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This paper has academic nature, nevertheless it is an application
from [9] that we think can be interesting to students and instructors
of undergraduate level of physics. With low level of geometric and
computational techniques the readers can reproduce the results of
the present paper. The most important thing is that these results
clearly show that it is not enough take numerical measures of
the orbits of the bodies to decide which are the real equations
and laws that govern them. We present an approximation of the
Kepler’s ellipse of the planets’ trajectory by circular arcs, which
is quasi-equivalent ; that is: we present the approximation of the
Kepler’s ellipse Eb by the eight-centered oval OEb having the same
center, axes, vertices, perimeter length and curvature at the vertices
as Eb, and also having practically negligible difference with respect
to the surface area of Eb, and also having barely distinguishable
deformation error in relation to Eb.

Este artı́culo, aunque tiene carácter académico en su naturaleza
y presentación, consiste en una aplicación de las conclusiones
geométricas de [9] la cual consideramos puede ser interesante
para estudiantes y profesores en licenciaturas y grados de fı́sica.
Con bajo nivel de geometrı́a y técnicas computacionales, los
lectores pueden reproducir los cálculos del presente trabajo. El
aspecto más importante que se presenta aquı́ es que los resultados
muestran que no es suficiente tomar medidas numéricas de las
órbitas de cuerpos para poder determinar las ecuaciones y leyes
reales que las gobiernan. Más concretamente, presentamos una
aproximación, por arcos circulares, de la elipse de Kepler de las
trayectorias de los planetas, la cual es quasi-equivalente. O sea,
presentamos la aproximación de la elipse de Kepler Eb por el
óvalo de ocho centros OEb el cual posee: mismo centro, ejes,
vértices, perı́metro, y curvatura en los vértices que Eb, y además
la diferencia entre las áreas de Eb y OEb es prácticamente nula y el
error de deformación entre ambos es por añadidura prácticamente
indistiguible.

PACS: 01.40.Fk Physics education, 01.50.H- Computers in education, 02.40.Dr Euclidean geometries, 95.10.Eg Orbit determination.

Approximating ellipses by circular arcs has been a classic
subject of study by geometers. This has long been used for
a wide range of applications, for instance in geometry, art,
architecture. The reader can easily find a great deal of classical
literature on these topics, in special for eight-centered ovals
and four-centered ovals (also named quadrarcs). Moreover,
because of its importance, this subject of study is continued
in modern research papers as [1–7]. In astronomy this kind of
approximation was classically considered, for example in [8].

This paper has academic nature, nevertheless it is an
application from [9] that we think can be interesting to
students and instructors of undergraduate level of physics.
With low level of geometric and computational techniques
the readers can reproduce the results of the present paper.
The most important thing is that these results clearly show
that it is not enough take numerical measures of the orbits
of the bodies to decide which are the real equations and
laws that govern them. Errors in measures, even if they are
very small, can hide subtly the differences between different
laws. Therefore in addition to taking measures, always
depth studies of the physic which governs the motions of
bodies are required. More specifically: here in this paper,
we show the example of the planets’ trajectory; because

the geometric properties of two very different lines –ellipse
and eight-centered oval– can be quasi-equivalent (having
barely distinguishable differences), therefore computations
of the orbits can hide the real physics laws. By contrast
and as an added value, this paper also shows to students,
and interested people, that they can change an ellipse by
a quasi-equivalent eight-centered oval, if they consider that
their negligible geometric differences are assumable in their
concrete problems.

It is well known that Johannes Kepler, in the 17th century,
made a search for a better description of planetary motion
and, in Astronomia Nova [10] (1609), he provided arguments
for elliptical trajectory of the planets around the Sun.
However, in 1675, Giovanni Domenico Cassini did not agree
with Kepler and he tried to prove that the planetary orbits
were Cassini’s ovals [11]. Recently, Sivardiere [12] explored
this question and concluded that the difference between
the Kepler’s ellipse and Cassini’s oval is as distinguishable
as that between the Kepler’s ellipse and the circular orbit;
therefore, if we discard the circle in favour of the ellipse, then,
we also should discard the oval with the same argument. In
the work [13], Morgado and Soares analyzed this possibility
and they show that it is difficult to decide in favour of one
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of the two curves. In fact, Morgado an Soares calculated the
following:

Table 1. Calculations of Morgado and Soares [13].

