
Vol.:(0123456789)

SN Computer Science (2021) 2:438
https://doi.org/10.1007/s42979-021-00792-5

SN Computer Science

ORIGINAL RESEARCH

Redefining the Graph Edit Distance

Francesc Serratosa1 

Received: 17 December 2020 / Accepted: 22 July 2021 / Published online: 31 August 2021
© The Author(s) 2021

Abstract
Graph edit distance has been used since 1983 to compare objects in machine learning when these objects are represented by
attributed graphs instead of vectors. In these cases, the graph edit distance is usually applied to deduce a distance between
attributed graphs. This distance is defined as the minimum amount of edit operations (deletion, insertion and substitution of
nodes and edges) needed to transform a graph into another. Since now, it has been stated that the distance properties have
to be applied [(1) non-negativity (2) symmetry (3) identity and (4) triangle inequality] to the involved edit operations in the
process of computing the graph edit distance to make the graph edit distance a metric. In this paper, we show that there is
no need to impose the triangle inequality in each edit operation. This is an important finding since in pattern recognition
applications, the classification ratio usually maximizes in the edit operation combinations (deletion, insertion and substitu-
tion of nodes and edges) that the triangle inequality is not fulfilled.

Keywords  Distance definition · Graph edit distance · Attributed graphs · Learning

Introduction

Several kinds of problems have been used to model attrib-
uted graphs for more than 4 decades [1–3]. This is because
they have the flexible ability to define an element through
their structural and semantic information. Some reviews
have been published through these years [4–7]. Figure 1
shows several examples of representing an element through
an attributed graph. Applications range from optical char-
acter recognition to chemical compound toxicity analysis.
Other examples are image processing, text analysis or geo-
localization. If elements in pattern recognition are mod-
elled through attributed graphs, a distance between them is
needed since, in pattern recognition, comparing elements
is an essential task. One of the most widely used distances
between attributed graphs is the graph edit distance [8–11].

Graph edit distance depends on some parameters, which
have to be tuned to maximize an objective function, which
is related on the task to be carried out. In the earliest pres-
entations of the graph edit distance in 1983, [1, 2], this func-
tion was considered a metric subject to certain properties

on these parameters. A more contemporary book published
in 2015 [12] also suggests the same properties. That book
analyses some pattern recognition applications and several
algorithms that compute the graph edit distance in an opti-
mal and sub-optimal manner.

As an example of how important is to define the graph
edit distance as a metric, we could mention the graph data-
bases structured by metric-trees [13]. In this case, if the
function to compare attributed graphs is not a metric, some
attributed graphs could not be retrieved from the database
although they had properly been introduced. Thus, the sys-
tem performs as these graphs have not never been introduced
in the database.

Another example are the pattern recognition methods that
compact a set of attributed graphs that have been considered
to belong to one class into only one graph representative
[14–16]. The aim of this type of representations is twofold.
First, they want to reduce the runtime of deducing the class
of an element to be classified. This is because in these meth-
ods, only one comparison is needed between this unclas-
sified graph and each class in the set. In contrast, in other
methods, such as the k-nearest neighbours [17], the number
of comparisons needed is the number of graphs in the set.
Second, they want to increase the representational power of
the set. This is because, by compacting the general features
of the set, the local discrepancies between the elements in

 *	 Francesc Serratosa
	 francesc.serratosa@urv.cat
	 http://deim.urv.cat/~francesc.serratosa/

1	 Universitat Rovira i Virgili, Tarragona, Catalonia, Spain

http://orcid.org/0000-0001-6112-5913
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-021-00792-5&domain=pdf

	 SN Computer Science (2021) 2:438438  Page 2 of 7

SN Computer Science

the set tend to be softened. In this case, if the function to
compare attributed graphs is not a metric, the representa-
tive graph is not properly defined (the construction of the
representative is carried out by several comparisons between
the graphs in the set) and thus, there is a quality reduction of
the pattern recognition task.

