] to quantify volatility 
spillover effects (e.g., Chulia et al. [38]; Ji et al. [2]; or Wang and Guo 
[5]). Our work has similarities with some of the studies mentioned 
above. It is mainly related to Ji et al. [2], Wand and Guo [5] and Tan 
et al. [6], as we also build part of our study on the connectedness 
framework of Diebold and Yilmaz [9,10]. However, it overcomes some 
weaknesses in the existing literature. First, previous studies have typi
cally selected variables in an ad hoc manner or based on expected 
financial market integration, rather than on proper economic modeling. 
In contrast, we develop a small, theoretical model for the EU ETS market 
that provides a framework for building the empirical model. 

Second, existing studies based on connectedness indices, such as Ji 
et al. [2], Wand and Guo [5], and Tan et al. [6], have typically 
considered prices in (log) differences (returns) and relied on the 
generalized framework of Pesaran and Shin [39] to deal with correlated 
innovations. Unlike previous work, we perform the analysis in (log) 
levels and identify the VAR. On the one hand, considering the level of 
variables allows us to account for long-run relationships between vari
ables that are lost when analyzing in differences, since differentiation 
destroys low-frequency fluctuations. On the other hand, the structural 
identification of VAR allows us to assess the sign of carbon price re
sponses to shocks. Note that the sign of responses to shocks cannot be 
evaluated in the generalized framework, since by construction each pair 
of cross-responses in this framework has the same sign. 

Finally, we explicitly account for the specific time horizon at which 
the links between the model variables and the carbon price emerge by 
calculating indices of connectedness in the frequency domain. 
Frequency-domain analysis allows us to distinguish between time pe
riods in which high- and low-frequency associations occur. Although 
this distinction has been neglected in previous studies, it is crucial for 
understanding the ETS mechanism. When connectedness occurs at high 
frequencies, shocks are transmitted in short-term movements and have 
transitory effects on the carbon price. In contrast, shocks that occur at 
low frequencies have permanent effects on the carbon market. More
over, frequency-domain analysis allows us to identify the omitted 
fundamental part of carbon price shocks. 

3. Theoretical model 

Emission permits are issued by the European Commission and 
distributed through a single EU registry. For the 2013–2020 trading 
period (Phase 3), 57% of permits were auctioned, while the rest were 
distributed for free. At the beginning of the third trading period, the 
manufacturing sector received 80% of its allowances for free. This share 
fell to 30% in 2020. Electricity generators have not received free al
lowances since 2013, at least in principle, but some are still available in 
several Member States. 

As is common in economic modeling, we assume that supply and 
demand define the carbon price: 

PCO2 = f
(

Q,DCO2

)
, (1)  

where PCO2 denotes the carbon price and DCO2 the need for permits, 
reflecting the total emission intensity of the economy. Finally, Q is the 
number of permits available, defined as the total number issued in a 
particular year minus those distributed for free.1 As a result, the number 
of permits Q is constant in a year. We split the demand for permits be
tween the two main sectors—electricity generation and industrial pro
cesses. Thus, to distinguish between final energy consumption and 
transformation uses embodied in the ETS scheme: 

DCO2 = DELE
CO2

+DIND
CO2

. (2) 

Electricity plays an essential role in our model. Although consump
tion does not generate emissions, electricity production does. 2Elec
tricity generation may emit more or less CO2, depending on the share of 
fossil fuel energy sources used for power generation. The emission cost 
in electricity generation is transferred to the price and paid by the 
electricity consumers (Fabra and Reguant, [40]). Natural gas and coal 
are the primary fossil fuels used for electricity generation in the EU.3 So, 
the total demand for permits generated by the electricity sector can be 
represented as follows: 

DELE
CO2

= αgas ∗ DELE
gas +αcoal ∗ DELE

coal , (3)  

where αgas and αcoal stand for CO2 emission intensities of natural gas and 
coal, while DELE

gas and DELE
coal stand for the total demand for these fossil fuels 

for power generation. 
Multiplying and dividing Equation (3) by the total demand for fossil 

fuels for electricity generation, DELE
FF , and by electricity demand, DELE, we 

get: 4 

DELE
CO2

=
DELE

FF

DELE

(

αgas ∗
DELE

gas

DELE
FF

+ αcoal ∗
DELE

coal

DELE
FF

)

∗ DELE = sFF ∗ αELE
FF ∗ DELE. (4)  

where sFF denotes the share of fossil fuels used for power generation and 
αELE

FF the weighted average emission intensity of fossil fuels used for 
electricity production. Thereafter, the total CO2 emissions generated by 
industrial production can be represented as follows: 5 

DIND
CO2

= αgas ∗ DIND
gas + αcoal ∗ DIND

coal +αoil ∗ DIND
oil . (5) 

Finally, adding equations (4) and (5), we get the total demand for 
CO2 permits: 

DCO2 = αgas ∗ DIND
gas + αcoal ∗ DIND

coal +αoil ∗ DIND
oil + sFF ∗ αELE

FF ∗ DELE. (6) 

To summarize, we take the perspective of final energy consumption. 
We assign positive CO2 emissions to oil (including petroleum products), 
coal, natural gas, and electricity. We assume that emission intensities are 

1 For simplicity, we ignore the possibility of using permits issued in year t in 
subsequent years, which has been possible since Phase 2 (2008), and the pos
sibility of borrowing allowances from a future allocation for one year to meet 
obligations for the current year.  

