Microstructuration of nonlinear optical materials: methodologies, characterization, and applications
Description:
En esta tesis hemos fabricado micro estructuras uni- y bidimensionales mediante ablación laser ultrarápida sobre monocristales de KTiOPO4 y RbTiOPO4, y mediante ataque químico selectivo sobre monocristales de LiNbO3, para investigar la difracción asociada a las propiedades de óptica no lineal de estos materiales, observando la formación de patrones de difracción asimétricos para el segundo harmónico generado por las muestras al iluminarlas con un láser IR. También hemos explorado una posible aplicación para estas estructuras: pantallas RGBY de fósforos excitados mediante láser. Para ello, hemos incorporado partículas luminiscentes dopadas con iones lantánidos dentro de los poros inscritos sobre KTiOPO4 y RbTiOPO4. De esta forma, las emisiones multicolor, generadas mediante diferentes mecanismos de up-conversion por excitación en el IR, con ventajas respecto a la tecnología actual que utiliza láseres en el UV, pueden ser controladas espacialmente a escala micrométrica One and two dimensional microstructures were fabricated by ultrafast laser ablation on KTiOPO4 and RbTiOPO4, and by selective chemical etching on LiNbO3 single crystals to investigate the diffractive properties associated to the nonlinear optical properties of these materials. Asymmetric diffraction patterns were obtained for the second harmonic generated by the samples after illumination with an IR laser beam. We also explored a possible application for these structures as it is the development of RGBY laser phosphor displays. To do that, we embedded luminescent nanoparticles doped with lanthanide ions, and synthesized by the sol-gel Pechini method, into the micrometer holes inscribed on the surface of KTiOPO4 and RbTiOPO4. In this way, multicolor light emissions can be controlled spatially at the micrometer scale. The RGBY colors were generated by using different up-conversion mechanisms by pumping in the infrared, with several advantages to the current laser phosphor display technology pumped in the UV.