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Simplified mathematical model for calculating the
oxygen excess ratio of a PEM fuel cell system in

real-time applications

Abstract—The oxygen starvation phenomenon is a dangerous
operating condition that reduces the lifetime of PEM fuel cells.
The detection and prevention of this undesired phenomenon
requires estimation of the oxygen excess ratioλO2

. The mathe-
matical complexities of the reported methods for obtainingλO2

complicate its real-time calculation and require high-performance
computational devices, which significantly increase the costs of
the system. In this paper, a mutual information approach is used
for obtaining a simplified mathematical model for the calculation
of λO2

. The usage of such a simplified model requires much less
computational power for real-time monitoring of the variable
λO2

, while it provides comparable results to those obtained
by using the complex model. Therefore it represents a cost-
effective solution, suitable for usage within applications that
require high sampling frequencies, like emulators, converter and
air compressor control loops, simulations, etc. In order to validate
the accuracy of this simplified λO2

calculation model, a real-
time monitoring system was built and experimentally tested using
both, the simplified and the complex model. The matching exper-
imental results validate the proposed simplification and justify
the use of this simplified model within real-time monitoring
applications.

Index Terms—Fuel cell, oxygen starvation, mutual information,
real-time system.

NOMENCLATURE

λO2
Oxygen excess ratio [-].

WO2,ca,react Oxygen flow rate [Kg/s].
WO2,ca,in The mass flow rate of oxygen entering the

cathode [Kg/s].
xO2,ca,in Oxygen mass fraction [].
yO2,ca,in Oxygen mole fraction entering the cathode,

0.21 [-].
Ma,ca,in Molar mass of the dry air at the cathode inlet

[].
Wa,ca,in Mass flow rate of dry air entering the cath-

ode [].
Wca,in Inlet air flow rate [Kg/s].
Mam Inlet air molar mass [].
Wcp Total mass flow rate provided by the com-

pressor [].
xv Water-vapor fraction [].
psat Saturation pressure [].
T Stack temperature [K].
ωca,in Humidity ratio [].
pca,in inlet pressure at the cathode [].
MO2

Oxygen molar mass,32 × 10−3 [kg/mol].
n Number of cells of the fuel cell stack,46

[-].
F Faraday constant,96.487 [kC/mol].
MN2

Nitrogen molar mass,28 × 10−3 [kg/mol].

Mv Vapor molar mass,18.02 × 10−3 [kg/mol].
φca,in Inlet air relative humidity in the cathode,1

[-].

I. I NTRODUCTION

Power systems based on proton-exchange membrane fuel
cell (PEMFC) technology have been the object of increasing
attention and extensive research over recent years. PEMFCs,
used as either main or auxiliary power sources, display a
lot of potential for usages within both stationary and mo-
bile applications. This is due to their high-efficiency, high-
power density, fast start-up, low corrosion rate, low operating
temperatures, solid electrolytes, non-polluting emissions into
the environment, and longer cell as well as stack lifetimes
in comparison with other kinds of fuel cells [1]–[3]. On
the other hand, the relatively short lifespans of fuel cells
represent a significant barrier for their commercialization in
both stationary and mobile applications [4]–[6]. Therefore,
a significant part of research about fuel cells focuses on
prolonging their operational lives.

A phenomenon that may occur during load transients and re-
duce the lifetime of a fuel cell is known as “oxygen starvation”
[3]. Four different approaches to studying this phenomenon
can be found in the literature. The first approach is based on
the development of mathematical models for studying oxygen
starvation [7], [8]. These models estimate the oxygen excess
ratio λO2

, which is the ratio between the oxygen supplied
to the cathode channel and the oxygen consumed by the
electrochemical reaction in the fuel cell. The main drawback
of these models is their mathematical complexity that makes
them unsuitable for real-time implementations within low-cost
processors. The second approach uses mathematical oxygen
excess ratio models, obtained using the first approach, for the
development of realtimeemulationsystems [9], [10]. The main
disadvantage of these simulation systems withλO2

