
Vol.:(0123456789)

SN Computer Science (2021) 2:438 
https://doi.org/10.1007/s42979-021-00792-5

SN Computer Science

ORIGINAL RESEARCH

Redefining the Graph Edit Distance

Francesc Serratosa1 

Received: 17 December 2020 / Accepted: 22 July 2021 / Published online: 31 August 2021 
© The Author(s) 2021

Abstract
Graph edit distance has been used since 1983 to compare objects in machine learning when these objects are represented by 
attributed graphs instead of vectors. In these cases, the graph edit distance is usually applied to deduce a distance between 
attributed graphs. This distance is defined as the minimum amount of edit operations (deletion, insertion and substitution of 
nodes and edges) needed to transform a graph into another. Since now, it has been stated that the distance properties have 
to be applied [(1) non-negativity (2) symmetry (3) identity and (4) triangle inequality] to the involved edit operations in the 
process of computing the graph edit distance to make the graph edit distance a metric. In this paper, we show that there is 
no need to impose the triangle inequality in each edit operation. This is an important finding since in pattern recognition 
applications, the classification ratio usually maximizes in the edit operation combinations (deletion, insertion and substitu-
tion of nodes and edges) that the triangle inequality is not fulfilled.

Keywords Distance definition · Graph edit distance · Attributed graphs · Learning

Introduction

Several kinds of problems have been used to model attrib-
uted graphs for more than 4 decades [1–3]. This is because 
they have the flexible ability to define an element through 
their structural and semantic information. Some reviews 
have been published through these years [4–7]. Figure 1 
shows several examples of representing an element through 
an attributed graph. Applications range from optical char-
acter recognition to chemical compound toxicity analysis. 
Other examples are image processing, text analysis or geo-
localization. If elements in pattern recognition are mod-
elled through attributed graphs, a distance between them is 
needed since, in pattern recognition, comparing elements 
is an essential task. One of the most widely used distances 
between attributed graphs is the graph edit distance [8–11].

Graph edit distance depends on some parameters, which 
have to be tuned to maximize an objective function, which 
is related on the task to be carried out. In the earliest pres-
entations of the graph edit distance in 1983, [1, 2], this func-
tion was considered a metric subject to certain properties 

on these parameters. A more contemporary book published 
in 2015 [12] also suggests the same properties. That book 
analyses some pattern recognition applications and several 
algorithms that compute the graph edit distance in an opti-
mal and sub-optimal manner.

As an example of how important is to define the graph 
edit distance as a metric, we could mention the graph data-
bases structured by metric-trees [13]. In this case, if the 
function to compare attributed graphs is not a metric, some 
attributed graphs could not be retrieved from the database 
although they had properly been introduced. Thus, the sys-
tem performs as these graphs have not never been introduced 
in the database.

Another example are the pattern recognition methods that 
compact a set of attributed graphs that have been considered 
to belong to one class into only one graph representative 
[14–16]. The aim of this type of representations is twofold. 
First, they want to reduce the runtime of deducing the class 
of an element to be classified. This is because in these meth-
ods, only one comparison is needed between this unclas-
sified graph and each class in the set. In contrast, in other 
methods, such as the k-nearest neighbours [17], the number 
of comparisons needed is the number of graphs in the set. 
Second, they want to increase the representational power of 
the set. This is because, by compacting the general features 
of the set, the local discrepancies between the elements in 
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the set tend to be softened. In this case, if the function to 
compare attributed graphs is not a metric, the representa-
tive graph is not properly defined (the construction of the 
representative is carried out by several comparisons between 
the graphs in the set) and thus, there is a quality reduction of 
the pattern recognition task.

For this reason, in the previously commented exam-
ples, the graph edit distance parameters are set such as the 
graph edit distance becomes a metric. If we could some-
how relax some of the distance properties while maintain-
ing the graph edit distance a metric, we could extend the 
parameters’ domain and thus, set them at a value where the 
query precision becomes higher (in the first example) and 
the representative power of the set also becomes higher (in 
the second example). Note we are aware that the dissimilar-
ity between patterns in other pattern recognition applications 
can be defined as non-metric. Finally, the configuration of 
the graph edit distance parameters considering some match-
ing algorithms is analysed in [18]. That paper demonstrates 
that only some graph matching algorithms return a metric 
although some distance properties are not fulfilled. Thus, it 
concludes that the selection of the graph matching is deci-
sive not only for the run time point of view but also to assure 
the deduced graph edit distance between the graphs in the 
application is a metric.