Mercury Venus Earth Mars
ε 0.205600 0.006700 0.016700 0.093500

E(O,Eb) 0.02136 4 0.000022 0.000139 0.004381

E(Eb,Cb) 0.021841 0.000022 0.000139 0.004400
E(O,Eb)

b 0.021830 0.000022 0.000139 0.004400
E(Eb ,Cb)

b 0.022318 0.000022 0.000139 0.004419

Jupiter Saturn Uranus Neptune
ε 0.048900 0.056500 0.045700 0.011300

E(O,Eb) 0.001196 0.001597 0.001045 0.000064

E(Eb,Cb) 0.001198 0.001600 0.001046 0.000064
E(O,Eb)

b 0.001198 0.001600 0.001046 0.000064
E(Eb ,Cb)

b 0.001199 0.001603 0.001047 0.000064

Let Eb be the Kepler’s ellipse of the orbit of a planet, let A,
A′, B, B′, be the four vertices of the ellipse Eb and let a, b, ε, M
be the mayor semi-axis, the minor semi-axis, the eccentricity
and the center, respectively, of Eb. We can assume that a = 1.
Let Cb be the Cassini’s oval with same center, foci points
and mayor semi-axis of the ellipse Eb. Let bC the distance
between M and the point BC ∈ Cb such that π

2 = ](A,M,BC).
Let E(Eb,Cb) = b − bC, and let E(O,Eb) = 1 − b i.e. for small
eccentricities E(Eb,Cb) is the maximum difference between
the positions given by the Kepler’s ellipse and the Cassinian
oval, and E(O,Eb) is the maximum difference between the
positions given by the circular orbitO –of center M and radius
1– and the ellipse.

Morgado an Soares found, with a = 1, the results of Table1.

With Table 1, Morgado an Soares concluded in [13] that
the maximum difference between the positions given by
the circumference and the ellipse is of the same order of
magnitude as that for the maximum difference between
the positions given by the Cassinian oval and the ellipse.
However, this difference is too small when compared with
the values of the axis for all these curves to be observed
with the naked eye, as was the case in Kepler’s day. Kepler
was probably unable to geometrically observe the difference
between the ellipse and the circle unambiguously, and the
difference between the ellipse and the Cassini’s oval is also
indistinguishable for the standards of his period. From the
results of Morgado an Soares –in Table 1–, Kepler’s ellipse
and Cassini’s oval are barely distinguishable when orbits
with a small eccentricity are considered. This illustrates the
ingenuity of Kepler in analyzing the observational data
at his disposal. Finally, they call attention to Laplace’s
remark, found in his Mécanique Céleste [14], that only with
Newton and his gravitation law will the ellipse be elected
as the curve to better describe planetary motions, and all
incompatibilities between theory and the real orbit are caused
by the disturbance of another celestial body.

In this paper we look for an approximation of the trajectory
of the planets, i.e. the Kepler’s ellipse of the planets, by

circular arcs which can qualify as being a quasi-equivalent
approximation.

In order to attain a similarity of results in the planets’
trajectory, an approximation which is equivalent to the
Kepler’ ellipse must have exactly coinciding geometric
parameters. An eight-centered oval which is equivalent to an
ellipse should have the same: center, axes, vertices, perimeter
length, curvature at the vertices and surface area. Also, it
should have little deformation in relation to the ellipse.
Unfortunately, an eight-centered oval with all these exactly
coinciding geometric parameters does not exist; it can not
have all the same geometric parameters and also the same
surface area.