estimation
is their high economic cost. Further, these systems cannot be
used within mobile applications because of their large sizes
and weights. The third approach focuses on the air flow rate
control as a way of preventing oxygen starvation [11]–[13].
Different control strategies for controlling the air compressor,
like feed-forward control [7], [14], LQR [7], linear quadratic
Gaussian (LQG) control [15], and model predictive control
(MPC) [16], were proposed and tested using simulation. For
experimental validation, it is necessary to use a control-
oriented model that reduces the mathematical complexitiesof
the simulation models. Hence, different MPCs were studied
and developed in [17]–[20]. The main drawback of all MPC
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strategies is that they control the air compressor, the response
of which may be much slower than the variations in the current
load. Thus, it is impossible to avoid peaks in the oxygen excess
ratio after load transients, which can lead to the appearance
of oxygen starvation phenomena.One possible solution for
these peaks within the oxygen excess ratio is to replace the
conventional fuel cell air compressor for a switched reluctance
motor that improve the time response and it is widely-used in
high-speed applications [21]. Oxygen starvation can also be
avoided by using batteries, ultracapacitors or other auxiliary
power sources for supporting the operation of the FC, and
thus ensure a fast response to any load power transient. The
systems formed by a FC and another auxiliary power source,
known as FC hybrid systems, have been a topic of extensive
research over recent years [22]–[25]. These hybrid systems
can limit the slope of the current or the power generated by
the FC by using current-controlled dc-dc converters. Thus,the
oxygen starvation phenomenon can be avoided and the system
can operate with higher efficiency [26]–[29].However, this
methodology is not appropriate since it is a very conservative
strategy that penalizes the size of the auxiliary energy storage
elements.

Based on the aforementioned facts, the fourth approach for
studying and avoiding the occurrence of oxygen starvation
is related to the design of power converters. Although there
are several converters that are designed exclusively for use
within fuel cell applications [30]–[39], there are only a few
applications in which theλO2

calculation is included within
the converter’s control or utilized for adjusting the converter’s
controller [10], [29]. This is due to the high complexities of the
models used for estimatingλO2

, which makes it impossible to
calculate the instantaneous value ofλO2

at a frequency near
to the converter’s switching frequency.

All the above-described methods may perform well in prac-
tice and thus serve their intentions, but they have a common
drawback, which is the high complexity of the models for
calculating the oxygen excess ratio. Complex models represent
a serious obstacle to a wider usage of these methods in
practice, since high-performance and consequently high-cost
devices are needed for their implementation. While simplicity
of the model is crucial for real-time implementation in a low-
cost processor, the accuracy of the model is also important for
the performance quality and the protection of the fuel cell.It
can be inferred that both, the simplicity and the accuracy of
the models, play important roles in the commercialization of
oxygen starvation protectiontools. Therefore, the aim of this
work was to simplify these models for estimatingλO2

, but not
at the expense of degrading accuracy and performance.

A reduction in the order of aλO2
estimation model was

achieved by using the mutual information (MI) approach. This
methodology has been described and successfully applied for
selection of variables from the initial set in spectrometric
nonlinear modeling [40]. Thus, a new simplified mathematical
model has been created for the calculation ofλO2

with
comparable performance and accuracy to the original one. The
proposed simplified model can be easily implemented within
emulators, converter control loops, air compressor control
loops or simulations.

The remainder of this paper is organized as follows: Section
II describes a conventional method for estimating the oxygen
excess ratio, Section III presents a detailed description of
the experimentally tested fuel cell system, and Section IV
describes the proposed simplified model for estimating the
oxygen excess ratio, obtained by using the MI method. Finally,
the last two sections present the experimental results and
conclusions of this work, respectively.

II. STANDARD OXYGEN EXCESS RATIO ESTIMATION

The ratio of air flow through the compressor to the cathode
and the air required by the fuel cell achieving the reaction

O2 + 4H+ + 4e− → 2H2O. (1)

in accordance with the demand of the load current, is
normally expressed by the oxygen excess ratioλO2

[3], [8],
that is

λO2
=

WO2,ca,in

WO2,ca,react

. (2)

In order to avoid the oxygen starvation phenomenon, the
oxygen excess ratio must be greater than 1 (λO2

≥ 1) [3],
[8]. The oxygen flow rate during the fuel cell reaction is
proportional to the stack currentIst, and can be calculated
using electrochemical principles as

WO2,ca,react = MO2

n · Ist

4F
. (3)

The mass flow rate of oxygen entering the cathodeWO2,in,
presented in (2), can be calculated by

WO2,ca,in = xO2,ca,in · Wa,ca,in, (4)

where xO2,ca,in is the oxygen mass fraction, which is a
function of the oxygen mole fractionyO2,ca,in. The oxygen
mass fraction is expressed as

xO2,ca,in =
yO2,ca,in · MO2

Ma,ca,in

, (5)

whereMa,ca,in is the molar mass of the dry air at the cathode
inlet, which can be calculated as