To summarize, in this paper, we show that some prop-
erties usually considered in the graph edit distance [1, 2, 
12] can be relaxed while the graph edit distance being 
a metric. This simplification is central in several pattern 
recognition applications. This is because all these appli-
cations have an objective function to be maximized (or 

minimized), for instance, the maximization of the rec-
ognition ratio or classification accuracy, between others. 
Thus, it turns out that several machine learning methods 
have been presented [19–23] to automatically deduce the 
graph edit distance parameters and, frequently, the objec-
tive function of these methods is maximized where these 
properties do not hold. Due to the findings of this paper, 
we currently know that the automatically learned graph 
edit distance parameters makes the graph edit distance to 
be a metric. The experimental section shows the classifica-
tion ratio given some graph edit distance parameters and 
also shows that the maximum classification is achieved at 
the parameters that we currently can assure the graph edit 
distance is a metric.

Note that several algorithms have been presented to com-
pute the graph edit distance. This is because its computation 
has been demonstrated to be NP complete [24]. Basically, 
there are algorithms that return the exact distance in expo-
nential computational cost [25] and other ones that return 
an approximation of this value in polynomial computational 
cost [26–28]. The fact of using different edit costs do not 
influence over the computational cost but only on the algo-
rithm per se. For instance, the computational cost of [25] is 
exponential, the computational cost of [26–28] is cubic and 
the computational cost of [29] is linear with respect to the 
number of nodes as it can be deduced in [30, 31]. For this 
reason, in this paper, the experimental section does not show 
a comparison between these methods but only shows that 
the edit cost that return the highest classification rations do 
not fulfil the triangle inequality. For a specific comparison 
of graph matching methods, we refer to [32].

Fig. 1  Representing objects in pattern recognition applications by graphs with attributes on their nodes and edges
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Graph Edit Distance

A distance is a function that holds the following properties 
[33]:

where x, y and z are elements in a specific domain. The dis-
tance domain is [0,∞).

An attributed graph G = (V ,E) is composed of a 
set of n nodes V =

{
v1,… , vn

}
 and a set of m edges 

E =
{
e1,2,… , et,k

}
. Moreover, there is a function on the 

nodes, �v , and on the edges, �e , which assign an attribute on 
these nodes and edges. The graph edit distance between 
two attributed graphs, GED, G and G′ is defined as,

where E
(
G,G′

)
 denotes the set of all edit paths 

(
e1, e2, … ek

)
 

that transform G into G′ and the cost of the edit path is CED,

The set of node substitutions, deletions and insertions is 
represented by vs , vd and vi . Moreover, the costs of these 
edit operations are represented by Cvs , Cvd and Cvi . Edit 
operations and costs on edges have similar definitions: es , 
ed , ei , Ces Ced and Cei.

Figure 2 shows a toy example of a graph edit distance 
between two simple graphs, which are composed of only 
two nodes and an edge between them. In this case, the trans-
formation between both graphs is carried out by five edit 
operations: ed , vd , vi , ei and vs . Note that several edit paths 
transform one graph into the other one that generate dif-
ferent costs (Eq. 3). The edit path that is considered in the 
graph edit distance is the one that achieves the minimum 
cost through the previously defined Cvs , Cvd , Cvi , Ces Ced and 
Cei (Eq. 2).

The edit operations et depend on the attributes on the 
nodes or on the arcs. For this reason, we define, for the rest 
of the paper, the following relations:

If et ∈ vs , then et =
[
v
a
, v

�

i

]
 . v

a
∈ G and v�

i
∈ G�.

If et ∈ es , then et =
[
e
ab
, e

�

ij

]
 . e

ab
∈ G and e�

ij
∈ G�.

(1)

1) dist(x, y) ≥ 0. Non-negativity.

2) dist(x, y) = dist(y, x). Symmetry.