For this reason, in the previously commented exam-
ples, the graph edit distance parameters are set such as the
graph edit distance becomes a metric. If we could some-
how relax some of the distance properties while maintain-
ing the graph edit distance a metric, we could extend the
parameters’ domain and thus, set them at a value where the
query precision becomes higher (in the first example) and
the representative power of the set also becomes higher (in
the second example). Note we are aware that the dissimilar-
ity between patterns in other pattern recognition applications
can be defined as non-metric. Finally, the configuration of
the graph edit distance parameters considering some match-
ing algorithms is analysed in [18]. That paper demonstrates
that only some graph matching algorithms return a metric
although some distance properties are not fulfilled. Thus, it
concludes that the selection of the graph matching is deci-
sive not only for the run time point of view but also to assure
the deduced graph edit distance between the graphs in the
application is a metric.

To summarize, in this paper, we show that some prop-
erties usually considered in the graph edit distance [1, 2,
12] can be relaxed while the graph edit distance being
a metric. This simplification is central in several pattern
recognition applications. This is because all these appli-
cations have an objective function to be maximized (or

minimized), for instance, the maximization of the rec-
ognition ratio or classification accuracy, between others.
Thus, it turns out that several machine learning methods
have been presented [19–23] to automatically deduce the
graph edit distance parameters and, frequently, the objec-
tive function of these methods is maximized where these
properties do not hold. Due to the findings of this paper,
we currently know that the automatically learned graph
edit distance parameters makes the graph edit distance to
be a metric. The experimental section shows the classifica-
tion ratio given some graph edit distance parameters and
also shows that the maximum classification is achieved at
the parameters that we currently can assure the graph edit
distance is a metric.

Note that several algorithms have been presented to com-
pute the graph edit distance. This is because its computation
has been demonstrated to be NP complete [24]. Basically,
there are algorithms that return the exact distance in expo-
nential computational cost [25] and other ones that return
an approximation of this value in polynomial computational
cost [26–28]. The fact of using different edit costs do not
influence over the computational cost but only on the algo-
rithm per se. For instance, the computational cost of [25] is
exponential, the computational cost of [26–28] is cubic and
the computational cost of [29] is linear with respect to the
number of nodes as it can be deduced in [30, 31]. For this
reason, in this paper, the experimental section does not show
a comparison between these methods but only shows that
the edit cost that return the highest classification rations do
not fulfil the triangle inequality. For a specific comparison
of graph matching methods, we refer to [32].

Fig. 1   Representing objects in pattern recognition applications by graphs with attributes on their nodes and edges

SN Computer Science (2021) 2:438	 Page 3 of 7  438

SN Computer Science

Graph Edit Distance

A distance is a function that holds the following properties
[33]:

where x, y and z are elements in a specific domain. The dis-
tance domain is [0,∞).

An attributed graph G = (V ,E) is composed of a
set of n nodes V =

{
v1,… , vn

}
 and a set of m edges

E =
{
e1,2,… , et,k

}
. Moreover, there is a function on the

nodes, �v , and on the edges, �e , which assign an attribute on
these nodes and edges. The graph edit distance between
two attributed graphs, GED, G and G′ is defined as,

where E
(
G,G′

)
 denotes the set of all edit paths

(
e1, e2, … ek

)

that transform G into G′ and the cost of the edit path is CED,

The set of node substitutions, deletions and insertions is
represented by vs , vd and vi . Moreover, the costs of these
edit operations are represented by Cvs , Cvd and Cvi . Edit
operations and costs on edges have similar definitions: es ,
ed , ei , Ces Ced and Cei.

Figure 2 shows a toy example of a graph edit distance
between two simple graphs, which are composed of only
two nodes and an edge between them. In this case, the trans-
formation between both graphs is carried out by five edit
operations: ed , vd , vi , ei and vs . Note that several edit paths
transform one graph into the other one that generate dif-
ferent costs (Eq. 3). The edit path that is considered in the
graph edit distance is the one that achieves the minimum
cost through the previously defined Cvs , Cvd , Cvi , Ces Ced and
Cei (Eq. 2).

The edit operations et depend on the attributes on the
nodes or on the arcs. For this reason, we define, for the rest
of the paper, the following relations:

If et ∈ vs , then et =
[
v
a
, v

�

i

]
 . v

a
∈ G and v�

i
∈ G�.