Ma,ca,in = yO2,ca,in · MO2
+ (1 − yO2,ca,in) · MN2

. (6)

The mass flow rate of dry air entering the cathodeWa,ca,in,
presented in (4), is calculated as

Wa,ca,in =
1

1 + ωca,in

· Wca,in, (7)

where the inlet air flow rateWca,in supplied by the compres-
sor, in kilograms per second, can be calculated from

Wca,in =
Wcp

22.4 × 60
· Mam, (8)
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where Mam is the inlet air molar mass andWcp is the
total mass flow rate provided by the compressor. In (8),Wcp

is converted from the SLPM value obtained from the air
compressor sensor, to kilograms per second as required in (7).
The inlet air molar massMam used in (8) can be calculated
as

Mam = (1 − xv) · Ma,ca,in + xv · Mv, (9)

where the water-vapor fractionxv in the inlet air can be
expressed as [8]

xv =
φca,in · psat

1 − φca,in · psat

. (10)

The saturation pressurepsat depends on the stack tem-
perature T , expressed in Kelvin and is obtained from a
thermodynamic table of vapor [7] as

log10(psat) = (−1.69 × 10−10) · T 4 + (3.85 × 10−7) · T 3

+(−3.39 × 10−4) · T 2 + 0.143 · T − 20.92. (11)

Returning to equation (7), it is necessary to define the
humidity ratio, which can be expressed as

ωca,in =
Mv

Ma,ca,in

·
φca,in · psat

pca,in − φca,in · psat

, (12)

wherepca,in is the inlet pressure at the cathode. This variable
is very difficult to measure due to the closed construction
of the fuel cell system. Therefore, a simplified model of the
cathode inlet pressure, identified by simulation, was proposed
in [17] as follows

pca,in ≈ 1.0033 + 2.1 × 10−3 · Wcp − 475.7 × 10−6 · Ist. (13)

For the calculation ofλO2
, it is necessary to acquire the

fuel cell temperatureT , the total mass flow rate provided by
the compressorWcp, and the stack currentIst. In most past
studies about the oxygen excess ratio, the fuel cell temperature
T was assumed to be constant at a value equal to the ambient
temperature [17]–[20], while some other works proposed a
complex thermal model that is difficult to implement within a
real-time application [8]. The stack currentIst is calculated by
summing the measured current through the loadIload and the
estimated value of the fuel cell’s auxiliary equipment current
Iaux [8], [17]. The next section presents the way in which the
variables (T , Ist, Wcp) necessary for the calculation ofλO2

,
were sensed and characterized.

III. F UEL CELL SYSTEM DESCRIPTION

This work was performed using the Nexa PEMFC from
Ballard. Presently, this fuel cell remains a world benchmark
since it has been widely used by different research groups and
represents the state of the art in terms of PEM technology
[17]. However, the results presented in this paper can be
extended to other types of PEM fuel cells. The Nexa fuel
cell is a fully integrated system that produces unregulated

DC power, up to 1.2 kW, from a supply of hydrogen and
air. The Nexa power module comes with LabVIEW software,
which provides a graphical user interface to the Nexa mod-
ules operational status and performance [41]. This software
monitors the key process parameters of the fuel cell and can
generate a data-logging file with the following parameters:
stack temperature, stack voltage, stack current, fuel pressure,
fuel leak, fuel consumption, oxygen concentration, ambient
air temperature, purge cell voltage, battery voltage (usedto
start the power module), process air flow, air pump operating
voltage, hydrogen concentration bridge voltage, process air
pump duty-cycle, and cooling air fan duty-cycle. A serial
port is used to communicate the mentioned variables from
the fuel cell to the LabVIEW software using the RS-232
communication standard, hence its high sampling time of
200 ms. However, the data that is monitored by the FC
software can not be acquired in real-time for characterizing
the sensors required (T , Ist, Wcp) for the calculation of
λO2

. Therefore, it was necessary to develop a LabVIEW
program for reading the measurements in real-time from the
serial port and tocomparethem with the measurements from
the sensors using an acquisition card PCI6024E of National
Instruments. Through this program and the measured values
obtained from the already installed sensors within the Nexa
FC, it was possible to characterize the mass flow rateWcp and
temperature sensorT of the fuel cell, as shown in Figs. 1 and
2. The relation between the compressor total mass flow rate
Wcp and the voltage of the sensorVwcp is presented in (14). In
the same way, the relation between the fuel cell temperatureT

and the voltage of the sensorVT is given in (15). Both sensor
characteristics were identified using the MATLAB curve fitting
toolbox.
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Fig. 1. Static characteristic that presents a nonlinear behaviourbetween
the total mass flow rate provided by the compressorWcp and the sensor
measurements presented by black plus. The identified characteristic curve that
corresponds to (14) is presented by a white solid line.

