URV's Author/s: | Domingo Roig, José Luis / Mari Marcos, Montserrat / Marquès Bueno, Montserrat / Nadal Lomas, Martí |
Author, as appears in the article.: | Marques, Montse; Mari, Montse; Audi-Miro, Carme; Sierra, Jordi; Soler, Albert; Nadal, Marti; Domingo, Jose L.; |
Author's mail: | joseluis.domingo@urv.cat marti.nadal@urv.cat montserrat.mari@urv.cat |
Author identifier: | 0000-0001-6647-9470 0000-0002-0217-4827 0000-0001-8971-3856 |
Journal publication year: | 2016 |
Publication Type: | Journal Publications |
ISSN: | 00456535 |
APA: | Marques, Montse; Mari, Montse; Audi-Miro, Carme; Sierra, Jordi; Soler, Albert; Nadal, Marti; Domingo, Jose L.; (2016). Photodegradation of polycyclic aromatic hydrocarbons in soils under a climate change base scenario. Chemosphere, 148(), 495-503. DOI: 10.1016/j.chemosphere.2016.01.069 |
Papper original source: | Chemosphere. 148 (): 495-503 |
Abstract: | The photodegradation of polycyclic aromatic hydrocarbons (PAHs) in two typical Mediterranean soils, either coarse- or fine-textured, was here investigated. Soil samples, spiked with the 16 US EPA priority PAHs, were incubated in a climate chamber at stable conditions of temperature (20 °C) and light (9.6 W m(-2)) for 28 days, simulating a climate change base scenario. PAH concentrations in soils were analyzed throughout the experiment, and correlated with data obtained by means of Microtox(®) ecotoxicity test. Photodegradation was found to be dependent on exposure time, molecular weight of each hydrocarbon, and soil texture. Fine-textured soil was able to enhance sorption, being PAHs more photodegraded than in coarse-textured soil. According to the EC50 values reported by Microtox(®), a higher detoxification was observed in fine-textured soil, being correlated with the outcomes of the analytical study. Significant photodegradation rates were detected for a number of PAHs, namely phenanthrene, anthracene, benzo(a)pyrene, and indeno(123-cd)pyrene. Benzo(a)pyrene, commonly used as an indicator for PAH pollution, was completely removed after 7 days of light exposure. In addition to the PAH chemical analysis and the ecotoxicity tests, a hydrogen isotope analysis of benzo(a)pyrene was also carried out. The degradation of this specific compound was associated to a high enrichment in (2)H, obtaining a maximum ?(2)H isotopic shift of +232‰. This strong isotopic effect observed in benzo(a)pyrene suggests that compound-specific isotope analysis (CSIA) may be a powerful tool to monitor in situ degradation of PAHs. Moreover, hydrogen isotopes of benzo(a)pyrene evidenced a degradation process of unknown origin occurring in the darkness.Copyright © 2016 Elsevier Ltd. All rights reserved. |
Article's DOI: | 10.1016/j.chemosphere.2016.01.069 |
Link to the original source: | https://www.sciencedirect.com/science/article/abs/pii/S0045653516300698?via%3Dihub |
Papper version: | info:eu-repo/semantics/acceptedVersion |
licence for use: | https://creativecommons.org/licenses/by/3.0/es/ |
Department: | Enginyeria Química Ciències Mèdiques Bàsiques |
Licence document URL: | https://repositori.urv.cat/ca/proteccio-de-dades/ |
Thematic Areas: | Zootecnia / recursos pesqueiros Saúde coletiva Química Public health, environmental and occupational health Pollution Odontología Nutrição Medicine (miscellaneous) Medicina veterinaria Medicina ii Medicina i Materiais Interdisciplinar Health, toxicology and mutagenesis Geociências General chemistry Farmacia Environmental sciences Environmental engineering Environmental chemistry Ensino Engenharias iii Engenharias ii Engenharias i Educação física Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Ciências ambientais Ciências agrárias i Ciência de alimentos Chemistry (miscellaneous) Chemistry (all) Biotecnología Biodiversidade Astronomia / física |