If et ∈ es , then et =
[
e
ab
, e

�

ij

]
 . e

ab
∈ G and e�

ij
∈ G�.

(1)

1) dist(x, y) ≥ 0. Non-negativity.

2) dist(x, y) = dist(y, x). Symmetry.

3) dist(x, y) = 0 ⇔ x = y. Identity of indiscernible elements ∶

4) dist(x, y) ≤ dist(x, z) + dist(z, y). Triangle inequality,

(2)GED
�
G,G�

�
= min

∀(e1,e2,…ek)∈E(G,G�)

⎧
⎪⎨⎪⎩
CED

�
G,G�

�
(e1,e2,…ek)

⎫⎪⎬⎪⎭

(3)

CED
(
G,G�

)
(e1,e2,…ek)

=
∑

∀et∈vs

Cvs

(
et
)
+

∑
∀et∈es

Ces

(
et
)
+

∑
∀et∈vd

Cvd

(
et
)

+
∑

∀et∈ed

Ced

(
et
)
+

∑
∀et∈vi

Cvi

(
et
)
+

∑
∀et∈ei

Cei

(
et
)
,

If et ∈ vd , then et =
[
v
a

]
 . v

a
∈ G.

If et ∈ ed , then et =
[
e
ab

]
.e
ab

∈ G.
If et ∈ vi , then et =

[
v
�

i

]
 . v�

i
∈ G�.

If et ∈ ei , then et =
[
e
�

ij

]
.e�

ij
∈ G�.

The distance properties (Eq. 1) are taken into consid-
eration in the first definition of the graph edit distance [1]
through the edit operations (Lemma 5 in [1]) and they are
rewritten (Sect. 2.1.1 in [12]). Authors propose that if the
edit operations fulfil the metric properties (Eq. 1) in their
domain, then, it is clear that the graph edit distance is a
metric. This is due to the graph edit distance is a linear
function of the edit operations. In [1, 12], the distance
properties are written in the following three points. Note
the nomenclature has been slightly changed with regard to
[1]. Besides, we write C

⋅
(⋅) instead of C

⋅
([⋅]).

(1)

A.	 Cvs

(
v
a
, v

′

i

)
> 0 if �

v

(
v
a

)
≠ �

′

v

(
v
′

i

)
.

	  Cvs

(
v
a
, v

�

i

)
= 0 otherwise.

B.	 Ces

(
e
ab
, e

′

ij

)
> 0 if �

e

(
e
ab

)
≠ �

′

v

(
e
′

ij

)
.

	  Ces

(
e
ab
, e

�

ij

)
= 0 otherwise.

C.	 Cvd

(
v
a
, v

′

i

)
> 0.

D.	 Ced

(
e
ab
, e

′

ij

)
> 0.

E.	 Cvi

(
v
a
, v

′

i

)
> 0.

F.	 Cei

(
e
ab
, e

′

ij

)
> 0.

Fig. 2   An example of an edit path composed of five edit operations
between two graphs. Graph A is composed of nodes 1 and 3 and an
edge. Graph B is composed of nodes 2 and 4 and an edge

	 SN Computer Science (2021) 2:438438  Page 4 of 7

SN Computer Science

(2)

A.	 Cvs

(
v
a
, v

�

i

)
= Cvs

(
v
�

i
, v

a

)
.

B.	 Ces

(
e
ab
, e

�

ij

)
= Ces

(
e
�

ij
, e

ab

)
.

C.	 Cvd

(
v
a

)
= Cvi

(
v
�

i

)
.

D.	 Ced

(
e
ab

)
= Cei

(
e
�

ij

)
.

(3)

A.	 Cvs

(
v
a
, v

�

i

)
≤ Cvs

(
v
a
, v

��

j

)
+ Cvs

(
v
��

j
, v

�

i

)
.

B.	 Ces

(
e
ab
, e

�

ij

)
≤ Ces

(
e
ab
, e

��

kl

)
+ Ces

(
e
��

kl
, e

�

ij

)
.