2 Electricity demand does not influence permit demand directly as firms that 
consume electricity do not buy permits.  

3 Although some Member States still use oil for electricity generation, their 
total contribution is very small and is omitted here as insignificant (1.6% in 
2017).  

4 Strictly speaking, DELE is the energy demand (fossil fuels and clean energy) 
for electricity production. However, given that electricity production is a way to 
transform energy, we can assume that the energy demand here is equal to the 
electricity supply and, in its turn, electricity supply is equal to the electricity 
demand at a given price.  

5 Consumption of renewable energy for industrial processes is not included in 
our model because it is still minimal. In 2017, 99.5% of industrial energy 
consumption comprised coal, natural gas, oil products, and electricity. The 
latter is especially relevant as its share increased from 28% to 34% in the last 20 
years. 
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fixed for oil, coal, and natural gas, and vary for electricity only through 
the demand for coal and natural gas for power generation. 

Our model also assumes that the demand for any fuel type in (6) is 
determined by the following fundamental factors: the production level 
of the economy Y(reflecting the need for industrial production or con
sumption of manufactured goods), the prices of this fuel, and its fuels- 
substitutes, and the carbon price. Thus, the demand for CO2 permits 
can be rewritten as follows: 

DCO2 = f
(
Y,Pgas,Pcoal,Poil,Pele,PCO2 , sFF

)
(7) 

Eq. (7) can be transformed to a linear function by log-linear 
approximation, where the log-demand for permits is determined by 
the sum of variables weighted by a factor specifying their importance in 
(7): 

lnDCO2 = ζ1lnY + ζ2lnsFF + ζ3lnPoil + ζ4lnPcoal + ζ5lnPgas+

+ζ6lnPele + ζ7lnPR
CO2

.
(8) 

Similarly, the price of permits in (1) can be expressed as: 

lnPCO2 = lnQ+ μdlnDCO2 . (9) 

The lnQ can be considered a yearly mean as it is constant within the 
year. The parameter μd accounts for the relative importance of the de
mand for permitsDCO2 in price-setting. 

To complete the model, we subsume (8) within (9) and solve for 
lnPCO2 . We account for omitted factors influencing the carbon price by 
including an error term εCO2 : 

lnPCO2 = γ0ln
(

Q
)
+ γ1lnY + γ2lnsFF + γ3lnPoil + γ4lnPcoal + γ5lnPgas+

+γ6lnPelec + εCO2 .

(10) 

Additional complexity arises in modeling the error term. Carbon 
allowances have become a financial instrument. Thus, price dynamics 
are influenced by events with little to do with the underlying economic 
determinants (for example, some temporary phenomena like sporadic 
events and psychological factors in the market). Formally, this means 
that the term εCO2 in (10) can be decomposed into two unobserved 
components: εCO2 = εF

CO2
+ εM

CO2
, where εF

CO2 
denotes unexpected changes 

in omitted policy and fundamental factors and εM
CO2 

denotes unexpected 
carbon market shocks related to speculation and other microstructure 
noises. 

4. Econometric framework 

4.1. Reduced form and structural VAR 

Consider a VAR model for a N × 1 vector of variables Yt , t = 1,...,T, 
where T is the number of observations: 

Yt =
[
I − Fp(L)

]− 1εt. (11) 

The N × N matrix I is an identity matrix, Fp(L) is a matrix of sta
tionary polynomials of lag p, and εt ∼ N(0,Ω) is a vector of N × 1 
reduced form errors. 

The structural VAR model is given by: 

Yt =
[
I − Fp(L)

]− 1Aξt = Λ(L)ξt, (12)  

where ξt is a N × 1 vector of uncorrelated structural shocks with identity 
variance–covariance matrix, i.e., ξt ∼ N(0, I). The elements of the N × N 
matrix Λ(L) in (12) are infinite polynomials whose coefficients are the 
impulse responses (IRF) of the structural shocks’ variables. The matrix A 
is the structural matrix relating reduced form and structural shocks εt =

Aξt , therefore Ω = AA′ . 

4.2. Measures of connectedness in the frequency domain 

To analyze the contributions of shocks at different frequency ranges 
(short-run, medium-run, and long-run), we compute connectedness 
measures based on the spectral decomposition of the VAR variance, as 
proposed in Barunik and Krehlik [11]. Note, however, that these authors 
base their indices on a reduced form VAR and rely on the generalized 
framework (Pesaran and Shin [39]) to deal with correlated innovations. 
Unlike them, we employ a structural VAR (SVAR), and identify the 
structural shocks that allows us to determine the sign of the responses to 
shocks. 

The causation spectrum of the structural VAR process in (12) at a 
frequency ω is defined by 

fj,k(ω) =

⃒
⃒
⃒
⃒

{
[I − F(eiω) ]

− 1A
}

j,k

⃒
⃒
⃒
⃒

2

{
[I − F(eiω) ]

− 1Ω[I − F′
(e− iω) ]

− 1 }

j,j

,

where i =
̅̅̅̅̅̅̅
− 1

√
is the imaginary unit, F

(
eiω) = Feiω +Fe2iω +...+Fepiω and 

F′ ( e− iω) is a complex conjugate transpose of F
(
eiω), ω =

2πj
T , j = 1, ..., T

2. 
Consider a frequency ranged = (a, b) : a,b ∈ ( − π, π),a < b. The spectral 
decomposition at the frequency band d is defined as: 

f d
j,k =

∫ b

a
fj,k(ω)dω, (13)  

where the integral can be approximated by summation over Fourier 
frequencies belonging to the selected range. 