3) dist(x, y) = 0 ⇔ x = y. Identity of indiscernible elements ∶

4) dist(x, y) ≤ dist(x, z) + dist(z, y). Triangle inequality,

(2)GED
�
G,G�

�
= min

∀(e1,e2,…ek)∈E(G,G�)

⎧
⎪⎨⎪⎩
CED

�
G,G�

�
(e1,e2,…ek)

⎫⎪⎬⎪⎭

(3)

CED
(
G,G�

)
(e1,e2,…ek)

=
∑

∀et∈vs

Cvs

(
et
)
+

∑
∀et∈es

Ces

(
et
)
+

∑
∀et∈vd

Cvd

(
et
)

+
∑

∀et∈ed

Ced

(
et
)
+

∑
∀et∈vi

Cvi

(
et
)
+

∑
∀et∈ei

Cei

(
et
)
,

If et ∈ vd , then et =
[
v
a

]
 . v

a
∈ G.

If et ∈ ed , then et =
[
e
ab

]
.e
ab

∈ G.
If et ∈ vi , then et =

[
v
�

i

]
 . v�

i
∈ G�.

If et ∈ ei , then et =
[
e
�

ij

]
.e�

ij
∈ G�.

The distance properties (Eq. 1) are taken into consid-
eration in the first definition of the graph edit distance [1] 
through the edit operations (Lemma 5 in [1]) and they are 
rewritten (Sect. 2.1.1 in [12]). Authors propose that if the 
edit operations fulfil the metric properties (Eq. 1) in their 
domain, then, it is clear that the graph edit distance is a 
metric. This is due to the graph edit distance is a linear 
function of the edit operations. In [1, 12], the distance 
properties are written in the following three points. Note 
the nomenclature has been slightly changed with regard to 
[1]. Besides, we write C

⋅
(⋅) instead of C

⋅
([⋅]).

(1)

A. Cvs

(
v
a
, v

′

i

)
> 0 if �

v

(
v
a

)
≠ �

′

v

(
v
′

i

)
.

  Cvs

(
v
a
, v

�

i

)
= 0 otherwise.

B. Ces

(
e
ab
, e

′

ij

)
> 0 if �

e

(
e
ab

)
≠ �

′

v

(
e
′

ij

)
.

  Ces

(
e
ab
, e

�

ij

)
= 0 otherwise.

C. Cvd

(
v
a
, v

′

i

)
> 0.

D. Ced

(
e
ab
, e

′

ij

)
> 0.

E. Cvi

(
v
a
, v

′

i

)
> 0.

F. Cei

(
e
ab
, e

′

ij

)
> 0.

Fig. 2  An example of an edit path composed of five edit operations 
between two graphs. Graph A is composed of nodes 1 and 3 and an 
edge. Graph B is composed of nodes 2 and 4 and an edge
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(2)

A. Cvs

(
v
a
, v

�

i

)
= Cvs

(
v
�

i
, v

a

)
.

B. Ces

(
e
ab
, e

�

ij

)
= Ces

(
e
�

ij
, e

ab

)
.

C. Cvd

(
v
a

)
= Cvi

(
v
�

i

)
.

D. Ced

(
e
ab

)
= Cei

(
e
�

ij

)
.

(3)

A. Cvs

(
v
a
, v

�

i

)
≤ Cvs

(
v
a
, v

��

j

)
+ Cvs

(
v
��

j
, v

�

i

)
.

B. Ces

(
e
ab
, e

�

ij

)
≤ Ces

(
e
ab
, e

��

kl

)
+ Ces

(
e
��

kl
, e

�

ij

)
.

C. Cvs

(
v
a
, v

�

i

)
≤ Cvd

(
v
a

)
+ Cvi

(
v
�

i

)
.

D. Ces

(
e
ab
, e

�

ij

)
≤ Ced

(
e
ab

)
+ Cei

(
e
�

ij

)
.

Theorem 1, defined below, demonstrates that the previ-
ously defined point 3.C and point 3.D (the ones that relate 
the triangle inequality to the deletion, insertion and substi-
tution costs) do not need to be imposed to properly define 
the graph edit distance. We also comment how this finding 
influence over the string and tree edit distance.

Theorem 1

The GED is a metric if points 1.A,…,1.F, 2.A,…,2.D, 3.A 
and 3.B are fulfilled (Points 3.C and 3.D are not need to be 
fulfilled).