There are different methods of approximating curves –least
squares, minimax, orthogonal family of polynomials–.
However, our approach is different; we look for the exact
coincidence of single geometric parameters. Present exact
analytical formulae for approximations Kepler’s ellipse
trajectories by eight-centered ovals with some geometric
parameters which coincide exactly. Further, we want to show
the precise numerical calculations of these approximations.
And, as a conclusion, we want to present not the
“equivalent” approximation because it does not exist, but the
approximation of the Kepler’ ellipse orbit Eb of the planets
by an eight-centered oval OEb having the same center, axes,
vertices, perimeter length, and curvature at the vertices as
the ellipse, and also having practically negligible difference
with respect to the surface area of Eb and showing barely
distinguishable deformation in relation to Eb. We call this
8-centered oval OEb “quasi-equivalent” to the Kepler’s ellipse
Eb.

Of course, approximating ellipses by circular arcs with
four-centered ovals (quadrarcs) also has been a classic subject
of study by geometers, but in paper [9] it was proved that
the approximation of the ellipses with four-centered ovals
is geometrically and numerically poor –lack of geometric
similarities and not negligible deformation error– to be
qualified as quasi-equivalent. Therefore in this present paper
we focus attention in the eight-centered ovals.

In short, this paper is inspired on the two previous works: [9]
and [13]. The authors of [13] show that the deformation
error between the Kepler’s ellipse and a circumference, also
between the Kepler’s ellipse and a Cassini’s oval, is small
(Table 1). Here, we show that the deformation error between
the Kepler’s ellipse and an 8-centered oval is even smaller
(Table 2). The authors of [9] obtained and showed, among
other mathematical equations, the formulae that we have
used here; but they used the equations only for geometric
theoretical questions. Here, we show an application of
the formulae; it is an application which has educational
implications and we think can be interesting to students of
physics.

An oval is a curve resembling a flattened circle but, unlike
the ellipse, it doesn’t have a specific mathematical definition.
Therefore, right now we must lay down the definitions and
notations of this paper.
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I. DEFINITIONS AND NOTATIONS

Let A, A′, B, B′, be the four vertices of an ellipse E, where A,
A′ are the focal vertices and B, B′ are the transverse vertices.
Without loss of generality, in the affine Euclidean plane E2,
we can consider a Cartesian coordinate system R such that
A = (1, 0), A′ = (−1, 0), B = (0, b), B′ = (0,−b), 1 > b > 0.
We discard the cases b = 1 (E is a circle) and b = 0 (E is a
straight segment), because the problem trivializes. In order to
highlight the parameter b, we call the ellipseEb. Therefore, the
parameter b is the hypothesis parameter which determines
the problem.

We consider the infinite quantity of ovals the vertices of
which are also the points A, A′, B, B′. Amongst them, we focus
on the family of the eight-centered ovals, which we denote by
O8,b. And finally, we consider the family of the four-centered
ovals (quadrarcs) O4,b. The second family is a sub-family of
the first one.
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Figure 1. Elements of the 8-centered oval O8,b (quadrarc O4,b if ry = r3).

An oval O8,b is made up by 8 circle arcs which are tangent to
each other such that, in the systemR, they have the following
8 centers (see Figure 1):

Px = (x, 0) , 0 < x < 1, with 1 − x < b, P′x = (−x, 0) ,

Py =
(
0, y

)
, with y ≤ 0, P′y =

(
0,−y

)
,

P3 = (x3, y3) with x3 ≥ 0, y3 ≤ 0,

P′3 = (−x3, y3), P′′3 = (−x3,−y3), P′′′3 = (x3,−y3).

Moreover, the oval has radii rx, ry and r3, where rx is the
radius of its arcs Cx, C′x, with centers Px, P′x respectively; ry
is the radius of the arcs Cy, C′y, with respective centers Py,
P′y; and r3 is the radius of the arcs C3, C′3, C′′3 , and C′′′3 with
respective centers P3, P′3, P′′3 , and P′′′3 . The curvatures of these
arcs are inverse to their radii, 1

rx
= kx, 1

ry
= ky, 1

r3
= k3.

