Repositori institucional URV
Español Català English
TITLE:
A diffusion-based spatio-temporal extension of Gaussian Matérn fields : (invited article with discussion) - RP:5399

Author, as appears in the article.:Rue, Håvard
Krainski, Elias
Bolin, David
Bakka, Haakon
Lindgren, Finn
Journal publication year:2024
Publication Type:info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
Abstract:Gaussian random fields with Matérn covariance functions are popular models in spatial statistics and machine learning. In this work, we develop a spatio-temporal extension of the Gaussian Matérn fields formulated as solutions to a stochastic partial differential equation. The spatially stationary subset of the models have marginal spatial Matérn covariances, and the model also extends to Whittle-Matérn fields on curved manifolds, and to more general non-stationary fields. In addition to the parameters of the spatial dependence (variance, smoothness, and practical correlation range) it additionally has parameters controlling the practical correlation range in time, the smoothness in time, and the type of non-separability of the spatio-temporal covariance. Through the separability parameter, the model also allows for separable covariance functions. We provide a sparse representation based on a finite element approximation, that is well suited for statistical inference and which is implemented in the R-INLA software. The flexibility of the model is illustrated in an application to spatio-temporal modeling of global temperature data.
Keywords:stochastic partial differential equations
Search your record at:

Available files
FileDescriptionFormat
DocumentPrincipalDocumentPrincipalapplication/pdf

Information

© 2011 Universitat Rovira i Virgili