The magnitude fd
j,kis the index of pairwise within connectedness at the 

frequency range d. It measures the portion of the variable j-th fluctua
tions within the selected range due to the k-th structural shock. This 
index can be summed for all k ∕= j to get directional within connectedness 
FROM others at the frequency range, which measures the share of the 
variable j fluctuations within the band due to all other structural shocks: 

f d
j←∙ =

∑N

k=1,k∕=j

f d
j,k. (14) 

Note, however, that within connectedness indices do not account for 
the relative importance of the selected frequency range. Barunik and 
Krehlik [11] pre-multiply the causation spectrum by a weighting func
tion reflecting the power of the j-th variable at a frequency ω: 

Γj(ω) =
[Λ(eiω)ΩΛ′

(e− iω) ]j,j
1

2π

∫ π
− π [Λ(eiλ)ΩΛ′

(e− iλ) ]j,jdλ  

and compute pairwise frequency connectedness as: 

Θd
j,k =

1
2π

∫ b

a
Γj(ω)fj,k(ω)dω. (15) 

Pairwise frequency connectedness measures the relative importance of 
variable j-th fluctuations at the selected band generated by the k-th 
structural shock in the total j-th variance. This index also can be 
extended to directional frequency connectedness FROM all other variables 
on a frequency band as: 

Θd
j←∙ =

∑N

k=1,k∕=j

Θd
j,k (16) 

Consider a partition of the whole spectrum space into s bands ds,∀s 
satisfies the following conditions: 

⋂
ds = ∅ and 

⋃
ds = D, then 

ΘD
j,k =

∑

s
Θds

j,k (17) 

As Barunik and Krehlik [11] show, ΘD
j,kis the standard Diebold and 

Yilmaz [9,10] pairwise (time-domain) connectedness, which measures 
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the contribution of the k-th structural shock to the overall j-th variable 
variance.6 

5. Empirical model 

In this section, we build an empirical SVAR model consistent with the 
theoretical formulation in Section 3. 

5.1. Data description 

For the variables in the model, we have chosen the following ap
proximations, which we believe are representative at the EU level. We 
do not exclude the UK from the analysis as it has been part of the EU 
energy system and the EU ETS throughout the period covered by our 
model. 

For the prices of fuels, we employ the first monthly futures of pub
licly traded contracts: Brent crude oil contracts for Poil, Rotterdam coal 
contracts for Pcoal, Title Transfer Facility (TTF) gas contracts for Pgas, and 
German electricity base contracts as a proxy for European Pele.7 In 
addition, we take the first-month future contract for PCO2.8 We use fu
tures contracts because they are less affected by short-run noise than the 
spot and are more actively traded (Sadorsky [41]). Besides, most studies 
on connectedness in different markets use futures prices. For the eco
nomic output variable, we use the economic activity index STOXX for 
the EU. Inspired by Kilian [42], we also use the Baltic Dry Index as a 
robustness check.9 Renewable electricity share data is collected at the 
EU level, monthly, and taken from Eurostat.10 

The data sample runs from the first week (7–13 of January) of 2008 
to the 39th week (24–30 of September) of 2018. The starting point is 
restricted by the availability of data on renewable electricity share. Data 
plots can be found in the on-line Supplement. As in Kilian [42,43], or 
Hammoudeh et al. [26], we employ the log-level specification for the 
VAR because it allows us to investigate long-term association between 
variables, which is lost if the data is considered in first differences. We 
collect all variables in a vector Xt: 

Xt = [lnsFFt, lnYt, lnPoil,t, lnPgas,t, lnPcoal,t, lnPele,t, lnPCO2 ,t], (18) 

Some of the variables require additional transformations to match 
the theoretical model. For example, according to Eq. (11), the carbon 
price is affected by demand factors and by the supply of allowances, 
which is constant in a given year. However, the short data span available 
does not allow us to quantify the importance of supply shocks. Conse
quently, we focus on quantifying demand-side effects only. To do so, we 
subtract the yearly mean from carbon permit prices. In this way, we 
account for year-specific effects resulting from changes in the supply of 

allowances and other specific annual factors.11 Also, we seasonally 
adjust the share of fossil fuels in electricity production, sFF, and we 
produce interpolation of the observations inside a month by linear 
projection. Details on the model specification and the data trans
formations are available in the on-line Supplement. 

5.2. Identification restrictions 

Structural shocks in the SVAR are conceptually defined as shifts in 
the corresponding model variables that the model cannot anticipate. We 
identify the VAR placing zero contemporaneous restrictions on the 
variables, as in Kilian [42,43], and Hammoudeh et al. [26]. More spe
cifically, we assume that variables situated above in the vector Xt are not 
contemporaneously affected by variables located below; that is, the 
structural matrix A in (12) is lower-triangular. Thus, the variables in 
(18) have been ordered accordingly, placing fewer contemporaneous 
restrictions on more reactive (agile) variables. 