If ry = r3 then Py = P3 = P′3 and P′y = P′′3 = P′′′3 . This special
case of 8-centered oval O8,b, noted as O4,b, is called 4-centered
oval. The segments AA′, BB′ are called major axis and minor
axis of O8,b, as well as at ellipse.

The oval O8,b has 8 contact points for its 8 arcs: point Tx3 is the
contact between Cx and C3, point Ty3 is the contact between
Cy and C3, points T′′′x3 , T′′′y3 , T′′x3 , T′′y3 , T′x3 , T′y3 are symmetrical
to Tx3, Ty3 with respect to the axes and center point and they
are the contact between C′′′3 , C′′3 , C′3 and the arcs having their
centers on the x-axis and the y-axis, respectively (see Figure
1).

In the case of O4,b, the 8 contact points are reduced to 4, then
Tx3 = Ty3 (we call it Txy ), and similarly: T′′′xy = T′′′x3 = T′′′y3 ,
T′′xy = T′′x3 = T′′y3 , T′xy = T′x3 = T′y3 .

And we use the following notation: θ is the the angle
∠(
−−→
PxA,

−−−−→
PxTx3) in the oval O8,b, Θ is the angle ∠(

−−→
PxA,

−−−−→
PxTxy)

in the oval O4,b, and µ is the distance d(Px,P3) between Px
and P3.

II. AN EIGHT-CENTERED OVAL WHICH IS
QUASI-EQUIVALENT TO THE ELLIPSE

There is no oval O4,b having the same center, axes and vertices
as Eb, and also having the same curvature at the vertices; but
in paper [9] it was shown that:

Theorem 7 There is only one oval Oc−l
8,b sharing the vertices

with Eb, having the same curvature at the vertices, i.e., with
Ec

b(Oc−l
8,b ) = 0 in equation (5), and also the same perimeter length.

For Oc−l
8,b the analytical expressions for the circle centers Px = (x, 0),

Py =
(
0, y

)
, and for circle center P3 x = 1 − b2, y = b − 1

b and
P3 =

(
x − µ cosθ,−µ sinθ

)
with µ given in equation (6) and θ is

the zero of the function Hc−l
b given in equation (1) with equations

(2), (3) and (4).

Hc−l
b (θ) = L − π (1 + b)

n=∞∑
n=0

( √
π

n!(1−2n)Γ( 1
2−n)

(
1−b
1+b

)n
)2
, (1)

L = 4b2θ + 4
bθy + 4

(
b2 + µ

) (
π
2 − θ − θy

)
, (2)

θy = arctan
λ(1−b2

−µ cosθ)
−λy−λµ sinθ , (3)

λ = 1 +
µ+b2√

y2+µ2+(1−b2)2+2µ(y sinθ−(1−b2) cosθ)
, (4)

Γ(α) =

∞∫
0

tα−1e−tdt

The quadratic error Ec
b(O8,b) between the curvatures kA(Eb),

kB(Eb) of the ellipse Eb at the vertices A, B and the curvatures
kA(O8,b), kB(O8,b) of an oval O8,b at the vertices A, B, is

Ec
b(O8,b) =

(
kA(Eb) − kA(O8,b)

)2 +
(
kB(Eb) − kB(O8,b)

)2 , (5)
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The oval Oc−l
8,b has center point P3(θ) with P3(θ) =(

x − µ cosθ,−µ sinθ
)
,

µ = 1
2

b(b−1)
b2 cosθ−b2+b sinθ+b cosθ−b+sinθ−1 . (6)

The oval Oc−l
8,b has the following contact points, see Figure 1:

Tx3 =
(
1 − b2 + b2 cosθ, b2 sinθ

)
, (7)

Ty3 =
(
λ
(
1 − b2

− µ cosθ
)
, y − λy − λµ sinθ

)
. (8)

Remark 9 of [9]. We point out that there is no 8-centered oval
O8,b having the same vertices, the same surface area and the
same perimeter length as the ellipse Eb.