Wcp = 1.551 · V 3
wcp + 2.632 · V 2

wcp + 1.452 · Vwcp (14)

T = 6.222 · V 3
T − 53.16 · V 2

T + 169.5 · VT − 161.9 (15)
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Fig. 2. Static characteristic that presents a nonlinear behaviourbetween the
fuel cell temperature and the sensor measurement presented by black plus.
The white solid line is the identified characteristic curve that corresponds to
(15).

The remaining variable for calculatingλO2 is the current
generated by the FC stackIst, which is used for feeding the
auxiliary equipment necessary for the correct operation ofthe
FC and the load connected to the FC. It can be defined as

Ist = Iaux + Iload, (16)

whereIaux is the current that feeds the auxiliary equipment,
and Iload the load current. In order to determine the stack
currentIst on the basis of (16), current sensors were installed
at the load connection point and within the auxiliary equipment
of the FC system. The use of these sensors reduces the
complexity of the mathematical model, since the estimation
of Iaux is avoided [8], [17].

IV. SIMPLIFIED OXYGEN EXCESS RATIO ESTIMATION

A. Mutual Information Estimation using K-nearest neighbors

In this paper, mutual information is used as a criterion
for selecting the most relevant variables for the prediction of
λO2 behavior. Given a multiple input single output (MISO)
function approximation problem, with input variablesX =
[x1, x2, . . . , xn] and output variableY = y, the main goal of
MI is to measure the dependence between random variables.
In the actual case, the input variables are the key process
parameters of the fuel cell, monitored by Nexa software,
and the output variable is the standard oxygen excess ratio
estimation using (2). The mutual information between two
continuous random variablesX andY is defined as

I(X,Y ) =

∫

pX,Y (x, y) log
pX,Y (x, y)

pX(x)pY (y)
dxdy (17)

wherepX,Y (x, y) is a joint density function, andpX(x) and
pY (y) are the marginal density functions, respectively.

Estimation of the mutual information from equation (17)
requires prior estimation ofpX,Y (x, y). Several approaches
have been proposed for the estimation ofpX,Y (x, y), such

as histograms and kernel density estimation [42]. They both
suffer from the curse of dimensionality [40]. For this reason,
a k-NN based density estimation is used. Thek-NN approach
uses a fixed numberk of nearest neighbors to estimate the MI.
In practice, one has at one’s disposal a set ofN input-output
pairs which form the points within the data set. The minimum
volume that encompassesk points is determined for each point
within the data set. The MI can be estimated by counting the
number of points inside this volume in the marginal spaces
[43]. The mutual information is estimated as

Î(X,Y ) = ψ(k)−
1

k
−

1

N

N
∑

i=1

[

ψ(ni
x) + ψ(ni

y)
]

+ψ(N) (18)

whereni
x and ni

y are the neighbors of thei-th data point in
the x and y dimensions, respectively, andψ is the digamma
function given by

ψ(t) =
Γ′(t)

Γ(t)
=

d

dt
lnΓ(t) (19)

with

Γ(t) =

∫

∞

0

ut−1e−udu. (20)

The quality of the estimator̂I(X,Y ) is related to the chosen
value fork. A value ofk = 6 is set as suggested in [44].

B. Variable selection

The estimator̂I(X,Y ), defined in (18), is used to select a
subset of variables, which contribute to predicting the output
Y , from input variablesXj with j = 1, . . . ,M . As any subset
of the input variables can be selected, the optimal algorithm
would be to calculate MI for every possible subset and to
select the subset with the highest MI.

1) Selection of the first variable:The first variable to be
chosen from the setXj is the one that maximizes the mutual
information withY :

Xs1 = argmax
Xj

{

Î(Xj , Y )
}

, 1 ≤ j ≤ M,

whereXs1 denotes the first selected variable. Using the same
notation as before, subsequently selected variables will be
denotedXs2, Xs3,..., XsM .