C.	 Cvs

(
v
a
, v

�

i

)
≤ Cvd

(
v
a

)
+ Cvi

(
v
�

i

)
.

D.	 Ces

(
e
ab
, e

�

ij

)
≤ Ced

(
e
ab

)
+ Cei

(
e
�

ij

)
.

Theorem 1, defined below, demonstrates that the previ-
ously defined point 3.C and point 3.D (the ones that relate
the triangle inequality to the deletion, insertion and substi-
tution costs) do not need to be imposed to properly define
the graph edit distance. We also comment how this finding
influence over the string and tree edit distance.

Theorem 1

The GED is a metric if points 1.A,…,1.F, 2.A,…,2.D, 3.A
and 3.B are fulfilled (Points 3.C and 3.D are not need to be
fulfilled).

Proof  It is trivial to realise that the non-negativity:
GED

(
G,G′

)
≥ 0 ; the identity of indiscernible elements:

GED
(
G,G�

)
= 0 ⇔ G = G� ; and the symmetry properties:

GED
(
G,G�

)
= GED

(
G′,G

)
 are fulfilled in the graph edit

distance in the case that points 1. and 2. are fulfilled.
Thus, we have to prove the triangle inequality, which

means that GED
(
G,G′

)
≤ GED

(
G,G��

)
+ GED

(
G′′,G′

)

holds. We assume eG,G� ∈ E
(
G,G�

)
 , eG,G�� ∈ E

(
G,G��

)

and eG��,G� ∈ E
(
G��,G�

)
 are three edit path that make the

minimum cost CED in E
(
G,G′

)
 , E

(
G,G′′

)
 and E

(
G′′,G′

)
 ,

respectively. In other words, the ones used to compute
GED

(
G,G′

)
 , GED

(
G,G′′

)
 and GED

(
G′′,G′

)
 . We define an

edit path ê G,G′ that transforms G into G′ as a concatenation of
eG,G′′ and eG′′,G′ . By construction, it holds that GED

(
G,G�

)
=

CED
(
G,G��

)
+ CED

(
G��,G�

)
 and by def ini t ion of

CED
(
G,G′

)
 , it holds that GED

(
G,G′

)
≤ CED

(
G,G′

)
 .

Therefore, GED
(
G,G′

)
≤ CED

(
G,G′

)
 = GED

(
G,G��

)
+

GED
(
G′′,G′

)
 . □

Strings and trees can be modelled as graphs. In the case of
strings, each element in the string is represented as a node in
the graph and the order of the string elements is represented
through edges in the graph that connect the string elements

that are placed side by side. In the case of trees, nodes in the
trees are represented as nodes in the graphs and the father—
sibling relation is represented as an edge in the graph from
the father node to the sibling node. For this reason, Theo-
rem 1 can be applied to strings and trees and thus, we have
demonstrated that the tree edit distance and the string edit
distance do not need to fulfil the triangle inequality between
their edit operations to be considered a metric.

Practical Experiment

The aim of the paper is to show that the triangle inequality
applied to the edit operations is not needed to be the graph
edit distance a metric. Thus, it could be presented without
practical evaluation. Nevertheless, we included this evalua-
tion to show that it is usual to have the optimal configuration
of the parameters at the point that this triangle inequality is
not fulfilled, and therefore, it is worth this demonstration.
Thus, in this section, we show that the highest classification
ratios appear in the values of the edit operations, such that
the triangle inequality between deletion and insertion opera-
tions and substitution operation is not fulfilled. Yet, these
values were rarely applied since the graph edit distance was
not considered a metric. We observe that the algorithms,
such as [34], designed to learn the edit operations, do not
intrinsically take into consideration fulfilling the triangle
inequality properties but they do, for the other distance prop-
erties. Thanks to Theorem 1, we know that the graph edit
distance continues to be a metric and therefore it is worth
setting the edit operations in the values such that the recog-
nition ratio is maximized (even if the triangle inequality on
the edit operations is not fulfilled).

The following five public graph databases have been
used: Coil-Rag, Grec, Letter-low, Letter-med and Letter-
high. These databases are explained in [32, 35], and their
most important features and details are summarized in
Table 1. For instance, the number of graphs and classes,
the average number of nodes and edges per graph and the
number of attributes on nodes.