A rigorous definition of the deformation error between the
ellipse and the oval is the following: For each point p ∈ Eb let
qp ∈ O8,b be the point, which is closest to p among all points of
intersection between O8,b and the straight line perpendicular
to the ellipse at p. The maximum value of the distance d(p, qp),
when p moves along the ellipse Eb, is called the deformation
error E(Eb,O8,b) between the two curves.
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Figure 2. Graph of A(OEb ) −A(Eb) = ∆Ab.
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Figure 3. Graph of A(OEb ) −A(Eb) = ∆Ab.

In [9] it was calculated, by making a software using the above
equations (1) to (6), the deformation error E(Eb,Oc−l

8,b ) = Eb for
all values of parameter b, and we have shown it in the graph
of Figure 2.

Furthermore, in [9] it was calculated the differenceA(Oc−l
8,b )−

A(Eb) = ∆Ab of their surface areas, and we have shown it,
for all values of parameter b, in the graph of Figure 3. And
it was proved that the eight-centered oval Oc−l

8,b has not only
the same vertices, perimeter length, curvature and curvature
at the vertices as Eb, but also only a small difference of the
surface areas and a small deformation error. This qualifies to
the oval Oc−l

8,b “quasi-equivalent” to the ellipse Eb, in short, we
will call it OEb .

III. EIGHT-CENTERED OVAL QUASI-EQUIVA- LENT TO
THE KEPLER’S ELLIPSE OF PLANETS’ TRAJECTORY

Applying the above formulae to the ellipse of the planets’
trajectory, we have the following results:

Table 2. Calculations for OEb of planets’ trajectory.

Mercury Venus Earth Mars
ε 0.205600 0.006700 0.016700 0.093500
b 0.978636 0.999978 0.999861 0.995619
θ 0.451296 0.445567 0.445597 0.446742
Eb 0.000290 0.000002 0.000002 0.000059

∆Ab 0.000008 0.000000 0.000000 0.000001
Jupiter Saturn Uranus Neptune

ε 0.048900 0.056500 0.045700 0.011300
b 0.998804 0.998403 0.998955 0.999936
θ 0.445878 0.445984 0.445838 0.445579
Eb 0.000017 0.000021 0.000013 0.000002

∆Ab 0.000000 0.000000 0.000000 0.000000

All the geometric elements of OEb are determined by
eccentricity ε of Table 2 and the formulae of Section 3.

For example, for Mars we have:

b ' 0.995619, θ ' 0.446724, Px ' (0.008742, 0),

Py ' (0,−0.008781), P3 ' (0.002833 ,−0.002 831),

Tx3 ' (0.902 725, 0.428 237 ), Ty3 ' (0.431 808 , 0.898 061 ).

The calculation steps for this example are as follows:

With equation of eccentricity

ε = 0.093500 with a = 1⇒ 1 ' b2 + 0.0935002
⇒

⇒ b ' 0.995619.

With Theorem 7 of [9] in Section 3 of this paper

Px =
(
1 − b2, 0

)
'

(
1 − 0.995 619 2, 0

)
' (0.008 742 , 0),

Py =
(
0, b − 1

b

)
'

(
0, 0.995 619 − 1

0.995 619

)
'

' (0,−0.008 781), y = −0.008 781.

With equation (1)

ξ = π (1 + b)
n=∞∑
n=0

( √
π

n!(1−2n)Γ( 1
2−n)

(
1−b
1+b

)n
)2
'

' π (1 + 0.995619)
n=∞∑
n=0

( √
π

n!(1−2n)Γ( 1
2−n)

(
1−0.995619
1+0.995619

)n
)2

,

then ξ ' 6.269430.