Proof It is trivial to realise that the non-negativity: 
GED

(
G,G′

)
≥ 0 ; the identity of indiscernible elements: 

GED
(
G,G�

)
= 0 ⇔ G = G� ; and the symmetry properties: 

GED
(
G,G�

)
= GED

(
G′,G

)
 are fulfilled in the graph edit 

distance in the case that points 1. and 2. are fulfilled.
Thus, we have to prove the triangle inequality, which 

means that GED
(
G,G′

)
≤ GED

(
G,G��

)
+ GED

(
G′′,G′

)
 

holds. We assume eG,G� ∈ E
(
G,G�

)
 , eG,G�� ∈ E

(
G,G��

)
 

and eG��,G� ∈ E
(
G��,G�

)
 are three edit path that make the 

minimum cost CED in E
(
G,G′

)
 , E

(
G,G′′

)
 and E

(
G′′,G′

)
 , 

respectively. In other words, the ones used to compute 
GED

(
G,G′

)
 , GED

(
G,G′′

)
 and GED

(
G′′,G′

)
 . We define an 

edit path ê G,G′ that transforms G into G′ as a concatenation of 
eG,G′′ and eG′′,G′ . By construction, it holds that GED

(
G,G�

)
= 

CED
(
G,G��

)
+ CED

(
G��,G�

)
 and by def ini t ion of 

CED
(
G,G′

)
 , it holds that GED

(
G,G′

)
≤ CED

(
G,G′

)
 . 

Therefore, GED
(
G,G′

)
≤ CED

(
G,G′

)
 = GED

(
G,G��

)
+ 

GED
(
G′′,G′

)
 . □

Strings and trees can be modelled as graphs. In the case of 
strings, each element in the string is represented as a node in 
the graph and the order of the string elements is represented 
through edges in the graph that connect the string elements 

that are placed side by side. In the case of trees, nodes in the 
trees are represented as nodes in the graphs and the father—
sibling relation is represented as an edge in the graph from 
the father node to the sibling node. For this reason, Theo-
rem 1 can be applied to strings and trees and thus, we have 
demonstrated that the tree edit distance and the string edit 
distance do not need to fulfil the triangle inequality between 
their edit operations to be considered a metric.

Practical Experiment

The aim of the paper is to show that the triangle inequality 
applied to the edit operations is not needed to be the graph 
edit distance a metric. Thus, it could be presented without 
practical evaluation. Nevertheless, we included this evalua-
tion to show that it is usual to have the optimal configuration 
of the parameters at the point that this triangle inequality is 
not fulfilled, and therefore, it is worth this demonstration. 
Thus, in this section, we show that the highest classification 
ratios appear in the values of the edit operations, such that 
the triangle inequality between deletion and insertion opera-
tions and substitution operation is not fulfilled. Yet, these 
values were rarely applied since the graph edit distance was 
not considered a metric. We observe that the algorithms, 
such as [34], designed to learn the edit operations, do not 
intrinsically take into consideration fulfilling the triangle 
inequality properties but they do, for the other distance prop-
erties. Thanks to Theorem 1, we know that the graph edit 
distance continues to be a metric and therefore it is worth 
setting the edit operations in the values such that the recog-
nition ratio is maximized (even if the triangle inequality on 
the edit operations is not fulfilled).

The following five public graph databases have been 
used: Coil-Rag, Grec, Letter-low, Letter-med and Letter-
high. These databases are explained in [32, 35], and their 
most important features and details are summarized in 
Table 1. For instance, the number of graphs and classes, 
the average number of nodes and edges per graph and the 
number of attributes on nodes.

Table 2 shows the minimum, maximum, mean and stand-
ard deviation of the node substitution costs of these data-
bases. Given that the insertion and deletion edit operations 
are constants, we have to assure that these constants are set 
such that Cvd + Cvi ≥ max

(
Cvs

)
 , to fulfil the triangle inequal-

ity on the edit operations. Hence, the minimum value of Cvd 
and Cvi would have to be Cvd = Cvi = 0.5max

(
Cvs

)
 . The last 

column shows 0.5max
(
Cvs

)
 per each database.

Given these databases, we have computed the classifi-
cation ratio as follows. We used the 1-nearest neighbour 
classification algorithm [17] for the classification purposes. 
Moreover, we have used the fast bipartite graph matching 
to deduce the graph edit distance between graphs [26, 27]. 
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The edit operations are set as follows: Cvs is the Euclidean 
distance between node attributes.Ces is not defined (these 
databases do not have attributes on the edges). Finally, we 
impose the insertion and deletion operations on nodes and 
edges to have the same value and to be the constant Kv : 
Kv = Cvd = Ced = Cvi = Cei . We first deduced the class of 
each graph in the test set. Then, the classification ratio is 
computed as the number of times the graphs in the test set 
are properly classified, divided by the number of graphs in 
the test set. To obtain the class of a graph in the test set, it 
is needed to compute the graph edit distance between this 
graph and all the graphs in the learning set. We conclude 
the class of the graph in the test set is the class of the graph 
in the learning set that has returns the minimum distance.