The first variable in (18) is sFF. Since this variable is only available 
monthly, it seems reasonable to assume that unexpected weekly changes 
in prices or activity cannot influence it contemporaneously. The 
installed power capacity from renewables is also fixed in the short run as 
it requires time to be built. That is why renewable generation is limited 
in the short term, and we can only expect to see the impact of the carbon 
price in the medium to long term. The order of the remaining variables 
in the VAR follows the same logic. For example, economic activity is 
assumed not to respond contemporaneously to energy and carbon price, 
although shocks to activity can influence prices on impact. Also, we 
allow gasoline and coal to respond to contemporaneous shocks to the 
more global oil market but not to the more local electricity market. We 
do not place contemporaneous restrictions on the CO2 market because 
this variable can be contemporaneously affected by all other variables 
according to Eq. (10). Consequently, the carbon price is conveniently 
ordered last in the vector (18). 

Notice that the last Equation of the SVAR can be interpreted in terms 
of our theoretical model as Eq. (10) augmented with lagged variables. 
However, in Eq. (10), the CO2 market-specific shock is split into two 
components, i.e., εCO2 = εF

CO2
+ εM

CO2
. The first component collects the 

reaction of the carbon price to changes in omitted policy and funda
mental variables. The second component accounts for unexpected 
changes in the speculative demand for permits. Given that these two 
shocks are not separately identified in the SVAR, we employ a spectral 
variance decomposition to isolate their effects. We assume that unex
pected changes in the speculative demand for permits have relatively 
short-lived effects—at most half a year, although they typically vanish in 
one month or less. Therefore, the long-run effects of the CO2 market- 
specific shock represent changes in omitted policy or fundamental var
iables. This type of identification allows us to assess the importance of 
speculation and other market-specific factors in CO2 pricing. 

5.3. Estimation strategy 

We follow the standard practice of estimating the VAR over a rolling 
window, to account for possible changes in the parameters, by adding 
and removing one observation each time that we move the window. The 
length of the window corresponds to T = 156 points (approximately 
three years).12 According to Akaike and Schwarz criteria, we allow for 

6 This identity holds in the long run. However, it also valid for finite forecast 
horizons as far as these are not too short. For example, we find that pairwise 
connectedness computed from time-domain formulas deliver the same numbers 
using the typical H=10 ahead horizon.  

7 Germany is chosen because it is interconnected with other MS of different 
geographies (covering North and East Europe). Also, Germany’s generation mix 
is typical of the EU’s. Weekly data was collected through Thompson Reuters 
Eikon platform, contracts LCOc1, TRNLTTFMc1, ATWMc1, TRDEBMc1.  

8 Secondary market price is used to approximate the whole EU market. Also, 
future prices are only available on the secondary market. Weekly data was 
collected through Thompson Reuters Eikon platform, contract CFI2Zc1. 

9 STOXX and Baltic Dry weekly data was collected through Thompson Reu
ters Eikon platform.  
10 Monthly data is available in the "Eurostat nrg_150m" database. 

11 Note that the approach is equivalent to employing yearly dummies in a 
static framework. The use of dummies is not appealing in the dynamic frame
work because the estimated dummy for a non-full year in the sample changes 
depending on the number of observations. Subsequently, they would be 
strongly influenced by the sample-specific effect, introducing noise to the year- 
specific effect we aim to subtract..  
12 We repeat the estimation with T=208 (approximately four years). The main 

results are robust to the change of the window. Results are available on request. 
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four lags in the autoregressive part. 
Frequency connectedness is evaluated at three ranges: high fre

quencies, with a period from one to four weeks (one month approxi
mately), medium frequencies, with a period from five to 26 weeks (from 
one month to half a year), and low frequencies (periods of more than 
26 weeks). The boundary for the low-frequency band is set with the idea 
that all speculative market-specific noises are absorbed and “digested” 
by the market within half a year. Thus, the remaining frequencies 
correspond to fundamental factors only. 

6. Empirical results 

This section presents the empirical results for the CO2 equation. The 
purpose of this analysis is to examine the extent to which changes in the 
fundamentals of carbon demand explain the recent increase in the price 
of carbon. 

6.1. Aggregated connectedness FROM model variables 

The solid black line in Fig. 1 is the index of directional connectedness 
FROM all model variables to the carbon price (CO2FROM). This index 
quantifies the extent to which fluctuations in the carbon price are 
explained by shocks to the other variables in the SVAR. These variables 
are the main drivers of the demand for CO2 allowances in the theoretical 
model (see Eq. (10)). In this sense, CO2FROM reflects the explanatory 
power of the model. 

On average, the shocks to the model variables explain 65% of the 
variance in the carbon price, which is a high percentage for weekly data. 
However, we find substantial differences across subsamples. The index 
alternates between periods with relatively high connectedness, as in the 
second quarter of 2017, when CO2FROM reaches 90%, with others 
where the connectedness is relatively low, as in the first quarter of 2015, 
when shocks to fundamental variables explain barely 30% of the carbon 
price variance. The average value of the index since mid-2018 is 85%, 
which means that our model can explain a large proportion of recent 
fluctuations in the carbon price. 