C. Forward selection

Forward selection is the procedure for selecting the next
variables. When selecting the second variable it has to be taken
into account that variableXs1 has already been selected. Thus,
Xs2 is the one that maximizes the mutual information between
the set{Xs1,Xs2} and the output variableY :

Xs2 = argmax
Xj

{

Î ({Xs1,Xj} , Y )
}

, 1 ≤ j ≤ M, j 6= s1

In this sense, thet-th selected variableXst will be chosen
according to

Xst = argmax
Xj

{

Î(
{

Xs1,Xs2, . . . ,Xs(t−1),Xj

}

, Y )
}

,

1 ≤ j ≤ M, j 6= {s1, s2, . . . , s(t − 1)}
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D. Stopping criterion

The forward selection procedure is considered as a ranking
algorithm, since the selected variables are ordered according to
their mutual information with the output [40]. This procedure
is stopped in those cases where MI decreases after a forward
step. For the example

Î
({

Xs1, . . . ,Xs(t)

}

, Y
)

> Î
({

Xs1, . . . ,Xs(t+1)

}

, Y
)

the procedure is stopped at stept.
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Fig. 3. Experimental profiles of the variables required for the model’s
validation: (a) stack currentIst, (b) fuel cell temperatureTst, (c) total mass
flow rateWcp.

E. Input variable selection for̂λO2 calculation

The MI estimation was applied to the fuel cell’s experi-
mental measurement data, in order to determine which of the
Nexa FC sensors have greater influence on the value of the
oxygen excess ratio variable. An experiment had to be carried
out in order to acquire the required measurement data from all
the installed Nexa FC’s sensors. During that experiment, the
FC had to operate at various operational points with severe
transients between them. In order to achieve such testing
conditions, the FC current profile shown in Fig. 3(a) was
generated using an electronic load. The information from all
the FC’s sensors, described in Section III, was monitored and
stored by the Nexa software each200 ms. The data acquired
from the sensors was used to form the variableX, which
represented the multiple input variable for the MI estimation.
The recorded values of the sensors forT , Ist, and Wcp, as
shown in Fig. 3, were used for calculating the oxygen excess
ratio λO2

, which was calculated according to the standard
procedure, as presented in Section II. The calculated values
of λO2

were then used to form the single output variableY

for the MI estimation procedure. Finally, the MI estimation
was carried out on variablesX andY . The results are shown
in Table II, where the observed variables are sorted according
to their influence on the behavior of the oxygen excess ratio
from the most to the least relevant.

TABLE I
VARIABLES’ RANKINGS FORλO2 .

Rank 1 2
Variable Wcp Ist

Table IV-E shows that the most relevant variables are
Wcp and Ist. Wcp and Ist are related to the numerator and
denominator of (2), respectively. In order to avoid a non-linear
regression model, linear dependence was tested between the
variablesWO2,ca,in and Wcp, andWO2,ca,react and Ist. The
linear dependence test results are given in Figs. 4 and 5. Both
figures present a high correlation between the observed data,
indicating a linear relation between the variables.
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Fig. 4. Linear regression betweenWO2,ca,in andWcp.
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Fig. 5. Linear regression betweenWO2,ca,react andIst.

From the linear regressions shown in Figs. 4 and 5, the
following relations were obtained

WO2,ca,in ≈ 4.98 × 10−6 kg

s · SLPM
· Wcp, (21)

WO2,ca,react ≈ 3.81 × 10−6 kg

s · A
· Ist. (22)

Another way to obtain the equations (21) and (22) is through
a knowledge of the classical model presented in Section II and
the performing modeling approaches. Therefore,WO2,ca,react

is calculated by substituting the numeric values ofMO2
, n and

F in (3), which yields (22). On the other hand, the numerator
term, WO2,ca,in given in (4), is obtained by applying (5) and
(6) and taking into account that the air to the cathode is
humidified, therefore the humidity ratio is equal to zero. After
substituting the numeric values the expression (21) is obtained.
However, the goal of the MI estimation was to determine
which of the 15 FC variables have greater influence on the
λO2 calculation and it was an independent estimation of the
of the classical model presented in Section II. Hence, it was
presented an alternative way to obtain the equations (21) and
(22) without prior knowledge of the classical model.

From (21) and (22),λO2 could be approximated by

λ̂O2 ≈ 1.31
A

SLPM
×

Wcp

Ist

, (23)

whereλ̂O2 is the approximated oxygen excess ratio that could
be obtained from a simplified model.