Figure 3 shows the classification ratio in the vertical axis 
and the constant Kv in the horizontal axis. Each value in 
the plot represents the classification ratio when the graph 
edit distance has been computed considering Kv as the dele-
tion and insertion costs on nodes and edges. The range of 
values of Kv has been set from the minimum value of the 
substitution costs (first column in Table 2) to the maximum 
value of the substitution costs (second column in Table 2). 
Moreover, the arrow shows the range of values such that the 
triangle inequality between edit costs are fulfilled. It ranges 
from the last column of Table 2 to infinitive. Computing 
each plot took approximately two hours (MacMini, I5, Mat-
lab). We realize that the classification ratio is maximized at 
the value of the insertion and deletion costs that are much 

smaller than half of the maximum value of the substitution 
cost (the last column of Table 2), which is the point that the 
triangle inequality begins not to be fulfilled. Therefore, we 
conclude that it is worth knowing that in the whole range of 
Kv the graph edit distance is a metric although the triangle 
inequality on the edit operations does not hold on the lower 
part of the range of Kv.

Discussion and Conclusion

Considering the practical experiment, we could deduce that 
imposing the insertion and deletion costs (represented as 
Kv ) to be the mean of half of the substitution cost is a good 
option since it is at the point where the classification ratio 
is maximized. Nevertheless, in the past, this setting was not 
used due to the graph edit distance was not considered to 
be a metric. This paper relaxes the properties needed to be 
the graph edit distance a metric and for this reason, we can 
confirm that at this point, the graph edit distance keeps being 
a metric. Thus, it is worth using these costs.

Three algorithms have been presented to automatically 
deduce the edit operations [19–21]. Given the topic of this 
paper, we observe that their automatically found edit opera-
tions (the values that maximize the classification ratio) do 
not fulfil the triangle inequality. Nevertheless, we currently 
confirm that the graph edit distance is a metric at the inser-
tion and deletion costs optimized by those learning algo-
rithms. Clearly, this paper does not state that in all the appli-
cations, the classification ratio is maximized in the point 
that the triangle inequality between edit operations is not 
fulfilled. We only state that in these cases, we can consider 
using the learned parameters since we currently know that 
the graph edit distance is a metric. Finally, note that the 
learning methods impose, by construction of the algorithms, 
to fulfil the non-negativity, the symmetry and the identity of 
the edit operations.

As a future work, we want to analyse how influences the 
relaxation of other distance properties, specifically, the sym-
metry property. Note that in the classification scenarios, we 
want to know the distance between a graph of the test set 
and a graph of the learning set. Since, the symmetric dis-
tance, that is, the distance between a graph of the learning 
set and a graph of the test set is never computed, it could be 
worth not to fulfil the symmetry property at the edit opera-
tion level. This means that the insertion costs do not have to 
be the same as the deletion costs on nodes or edges. To do 
so, we are computing some experiments similar to the ones 
presented in Fig. 3 but taking some values for the inser-
tion cost that are different from the deletion cost, that is, 
Kvd = Cvd ≠ Kve = Ced.

Table 1  Main features of the testing and learning sets of the data-
bases

Database Number 
of graphs

Number 
of classes

Average 
number of 
nodes

Average 
number of 
edges

Number 
of attrib-
utes

Coil-Rag 1000 100 3.01 6 64
Grec 528 22 11.4 23.8 2
Letter 

Low
750 15 4.6 6.2 2

Letter 
Med

750 15 4.6 6.4 2

Letter 
High

750 15 4.6 9 2

Table 2  Different statistics of the node substitution costs C
vs

Min Max Mean Std. Dev ½ Max

Coil-Rag 0 1.3 0.8 0.36 0.69
Grec 0 823 246.5 128 411
Letter-low 0 4.09 1.6 0.82 2.04
Letter-med 0 4.09 1.6 0.82 2.04
Letter-high 0 4.95 1.6 0.83 2.46
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Fig. 3  Classification ratio of Coil-Rag, Grec, Letter-low, Letter-med and letter high given some values of the insertion and deletion costs K
v
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