Fig. 1 also decomposes the CO2FROM index into its short-, medium-, 
and long-term components. These components quantify the percentage 
of the total variance in the carbon price that is transmitted by other 
model variables in high-, medium-, and low-frequency ranges. As the 
figure shows, the long-term component accounts for most of the un
certainty transmitted. Shocks to the explicative variables in the model 
thus have primarily long-term effects and create a favorable environ
ment for policy interventions. However, this result does not mean that 
the fundamental variables in the model are not significant drivers of 
carbon price fluctuations at higher frequencies. Their importance at 
these frequencies may not be reflected in Fig. 1 because the carbon price 
is very persistent and the low-frequency fluctuations account for most of 
the variance. 

To shed light on this issue, Fig. 2 presents the directional within 
connectedness FROM model variables at the three selected ranges. 
Directional connectedness quantifies the importance of transmitted 
shocks to carbon price fluctuations in a given frequency range. As Fig. 2 
shows, transmission explains most of the carbon price fluctuations at 
low frequencies. Although the corresponding share is not negligible at 
higher frequencies, it is much smaller (25% on average). This result 
suggests that short- and medium-term carbon price fluctuations are 
mainly a consequence of carbon market shocks. 

It is also important to note that the CO2FROM index shown in Fig. 1 
is considerably larger than the corresponding index in Ji et al. [2] and 
Wang and Guo [5]. These two studies conclude that carbon price fluc
tuations are primarily explained by their own shocks, with the index of 
directional connectedness ranging from 15% to 35%, depending on the 
period. Our estimated values are higher because we produce analysis in 
(log) levels, while the prices in these two studies are (log) differenced. As 
mentioned earlier, differencing destroys low-frequency fluctuations. 

Their analysis therefore neglects the significant contribution of the 
model variables to low-frequency fluctuations of the carbon price, i.e., 
the range that contributes most to the total variance. However, their 
results are consistent with within connectedness indices at medium- and 
high-frequency ranges in Fig. 2. It can be shown that an aggregate of 
these two indices, weighted by the relative importance of each range to 
the total high- and mid-frequency variance (and thus omitting low- 
frequency movements), is similar to the directional connectedness of 
other variables in Ji et al. [2] and Wang and Guo [5]. 

Overall, our results indicate that the model in Section 3 explains 
carbon price fluctuations well. The variation in model variables explains 
a high proportion of the variance, especially at low frequencies and after 
mid-2018. The effect of the own shock is reasonably limited and con
centrates, mainly, at high and medium frequencies, which have less 
importance in the total variance. We consider these issues further in the 
next section, where we discuss the importance of each variable in carbon 
price fluctuations, including CO2 market-specific shocks. 

6.2. Pairwise connectedness analysis 

Fig. 3 shows pairwise indices of connectedness from each funda
mental to carbon price to further explore the transmission determinants. 
The pairwise indices quantify the percentage that each variable explains 
of the carbon price variation and add up to the CO2FROM index in Fig. 1 
when aggregated across all variables. 

We also evaluate pairwise connectedness by frequency ranges. We do 
not report the decomposition of the pairwise indices into their short-, 
medium-, and long-term components because the long-term component 
accounts for almost all the corresponding indices, as in Fig. 1. However, 
Fig. 3 shows the pairwise connectedness within each frequency range. 
The figure also shows the sign of the carbon price response to structural 
shocks, which provide additional insights into the functioning of the 
permit market system over time. In Fig. 3, the subsamples in which a 
(positive) structural shock increases the price, at least in the first four 
weeks, are highlighted in blue. Red areas highlight subsamples in which 
the positive shocks to the fundamental variables cause the carbon price 
to decline over the same period. 

As Fig. 3 shows, there are two identifiable periods in terms of the sign 
of the carbon price response to a shock in the share of fossil fuels in 
electricity generation. Contrary to economic intuition, the sign prior to 
2016 is predominantly negative, implying that an unexpected increase 
in the share of fossil fuels in electricity generation has a negative impact 
on the carbon price.13 From 2016, however, the sign turns positive, as 
the theory predicts. Its overall importance on carbon price fluctuations is 
moderate. We find a spike in connectedness around 2014, a likely 
consequence of the oversupply of permits. Economic activity was below 
2011 levels, and some permits were still allocated to electricity plants 
for free (recall that the carbon price has a reversed sign in this period). 
However, the index barely reaches 10% in recent years, where the car
bon price response has the expected sign. One possible explanation is 
that the share of fossil fuels in electricity generation is exogenously 
determined by the electricity generation capacity mix, which has not 
changed dramatically in recent years. While electricity producers are 
slowly moving away from fossil fuels, they still use them more when RES 
production falls or electricity demand rises. 

Shocks to sFF contribute primarily to low-frequency fluctuations, 
especially when connectedness with the carbon price is high. In 

13 The negative relationship between the SFF and the carbon price in 
2013–2016 probably indicates that the entry of electricity generation into the 
ETS destabilized the carbon market for several years. Electricity generation was 
not part of the ETS until 2013. Its introduction probably had a dual effect of 
increasing demand for allowances and encouraging investment in renewable 
electricity generation. Our results show that these unsettling effects stopped in 
2016. 
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2016–2017, it also contributed significantly to mid-frequencies, coin
ciding with the expected sign of the carbon price response. However, its 
contribution at high frequencies is negligible, which is consistent with 
the monthly frequency of the available data. 