Now, using an iterative numerical method we calculate the
implicit value θ such that:

with equation (6)

µ = 1
2

b(b−1)
b2 cosθ−b2+b sinθ+b cosθ−b+sinθ−1 ;

and with equation (4)

λ = 1 +
µ+b2√

y2+µ2+(1−b2)2+2µ(y sinθ−(1−b2) cosθ)
;
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and with equation (3)

θy = arctan
λ(1−b2

−µ cosθ)
−λy−λµ sinθ ;

and with equation (2) we have that

L = 4b2θ + 4
bθy + 4

(
b2 + µ

) (
π
2 − θ − θy

)
' 6.269430.

So, we find, with an iterative numerical method, that θ '
0.446724 and also µ ' 0.006552, λ ' 152.405404 , θy '

0.444 399.

We think it could be a good exercise for physics
undergraduate students to make a software of a numerical
method to reproduce the calculations.

Finally, with Theorem 7 of [9] in Section 3 of this paper

P3 =
(
x − µ cosθ,−µ sinθ

)
' (0.002833 − 0.002 831);

with equation (7)

Tx3 =
(
1 − b2 + b2 cosθ, b2 sinθ

)
' (0.902 725, 0.428 237 );

and with equation (8)

Ty3 =
(
λ
(
1 − b2

− µ cosθ
)
, y − λy − λµ sinθ

)
'

' (0.431 808 0.898 061 ).

Table 2 shows that the maximum difference –deformation
error– E(O,Eb) between the positions given by the
circumference O and the Kepler’s ellipse Eb –Table 1–
is greater than the maximum difference –deformation
error– E(Eb,OEb ) between the positions given by the
quasi-equivalent oval OEb and the Kepler’s ellipse Eb. Also
the deformation error E(Eb,Cb) between the positions given
by the Cassinian ovalCb and the Kepler’s ellipse Eb –Table 1–
is greater than the deformation error E(Eb,OEb ). For Mercury
and Mars, with greater eccentricity, this maximum difference
–deformation error E(Eb,OEb )– is two order of magnitude
lower than in the case of circumferenceO and Cassinian oval
Cb; and for the rest of planets’ deformation error E(Eb,OEb ) is
one or two order of magnitude lower.

Moreover Table 2 shows that difference A(OEb ) − A(Eb)
of their surface areas: for Mercury and Mars are barely
distinguishable; and for the rest of planets are practically
negligible.

Table 1 -Morgado and Soares [13]- shows that, for Mars,
Cassini’s oval is barely distinguishable from Kepler’s ellipse
(deformation error 0.004400), but it is distinguishable near
to the minor semi-axis for Mercury with high eccentricity
(deformation error 0.021841). Figure 2 of [13] shows visually
this deformation error for Mercury. However, Table 2 shows
that, even for Mercury, a figure can not display visually
the deformation error between Kepler’s ellipse Eb and the
quasi-equivalent oval OEb (deformation error for Mercury is
0.000290).

IV. CONCLUSION

With the results of this paper, we have an approximation
of the Kepler’s ellipse of the planets’ trajectory by circular
arcs, which is quasi-equivalent, that is: we have presented the
approximation of the Kepler’s ellipseEb by the eight-centered
oval OEb having the same center, axes, vertices, perimeter
length and curvature at the vertices as Eb, and also having
practically negligible difference with respect to the surface
area Eb, and showing barely indistinguishable deformation
error in relation to Eb.

Then the oval OEb and the corresponding ellipse Eb are
numerically barely distinguishable. Therefore, we think it
could be a good exercise for undergraduate level physics
to discuss these ovals as quasi-equivalent curves related
to the Kepler’s ellipse of planets’ trajectory because the
results show that it is not enough to consider only numerical
measures to decide which are the actual laws governing the
planetary movement. This paper discusses differences and
similarities among ovals and ellipses by solving a set of
algebraic equations, we think it could be a good exercise
for physics undergraduate students to make a software of a
numerical method to reproduce the calculations. We think
this discussion could be interesting to the readers because it
is well known that before to decide by the ellipse as the best
curve to describe planet’s orbit, Kepler tried to fit different
ovals to the Tycho Brahe’s astronomical data.
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