The most significant advantage of the simplified model is
that it is represented by one simple equation (23), while the
complex model consists of a set of equations, as presented
in Section II. It must also be noted that calculatingλ̂O2

using the simplified model (23) does not require information
about the FC temperature. This is another advantage over
the standard calculation method, presented in Section II.
Although it is well known that the FC temperatureT is a
slow dynamic variable in comparison with the total mass flow
rate provided by the compressorWcp and the stack current

Ist. However, it was performance a long duration experiments
that obtained large-signal FC temperatureT variations in all
the operation range as shown in Fig. 3(b). So it was not
obvious to make a temperature model simplification of the
classic methodology to obtain the final result presented in (23).
This was hence one of the most significant contributions of
the MI estimation. The proposed simplified model represents
a significant mathematical simplification of the standard model
for calculating the oxygen excess ratio. Its use can significantly
speed-up simulations and it can be implemented within the
low-cost processors used in various real-time applications, like
monitoring, converter control, and air compressor control.

Finally, a comparison betweenλO2, obtained from the
complex model and̂λO2, obtained from the simplified model,
is presented in Fig. 6. The test was performed at the current
profile shown in Fig. 3(a). A mean square error value of0.0259
indicated that the results obtained by the simplified model with
the sampling time of 200 ms, adequately matched the results
obtained from using the complex model.

V. EXPERIMENTAL RESULTS

The previous section showed that the simplified model for
calculating λ̂O2 is a good approximation for the standard
estimation ofλO2 at the maximum sampling time of200
ms that can be achieved by the Nexa monitoring software.
In the next step, the validity of the proposed model had to
be proven for smaller sampling times. This could only be
achieved by acquiring the instantaneous values of key variables
directly from the fuel cell, due to the200 ms sampling time
limitation imposed by the serial communication. In order to
achieve sampling times below200 ms and thus overcome the
limitations of the Nexa monitoring software, a low-cost real-
time oxygen excess ratio monitoring system was designed and
built. This monitoring device is shown in Fig. 7, while its
block diagram and connection scheme with the FC system
and the load are illustrated in Fig. 8. The device in Fig. 7
represents the first real-time oxygen excess ratio monitoring
system designed exclusively for FC applications that can be
found within scientific literature or commercial applications.
The main advantages and features of the developed system
are: the use of a low-cost dsPIC microcontroller that enables
real-time calculations, a keypad that allows full system con-
figuration and adaptation to various types of FCs, oxygen
starvation indication, visualization of the main variables within
the LCD display, data storage within an external USB memory,
an analog output signal port for observing signals with an
oscilloscope or using them as feedback for control, additional
channels for future applications (digital input/output channels,
analog output channels and PWM output channels), no need
for external power supply and low power consumption.In
addition, other advantage of the real-time oxygen excess
ratio monitoring system is its low cost which represents a
0.5% of the Nexa fuel cell price according with [45]. The
discussed monitoring device can be used in both static and
mobile applications, since it is compact, lightweight, andeasily
portable.

The real-time oxygen excess ratio monitoring system is
programmed to perform the calculation ofλO2 using (2) and
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Fig. 6. Comparison betweenλO2 calculated using (2) and̂λO2 approximated by means of (23), by the experimental profile presented in Fig. 3.

Fig. 7. Real-time oxygen excess ratio monitoring system: (a) on-off switch,
(b) oxygen starvation alarm (c) input signals (T and Wcp) (d) USB data
storage, (e)Ist connector, (f)Iaux connector, (g)Iload connector, (h) output
signals connector in a range of 0 to 4 V (Iload, Ist, Iaux, Vst, T , Wcp,
λO2

) and +5 V and ground to supply external circuits, (i) keypad for user
interaction, (j) LCD displays the main variables (λO2

, Vst, Ist andT ).