As expected, shocks to economic activity are positively associated 
with the carbon price, especially from 2016 onwards. Economic growth 
implies higher demand for fossil fuels and hence higher demand for 
carbon credits. As Fig. 3 shows, economic activity has always been one 
of the main drivers of carbon price fluctuations. Its average contribution 
is 10%, although in some periods the percentage is significantly larger, 
such as in 2012 and 2015 (40%). However, since 2016, the importance 
of this activity has decreased significantly and is currently responsible 
for only five percent of the total carbon price fluctuations. Our results 
therefore show a progressive decoupling of the carbon market from 
economic activity, which is consistent with the recent emission-output 
independencies in EU countries stressed in the literature (see, e.g., 
Cohen et al. [44]; Wu et al. [45]).14 As for the frequency band, economic 
activity contributes more at low frequencies, with shocks having 
persistent effects on the carbon price. Its contribution to high-frequency 
movements is also relatively high, albeit negligible nowadays. Although 
oil and refined petroleum products generate emissions, their use in EU 
countries is mainly concentrated in the transport sector, which is not 
(yet) subject to the ETS. Nevertheless, we include the oil price in the 
model because it reflects two factors simultaneously. First, it is tradi
tionally a good indicator of the long-term price of natural gas, as 
indexation of the gas price to the oil price has been common in Europe 
since the 1960 s. Although oil indexation has declined, many long-term 
gas contracts are directly or indirectly linked to the oil price. The second 

reason is that the oil price reflects a global component of the energy 
system, as it is the most traded commodity in the world. 

Consistent with both reasons, we find that a positive oil price shock is 
associated with a higher carbon price. On average, oil price shocks ac
count for about 20% of the variation in the carbon price. However, the 
importance of oil is more pronounced in the second half of our sample. It 
started with an intense connectivity episode in 2015–2016, after the oil 
price drop caused by the huge oil glut. The information transmitted by 
this market has long-term effects on the carbon price, supporting the 
idea that the oil price reflects a global component of the energy system. 

The natural gas shock is associated with a rise in the price of carbon, 
as the theory predicts. A rise in the price of natural gas gives the nearest 
substitute fuel, coal, a competitive advantage and increases its demand. 
Since coal emits more CO2 than natural gas, substitution incentives in
crease the demand for permits and the carbon price. Our empirical re
sults support these predictions, especially in the latter part of the sample. 
Overall, natural gas hub price fluctuations explain up to 50% of carbon 
price fluctuations in 2011–2015 and up to 30% from mid-2016. More
over, we observe a massive decline in pairwise connectedness in 
2015–2016, consistent with the increasing importance of oil prices in 
this period. Pairwise within connectedness indices signal the importance 
of the gas market in the low-frequency fluctuations of the carbon price. 
This index reaches a value of 20% in 2014, making the gas market the 
main contributor to fluctuations in this frequency range. The increasing 
importance of the gas market from the third phase of the EU ETS is also 
documented in Gong et al. [7]. 

Consistent with the results for natural gas, positive shocks to coal 
prices are associated with a decline in the carbon price. The higher the 
coal price, the greater the incentive to substitute natural gas for coal. 
Coal-specific shocks did not explain more than 10% of the variation in 
the permit price until 2016; however, they explained significantly more 
thereafter, with strong peaks in connectedness in mid-2017 and mid- 
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Fig. 1. Directional connectedness FROM all model variables to the carbon price variance and its decomposition into the high- (HF), medium- (MF), and low- 
frequency (LF) components. 
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Fig. 2. Within connectedness FROM all model variables to the carbon price fluctuations at high (W_HF), medium (W_MF), and low frequencies (W_LF).  

14 The result is stable if the Baltic Dry Index is used instead of STOXX index as 
in Kilian [42]. 
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2018, likely a consequence of the shortages generated by stringent 
environmental regulations. As with the other fundamental variables, 
coal price shocks are more important for low frequency fluctuations. 
However, it is important to emphasize that coal price shocks are also 
responsible for a relatively significant share of higher-frequency carbon 
price fluctuations from 2017 onwards, when other climate policies 
provide an additional incentive to move away from coal in addition to 
rising carbon prices. 

As for electricity market shocks, these have an undetermined effect 
on the carbon price. However, their overall importance is minimal, 
especially from 2014. Note that the connectedness episodes have almost 
disappeared from the start of Phase 3 in 2013, where free allocations for 
electricity generation were eliminated. CO2 permits, together with fossil 

fuels, are inputs for electricity generation. This is the reason why the 
carbon price directly impacts electricity prices and not vice versa. 
However, there are also two indirect channels. First, electricity and CO2 
markets are closely related, suggesting expectation synergies, and that is 
why electricity price has more importance in explaining the high- 
frequency variance of carbon prices. Second, electricity price shocks 
could influence the carbon market before Phase 3 through electricity 
and fossil fuel demand (as substitutes or complements for industrial 
products). This indirect channel disappeared in 2014 when electricity 
facilities fully assumed the CO2 costs of their generation. 