Table 2 shows the minimum, maximum, mean and stand-
ard deviation of the node substitution costs of these data-
bases. Given that the insertion and deletion edit operations
are constants, we have to assure that these constants are set
such that Cvd + Cvi ≥ max

(
Cvs

)
 , to fulfil the triangle inequal-

ity on the edit operations. Hence, the minimum value of Cvd
and Cvi would have to be Cvd = Cvi = 0.5max

(
Cvs

)
 . The last

column shows 0.5max
(
Cvs

)
 per each database.

Given these databases, we have computed the classifi-
cation ratio as follows. We used the 1-nearest neighbour
classification algorithm [17] for the classification purposes.
Moreover, we have used the fast bipartite graph matching
to deduce the graph edit distance between graphs [26, 27].

SN Computer Science (2021) 2:438	 Page 5 of 7  438

SN Computer Science

The edit operations are set as follows: Cvs is the Euclidean
distance between node attributes.Ces is not defined (these
databases do not have attributes on the edges). Finally, we
impose the insertion and deletion operations on nodes and
edges to have the same value and to be the constant Kv :
Kv = Cvd = Ced = Cvi = Cei . We first deduced the class of
each graph in the test set. Then, the classification ratio is
computed as the number of times the graphs in the test set
are properly classified, divided by the number of graphs in
the test set. To obtain the class of a graph in the test set, it
is needed to compute the graph edit distance between this
graph and all the graphs in the learning set. We conclude
the class of the graph in the test set is the class of the graph
in the learning set that has returns the minimum distance.

Figure 3 shows the classification ratio in the vertical axis
and the constant Kv in the horizontal axis. Each value in
the plot represents the classification ratio when the graph
edit distance has been computed considering Kv as the dele-
tion and insertion costs on nodes and edges. The range of
values of Kv has been set from the minimum value of the
substitution costs (first column in Table 2) to the maximum
value of the substitution costs (second column in Table 2).
Moreover, the arrow shows the range of values such that the
triangle inequality between edit costs are fulfilled. It ranges
from the last column of Table 2 to infinitive. Computing
each plot took approximately two hours (MacMini, I5, Mat-
lab). We realize that the classification ratio is maximized at
the value of the insertion and deletion costs that are much

smaller than half of the maximum value of the substitution
cost (the last column of Table 2), which is the point that the
triangle inequality begins not to be fulfilled. Therefore, we
conclude that it is worth knowing that in the whole range of
Kv the graph edit distance is a metric although the triangle
inequality on the edit operations does not hold on the lower
part of the range of Kv.

Discussion and Conclusion

Considering the practical experiment, we could deduce that
imposing the insertion and deletion costs (represented as
Kv ) to be the mean of half of the substitution cost is a good
option since it is at the point where the classification ratio
is maximized. Nevertheless, in the past, this setting was not
used due to the graph edit distance was not considered to
be a metric. This paper relaxes the properties needed to be
the graph edit distance a metric and for this reason, we can
confirm that at this point, the graph edit distance keeps being
a metric. Thus, it is worth using these costs.

Three algorithms have been presented to automatically
deduce the edit operations [19–21]. Given the topic of this
paper, we observe that their automatically found edit opera-
tions (the values that maximize the classification ratio) do
not fulfil the triangle inequality. Nevertheless, we currently
confirm that the graph edit distance is a metric at the inser-
tion and deletion costs optimized by those learning algo-
rithms. Clearly, this paper does not state that in all the appli-
cations, the classification ratio is maximized in the point
that the triangle inequality between edit operations is not
fulfilled. We only state that in these cases, we can consider
using the learned parameters since we currently know that
the graph edit distance is a metric. Finally, note that the
learning methods impose, by construction of the algorithms,
to fulfil the non-negativity, the symmetry and the identity of
the edit operations.

