Repositori institucional URV
Belongs to TDX:SerieTesis collection
TITLE:
Effective Approaches for Improving the Efficiency of Deep Convolutional Neural Networks for Image Classification - TDX:4167
Handle:
https://hdl.handle.net/20.500.11797/TDX4167
Date:
2022-11-21
2022-12-15T15:42:16Z
2022-12-15T15:42:16Z
Departament/Institute:
Departament d'Enginyeria Informàtica i Matemàtiques
Universitat Rovira i Virgili.
Director:
Puig Valls, Domènec Savi
Abdelnasser Mohamed Mahmoud, Mohamed
Romaní Also, Santiago
Author:
Schwarz Schuler, Joao Paulo
Title:
Effective Approaches for Improving the Efficiency of Deep Convolutional Neural Networks for Image Classification
Type:
info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/doctoralThesis
Contributor:
Departament d'Enginyeria Informàtica i Matemàtiques
Universitat Rovira i Virgili.
Títol:
Effective Approaches for Improving the Efficiency of Deep Convolutional Neural Networks for Image Classification
Language:
eng
Subject:
62
004
Enginyeria i arquitectura
neural networks
computer vision
deep learning
redes neuronales
visión computacional
aprendizaje profundo
xarxes neuronals
visió computacional
aprenentatge profund
Format:
application/pdf
116 p.
Creator:
Schwarz Schuler, Joao Paulo
Rights:
info:eu-repo/semantics/openAccess
Date:
2022-11-21
2022-12-15T15:42:16Z
2022-12-15T15:42:16Z
Publisher:
Universitat Rovira i Virgili
Subject:
62
004
Enginyeria i arquitectura
neural networks
computer vision
deep learning
redes neuronales
visión computacional
aprendizaje profundo
xarxes neuronals
visió computacional
aprenentatge profund
Language:
eng
Publisher:
Universitat Rovira i Virgili
Source:
TDX (Tesis Doctorals en Xarxa)
Identifier
:
http://hdl.handle.net/10803/687281
Format:
application/pdf
116 p.
Keywords:
neural networks
computer vision
deep learning
redes neuronales
visión computacional
aprendizaje profundo
xarxes neuronals
visió computacional
aprenentatge profund
Search your record at:
Available files
File
Description
Format
Memoria
Memory
application/pdf
View/Open
Show entire record
Go back
All objects of this collection
Information
© 2011 Universitat Rovira i Virgili
Legal
Accessibility
Contact