Keywords: | Water Uv-light Toxicity Soil Polycyclic aromatic hydrocarbons (pahs) Photolysis Photodegradation Photochemical degradation Photocatalytic degradation Pahs Organic pollutants Isotope fractionation Hydrogen isotopes Ecotoxicity Aqueous photodegradation polycyclic aromatic hydrocarbons (pahs) photodegradation hydrogen isotopes ecotoxicity |
Entity: | Universitat Rovira i Virgili |
Record's date: | 2024-09-07 |
Description: | The photodegradation of polycyclic aromatic hydrocarbons (PAHs) in two typical Mediterranean soils, either coarse- or fine-textured, was here investigated. Soil samples, spiked with the 16 US EPA priority PAHs, were incubated in a climate chamber at stable conditions of temperature (20 °C) and light (9.6 W m(-2)) for 28 days, simulating a climate change base scenario. PAH concentrations in soils were analyzed throughout the experiment, and correlated with data obtained by means of Microtox(®) ecotoxicity test. Photodegradation was found to be dependent on exposure time, molecular weight of each hydrocarbon, and soil texture. Fine-textured soil was able to enhance sorption, being PAHs more photodegraded than in coarse-textured soil. According to the EC50 values reported by Microtox(®), a higher detoxification was observed in fine-textured soil, being correlated with the outcomes of the analytical study. Significant photodegradation rates were detected for a number of PAHs, namely phenanthrene, anthracene, benzo(a)pyrene, and indeno(123-cd)pyrene. Benzo(a)pyrene, commonly used as an indicator for PAH pollution, was completely removed after 7 days of light exposure. In addition to the PAH chemical analysis and the ecotoxicity tests, a hydrogen isotope analysis of benzo(a)pyrene was also carried out. The degradation of this specific compound was associated to a high enrichment in (2)H, obtaining a maximum ?(2)H isotopic shift of +232‰. This strong isotopic effect observed in benzo(a)pyrene suggests that compound-specific isotope analysis (CSIA) may be a powerful tool to monitor in situ degradation of PAHs. Moreover, hydrogen isotopes of benzo(a)pyrene evidenced a degradation process of unknown origin occurring in the darkness.Copyright © 2016 Elsevier Ltd. All rights reserv |
Type: | Journal Publications |
Contributor: | Universitat Rovira i Virgili |
Títol: | Photodegradation of polycyclic aromatic hydrocarbons in soils under a climate change base scenario |
Subject: | Chemistry (Miscellaneous),Environmental Chemistry,Environmental Engineering,Environmental Sciences,Health, Toxicology and Mutagenesis,Medicine (Miscellaneous),Pollution,Public Health, Environmental and Occupational Health Water Uv-light Toxicity Soil Polycyclic aromatic hydrocarbons (pahs) Photolysis Photodegradation Photochemical degradation Photocatalytic degradation Pahs Organic pollutants Isotope fractionation Hydrogen isotopes Ecotoxicity Aqueous photodegradation polycyclic aromatic hydrocarbons (pahs) photodegradation hydrogen isotopes ecotoxicity Zootecnia / recursos pesqueiros Saúde coletiva Química Public health, environmental and occupational health Pollution Odontología Nutrição Medicine (miscellaneous) Medicina veterinaria Medicina ii Medicina i Materiais Interdisciplinar Health, toxicology and mutagenesis Geociências General chemistry Farmacia Environmental sciences Environmental engineering Environmental chemistry Ensino Engenharias iii Engenharias ii Engenharias i Educação física Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Ciências ambientais Ciências agrárias i Ciência de alimentos Chemistry (miscellaneous) Chemistry (all) Biotecnología Biodiversidade Astronomia / física |
Date: | 2016 |
Creator: | Marques, Montse Mari, Montse Audi-Miro, Carme Sierra, Jordi Soler, Albert Nadal, Marti Domingo, Jose L. |
Rights: | info:eu-repo/semantics/openAccess |
Search your record at: |
File | Description | Format | |
---|---|---|---|
DocumentPrincipal | DocumentPrincipal | application/pdf |
© 2011 Universitat Rovira i Virgili