A major operational task in city logistics is related to waste collection. Due to large problem sizes and numerous constraints, the optimization of real-life waste collection problems on a daily basis requires the use of metaheuristic solving frameworks to generate near-optimal collection routes in low computation times. This paper presents a simheuristic algorithm for the time-dependent waste collection problem with stochastic travel times. By combining Monte Carlo simulation with a biased randomized iterated local search metaheuristic, time-varying and stochastic travel speeds between different network nodes are accounted for. The algorithm is tested using real instances in a medium-sized city in Spain.
A major operational task in city logistics is related to waste collection. Due to large problem sizes and numerous constraints, the optimization of real-life waste collection problems on a daily basis requires the use of metaheuristic solving frameworks to generate near-optimal collection routes in low computation times. This paper presents a simheuristic algorithm for the time-dependent waste collection problem with stochastic travel times. By combining Monte Carlo simulation with a biased randomized iterated local search metaheuristic, time-varying and stochastic travel speeds between different network nodes are accounted for. The algorithm is tested using real instances in a medium-sized city in Spain.