As a future work, we want to analyse how influences the
relaxation of other distance properties, specifically, the sym-
metry property. Note that in the classification scenarios, we
want to know the distance between a graph of the test set
and a graph of the learning set. Since, the symmetric dis-
tance, that is, the distance between a graph of the learning
set and a graph of the test set is never computed, it could be
worth not to fulfil the symmetry property at the edit opera-
tion level. This means that the insertion costs do not have to
be the same as the deletion costs on nodes or edges. To do
so, we are computing some experiments similar to the ones
presented in Fig. 3 but taking some values for the inser-
tion cost that are different from the deletion cost, that is,
Kvd = Cvd ≠ Kve = Ced.

Table 1   Main features of the testing and learning sets of the data-
bases

Database Number
of graphs

Number
of classes

Average
number of
nodes

Average
number of
edges

Number
of attrib-
utes

Coil-Rag 1000 100 3.01 6 64
Grec 528 22 11.4 23.8 2
Letter

Low
750 15 4.6 6.2 2

Letter
Med

750 15 4.6 6.4 2

Letter
High

750 15 4.6 9 2

Table 2   Different statistics of the node substitution costs C
vs

Min Max Mean Std. Dev ½ Max

Coil-Rag 0 1.3 0.8 0.36 0.69
Grec 0 823 246.5 128 411
Letter-low 0 4.09 1.6 0.82 2.04
Letter-med 0 4.09 1.6 0.82 2.04
Letter-high 0 4.95 1.6 0.83 2.46

	 SN Computer Science (2021) 2:438438  Page 6 of 7

SN Computer Science

Fig. 3   Classification ratio of Coil-Rag, Grec, Letter-low, Letter-med and letter high given some values of the insertion and deletion costs K
v

SN Computer Science (2021) 2:438	 Page 7 of 7  438

SN Computer Science

Declarations 

Conflict of Interest  On behalf of all authors, the author states that there
is no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Bunke H, Allermann G. Inexact graph matching for structural
pattern recognition. Pattern Recogn Lett. 1983;1(4):245–53.

	 2.	 Sanfeliu A, Fu KS. A Distance measure between attributed
relational graphs for pattern recognition. IEEE Trans Syst Man
Cybern. 1983;13(3):353–62.

	 3.	 Sanfeliu A, Alquézar R, Andrade J, Climent J, Serratosa F, Vergés
J. Graph-based representations and techniques for image process-
ing and image analysis. Pattern Recogn. 2002;35(3):639–50.

	 4.	 Conte D, Foggia P, Sansone C, Vento M. Thirty years of graph
matching in pattern recognition. Int J Pattern Recognit Artif Intell.
2004;18(3):265–98.

	 5.	 Vento M. A long trip in the charming world of graphs for pattern
recognition. Pattern Recognit. 2015;48:291–301.

	 6.	 Livi L, Rizzi A. The graph matching problem. Pattern Anal Appl.
2013;16(3):253–83.

	 7.	 Foggia P, Percannella G, Vento M. Graph matching and learning
in Pattern Recognition in the last 10 years. Int J Pattern Recognit
Artif Intell. 2014;28(1):1450001 (40 pages).

	 8.	 Solé A, Serratosa F, Sanfeliu A. On the graph edit distance cost:
properties and applications. Int J Pattern Recognit Artif Intell.
2012;26(5):1260004 (21 pages).

	 9.	 Serratosa F, Cortés X. Graph Edit Distance: moving from global
to local structure to solve the graph-matching problem. Pattern
Recogn Lett. 2015;65:204–10.

	10.	 Gao X, Xiao B, Tao D, Li X. A survey of graph edit distance.
Pattern Anal Appl. 2010;13(1):113–29.

	11.	 Serratosa F. A general model to define the substitution, insertion
and deletion graph edit costs based on an embedded space. Pattern
Recogn Lett. 2020;138:115–22.

	12.	 Riesen K. Structural pattern recognition with graph edit distance.
Approximation algorithms and applications. Springer; 2015.

	13.	 Serratosa F, Cortés X, Solé-Ribalta A. Component retrieval based
on a database of graphs for hand-written electronic-scheme digi-
talisation. Expert Syst Appl. 2013;40:2493–502.