We complement the analysis by assessing the contribution of carbon 
market shocks. These results are presented in Fig. 4. Since the shocks 
were normalized as positive, the CO2 shock increases carbon prices by 
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Fig. 3. Pairwise and pairwise within connectedness from each model variable to the carbon price together with the sign of the response of the carbon price to each 
structural shock. 
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assumption. The first panel of Fig. 4 shows the percentage contribution 
of the carbon market shock along with its decomposition into short-, 
medium-, and long-term components. This shock accounts for about 
35% of the total carbon price fluctuations across subsamples (i.e., the 
share not explained by other shocks in the model). However, its share 
has decreased substantially since mid-2018. According to our identifi
cation proposed in Section 5.3, the long-run effects reflect policy 
channels and underlying variables that are not included in the model. In 
contrast, the medium- and especially the short-run effects result from 
speculative shocks and microstructure noise in the CO2 market. As the 
figure shows, the low-frequency fluctuations are responsible for most of 
the carbon price variance. Thus, speculation and other microstructure 
noise in the carbon market are not the main drivers of carbon price 
fluctuations. 

However, the above result does not mean that speculation in the 
carbon market is not important. To illustrate this, the second panel of 
Fig. 4 plots the contribution of the CO2 shock in each frequency range. 
In contrast to the shocks in the fundamentals, the CO2 market shock 
explains a substantial fraction in the mid- and high-frequency ranges 
(about 80% on average). Thus, our results show that almost all the mid- 
and high-frequency swings in the carbon price are mainly due to spec
ulative shocks. Although these fluctuations do not account for a large 
share of the total variance of the carbon price, they are crucial for spe
cific agents, such as short-term investors, as their trading horizon is only 
affected by high-frequency fluctuations. 

7. Implications and concluding remarks 

This paper developed a theoretical model linking the energy sector 
(oil, natural gas, coal, electricity prices, and the share of fossil fuels in 
electricity generation), economic activity, and the carbon market. The 
model was empirically represented by a structural VAR estimated 
dynamically with a moving regression window. Based on the dynamic 
estimates, we quantified the impact of each model variable on the car
bon price over time using impulse response analysis and connectedness 
measures based on frequency-variance decompositions. 

In this regard, related literature has provided limited evidence on the 
horizon at which information is transferred from other markets to the 
carbon price. We shed light on this issue by assessing connectedness 

across different frequency ranges. Frequency-domain analysis has 
allowed us to disentangle the specific frequencies at which linkages 
arise. This knowledge is essential for understanding the carbon market, 
as the implications for carbon price dynamics vary depending on the 
frequency at which information is transmitted. Thus, if the information 
is mainly transmitted at high frequencies, its effects on the carbon price 
are transitory and fizzle out in the short run. On the other hand, if the 
information is transmitted at low frequencies, the effect on the carbon 
price is persistent. Frequency domain analysis has also allowed us to 
identify the impact of omitted policy and fundamental variables from 
speculative and microstructural noise on the carbon market shock. 

We show that the fundamental variables included in the model 
explain most of the observed variance of the carbon price adjusted for 
supply effects, but with substantial differences across subsamples. 
Nevertheless, the percentage has increased nowadays, suggesting that 
the ETS has recently started to work properly. This view is supported by 
the theoretically consistent responses of carbon prices to shocks in the 
recent subsamples. Nevertheless, unaccounted EU policy changes in ETS 
markets might have supported the considered demand forces in deter
mining the carbon price, as the carbon market shock explains a non- 
negligible part of the fluctuations. However, it is difficult to separate 
its effects conceptually or quantitatively from other underlying variables 
not considered that may also affect the price. We have also found that 
shocks from demand-side variables primarily cause low-frequency 
fluctuations in the carbon price, while speculative shocks to the car
bon market are the most important factor in explaining its high- 
frequency movements. 

Our results also suggest that the main drivers of uncertainty have 
changed over time. In the past, economic activity and natural gas hub 
prices were responsible for most of the variation in the carbon price. 
However, their role has diminished, favoring other variables such as oil 
and especially coal. Moreover, our results suggest that EU countries are 
succeeding in decoupling production from emissions. These results have 
important implications for several market participants. In this respect, 
the indices in the frequency domain are particularly important as not all 
carbon market players are equal. The uncovered, strong, low-frequency 
linkages from fundamental variables may be of interest to policymakers 
as they create a favorable environment for policy interventions. They 
may also help organizations manage pollutant emissions through 
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Fig. 4. Contribution of the own carbon market shock to carbon price. The first panel shows the percentage contribution to variance and its decomposition into high 
(HF)-, medium-(MF), and low-frequency (LF) components. The second panel depicts its contribution within the specific ranges (W_LF, W_MF, W_LF). 
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environmental programs. In contrast, participants with preferences for 
shorter time horizons, such as short-term investors, may be more 
interested in medium- and high-frequency connectedness to manage 
portfolios and hedge against risks. 

For example, the strong linkages between fossil fuels and carbon 
prices enable policymakers to predict future carbon price fluctuations in 
different scenarios of fossil fuel price evolution. As fossil fuels shocks 
have persistent effects on the carbon price, policymakers can evaluate 
different options for market reforms to help the EU carbon market 
function well. According to our findings, the oil, gas, and coal markets 
contribute the most to carbon price variations and are the most effective 
candidates to influence ETS prices. 