λ̂O2 using (23) every 1 ms. This represents a 200 times
reduction of the smallest sampling time that can be achieved
by the Nexa software. The 1 ms sampling time of the proposed
real-time oxygen excess ratio monitoring system is limited
by the complexity ofλO2 calculation. However, it is possible
to achieve sampling times down to 200µs, in the case of
calculating onlyλ̂O2. Fig. 9 shows the behavior of the oxygen
excess ratio for a 10 A sudden increase of the load current.
It is evident from this figure that the oxygen excess ratio

λ̂O2 obtained by the simplified calculation, matches withλO2

obtained by the standard calculation method. The same can
be concluded for the results shown in Fig.10, which were
recorded for a 10 A abrupt decrease of the load current. Fig.10
also shows that right after the load current decreases, the
oxygen excess ratio rises to values aboveλO2 = λ̂O2 = 8.
These values are out of range for the proposed monitoring
device due to the 4 V output voltage limitation of the used
digital-to-analog converters, but do not affect the oxygen
starvation study, since the aim is detect when the oxygen
excess ration falls under the value of 1. It can be seen from
both figures that the total mass flow rate provided by the
compressorWcp reaches its steady state value in 400 ms for a
load current increase of 10 A and in 600 ms for a load current
decrease of 10 A. In [17], the authors used an acquisition card
with a sampling time of 10 ms for acquiring the measurement
data from the sensor ofWcp. They concluded thatWcp reaches
the steady state in less than 10 ms after an abrupt load change,
which is in contradiction with the experimental results shown
in Figs. 9 and 10.

The aim of the final experiment was to test the monitoring
device at the full computational power of the used microcon-
troller. In order to achieve this, only the simplified mathemat-
ical model for the calculation of̂λO2 was implemented within
the processor. A load current profile that simulates different
operation points and transient states was generated for testing
purposes. The results of the experiment are shown in Fig. 11.
It can be seen from the zoomed-in part of the figure, that a
load current increase of 30 A pushes the fuel cell into the
harmful phenomenon of oxygen starvation. The noise in the
signals in Fig. 11 is due to the auxiliary systems of the fuel
cell, especially the air compressor and the cooling motor. This
was detected and verified by independent measurements of the
connections with auxiliary equipment. Either analog or digital
filters can be used for mitigation of that noise. They have to
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Fig. 8. Real-time oxygen excess ratio monitoring block diagram, which
presents the connections with the fuel cell system and the load.

be designed according to the requirements of the application
for which the monitoring system is used. The design of
such filters exceeds the framework of this research. However,
the most important feature of the proposed oxygen excess
ratio estimation system is that it ensures high computational
power, which is crucial for successful integration and good
performance of the device within various fuel cell applications.

VI. CONCLUSION

A simplified mathematical model for calculating the oxygen
excess ratio of a PEM fuel cell was obtained by using the
mutual information approach. The proposed simplified model
exhibited the same behavior as the complex model during
experiments made using a purpose-built real-time monitoring
system connected to the Nexa PEM fuel cell. The main
advantage of the new model is in providing much faster calcu-
lation of the oxygen excess ratio, while achieving analogous
results, in comparison with the conventional complex model.
Experimental tests using a dsPIC30F6010 processor showed
that the classical model was able to calculate a newλO2

value

CH 1: Iload

CH 3: λ̂O2

CH 2: λO2

CH 4: Wcp

10 A

6 A

16 A

400 ms

26 SLPM

51 SLPM

λO2 = 1.6

Fig. 9. Oxygen excess ratio behavior for a load current increase of 10 A.
Iload (5 A/div), λO2 (2/div), λ̂O2 (2/div) andWcp (31.86 SLPM/div).

CH 1: Iload

CH 3: λ̂O2

CH 2: λO2

CH 4: Wcp

10 A

6 A

16 A λO2 = 8

600 ms

51 SLPM

26 SLPM

Fig. 10. Oxygen excess ratio behavior for a load current decrease of 10 A.
Iload (5 A/div), λO2 (2/div), λ̂O2 (2/div) andWcp (31.86 SLPM/div).

each 1 ms, while the simplified model returned a new value
every 200µs. SinceλO2

is a good indicator of the harmful
oxygen starvation phenomenon, the duration of its computa-
tion cycle and the accuracy of the result represent determinant
factors for those processes used for the protection and life-
time extension of PEM fuel cells. One application, where the
use of a simplified model can be proven as beneficial, are
simulations on the system level, the total simulation time of
which can be significantly reduced when using the proposed
simplified model. In practical applications, the advantageof
the simplified model is mainly in the possibility of imple-
menting it within a low cost processor and integrating the
oxygen excess ratio monitoring system into the control of a
switching power converter, in order to limit the fuel cell’s
output current, and thus prevent any occurrence of the oxygen
starvation phenomenon.
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Fig. 11. Oxygen excess ratio behavior for a load profile with step-like transitions.Iload (10 A/div), Vst (10 V/div), λ̂O2 (2/div) andWcp (31.86 SLPM/div).
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