	14.	 Sanfeliu A, Serratosa F, Alquézar R. Second-order random graphs
for modelling sets of attributed graphs and their application to
object learning and recognition. Int J Pattern Recognit Artif Intell.
2004;18(3):375–96.

	15.	 Serratosa F, Alquézar R, Sanfeliu A. Function-Described Graphs
for modelling objects represented by attributed graphs. Pattern
Recogn. 2003;36(3):781–98.

	16.	 Serratosa F, Alquézar R, Sanfeliu A. Synthesis of function-
described graphs and clustering of attributed graphs. Int J Pattern
Recognit Artif Intell. 2002;16(6):621–55.

	17.	 Cover TM, Hart PE. Nearest neighbours pattern classification.
IEEE Trans Inf Theory. 1967;13(1):21–7.

	18.	 Serratosa F. Graph edit distance: restrictions to be a metric. Pat-
tern Recogn. 2019;90:250–6.

	19.	 Cortés X, Serratosa F. Learning graph matching substitution
weights based on the ground truth node correspondence. Int J
Pattern Recognit Artif Intell. 2016;30(2):1650005 (22 pages).

	20.	 Cortés X, Serratosa F. Learning graph-matching edit-costs based
on the optimality of the oracle’s node correspondences. Pattern
Recogn Lett. 2015;56:22–9.

	21.	 Algabli S, Serratosa F. Embedding the node-to-node mappings
to learn the Graph edit distance parameters. Pattern Recogn Lett.
2018;112:353–60.

	22.	 Santacruz P, Serratosa F. Learning the graph edit costs based on
a learning model applied to sub-optimal graph matching. Neural
Process Lett. 2020;51:881–904.

	23.	 Conte D, Serratosa F. Interactive online learning for graph match-
ing using active strategies. Knowl Based Syst. 2020;105:106275.

	24.	 Garey M, Johnson D. Computers and intractability: a guide to the
theory of NP-completeness. Siam Rev. 1979;24:90.

	25.	 Ferrer M, Serratosa F, Riesen K. Improving Bipartite graph
matching by assessing the assignment confidence. Pattern Recogn
Lett. 2015;65:29–36.

	26.	 Serratosa F. Fast computation of bipartite graph matching. Pattern
Recogn Lett. 2014;45:244–50.

	27.	 Serratosa F. Speeding up Fast bipartite Graph Matching
trough a new cost matrix. Int J Pattern Recognit Artif Intell.
2015;29(2):1550010 (17 pages).

	28.	 Serratosa F. Computation of graph edit distance: reasoning about
optimality and speed-up. Image Vis Comput. 2015;40:38–48.

	29.	 Santacruz P, Serratosa F. Error-tolerant graph matching in linear
computational cost using an initial small partial matching. Pattern
Recognit Lett. 2020;134:10–9.

	30.	 Hart P, Nilsson N, Raphael B. A formal basis for the heuristic
determination of minimum cost paths. Trans Syst Sci Cybern.
1968;4(2):100–7.

	31.	 Kuhn HW. The Hungarian method for the assignment problem.
Nav Res Log Q. 1955;2:83–97.

	32.	 Moreno-Garcia C, Cortés X, Serratosa F. A graph repository for
learning error-tolerant graph matching. Syn Struct Pattern Rec-
ognit SSPR2016 LNCS. 2016;10029:519–29.

	33.	 Arkhangel’skii AV, Pontryagin LS. General Topology I: basic
concepts and constructions dimension theory, encyclopaedia of
mathematical sciences. Springer; 1990.

	34.	 Neuhaus M, Bunke H. Self-organizing maps for learning the edit
costs in graph matching. IEEE Trans Syst Man Cyber Part B
(Cybernetics). 2005;35(3):503–14.

	35.	 Riesen K, Bunke H. IAM graph database repository for graph
based pattern recognition and machine learning. In: Structural
Syntactic and Statistical Pattern Recognition. Lecture Notes in
Computer Science book series (LNCS, volume 5342); 2008, p.
287–97.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/

	Redefining the Graph Edit Distance
	Abstract
	Introduction
	Graph Edit Distance
	Theorem 1
	Practical Experiment
	Discussion and Conclusion
	References