Moreover, the evolving relationship between the index of economic 
activity and carbon prices is an indicator of how “green” current eco
nomic growth is. Our results suggest that EU countries are gradually 
decoupling the carbon market from economic activity. This result is 
critical in the current economic recovery scenario after COVID, as many 
governments prioritize economic growth. The finding is also relevant in 
the current context of further development and improvement of the ETS 
design announced as part of the European ’Fit for 55′ package. It is ex
pected that the total number of allowances will decrease more rapidly, 
that fewer free allowances will be given to installations and that several 
new sectors will be added to the scheme (maritime, road, and buildings). 
It is therefore important to understand whether the adoption of these 
new rules will dampen economic activity. 

Some of our results also have interesting financial implications, as 
the CO2 market is becoming largely financialized. For example, we show 
that the carbon price is strongly linked to oil and natural gas. However, 
these markets mainly contribute to the long-run fluctuations of the 
carbon price, but not its high-frequency movements. As we have shown 
that the relationship between these two commodities and the carbon 
price is direct, our results imply that long-term investors in the carbon 
market are subject to substantial risk from the oil and natural gas mar
kets. For short-term traders, however, this risk is considerably lower, as 
the influence of these two commodities at high-frequency fluctuations is 
very small. We show that uncertainty at high- and medium frequencies 
mostly comes from speculative shocks in the carbon market. Notice that 
although these shocks have little weight in the total carbon price vari
ance, they matter enormously for short-term traders as their decision 
horizon is only affected by these frequencies. 

Overall, the model represents a virtuous monitoring tool for carbon 
price dynamics, highlighting the most important vulnerabilities of the 
emission trading system in real-time, pointing out the potential channels 
to strengthen it through adequate policies. Moreover, the methodology 
applied is relatively simple and has been used extensively in economic 
and financial studies. However, like all empirical work, our study is 
subject to several shortcomings. The most important, in our opinion, is 
the limited span of the data, which does not allow us to quantify the 
importance of permit supply shocks to the carbon price. We have 
overcome this problem by focusing on demand-side effects only. Other 
potential concerns, such as the robustness of the choice of some vari
ables or the rolling window length, have been considered explicitly in 
the text. 

This paper has concentrated our attention on the effects of funda
mentals and carbon market shocks on the carbon price. However, the 
empirical framework can also provide information on the likely impact 
of the carbon price on other variables such as economic activity or fuel 
prices, which are of great interest to both EU and international stake
holders. An attractive extension might focus on the effect of the model’s 
variables on the share of fossil fuels in electricity generation, a magni
tude that has received minimal attention in the literature. We consider 
these issues to be exciting avenues for future research. 
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[4] Jiménez-Rodríguez R. What happens to the relationship between EU allowances 
prices and stock market indices in Europe? Energy Econ 2019;81:13–24. 

[5] Wang Y, Guo Z. The dynamic spillover between carbon and energy markets: New 
evidence. Energy 2018;149:24–33. 

[6] Tan X, Sirichand K, Vivian A, Wang X. How connected is the carbon market to 
energy and financial markets? A systematic analysis of spillovers and dynamics. 
Energy Econ 2020;90:104870. https://doi.org/10.1016/j.eneco.2020.104870. 

[7] Gong X, Shi R, Xu J, Lin B. Analyzing spillover effects between carbon and fossil 
energy markets from a time-varying perspective. Appl Energy 2021;285:1163–84. 

[8] Tan X-P, Wang X-Y. Dependence changes between the carbon price and its 
fundamentals: A quantile regression approach. Appl Energy 2017;190:306–25. 

[9] Diebold FX, Yilmaz K. Better to give than to receive: Predictive directional 
measurement of volatility spillovers. Int J Forecast 2012;28(1):57–66. 

[10] Diebold FX, Yılmaz K. On the network topology of variance decompositions: 
Measuring the connectedness of financial firms. J Econom 2014;182(1):119–34. 

[11] Barunik J, Krehlik T. Measuring the Frequency Dynamics of Financial 
Connectedness and Systemic Risk. J Financ Econ 2018;16(2):271–96. 

[12] Crossland J, Li B, Roca E. Is the European Union Emissions Trading Scheme (EU 
ETS) informationally efficient? Evidence from momentum-based trading strategies. 
Appl Energy 2013;109:10–23. 

[13] Paolella M, Taschini L. An econometric analysis of emission allowances prices. 
J Bank Financ 2008;32:2022–32. 

[14] Benz E, Trück S. Modeling the price dynamics of CO2 emission allowances. Energy 
Econ 2009;31(1):4–15. 

[15] Daskalakis G, Psychoyios D, Markellos RN. Modeling CO2 emission allowances 
prices and derivatives: evidence from the European trading scheme. J Bank Financ 
2009;33:1230–41. 

[16] Christiansen AC, Arvanitakis A, Tangen K, Hasselknippe H. Price determinants in 
the EU emissions trading scheme. Clim Policy 2005;5(1):15–30. 

[17] Mansanet-Bataller M, Pardo A, Valor E. CO2 prices, energy and weather. Energy J 
2007;28(3). https://doi.org/10.5547/ISSN0195-6574-EJ10.5547/ISSN0195-6574- 
EJ-Vol28-No310.5547/ISSN0195-6574-EJ-Vol28-No3-5. 
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