URV's Author/s: | BERROCAL ZARAGOZA, MA. ISABEL / BUENO FRAILE, OLALLA / CERUELO CARO, SANTIAGO / Fernández Ballart, Joan Domènech / GARCIA MINGUILLÁN DEL CAMPO, CARLOS JESÚS / Murphy, Michelle |
Author, as appears in the article.: | Garcia-Minguillan, Carlos J; Fernandez-Ballart, Joan D; Ceruelo, Santiago; Rios, Lidia; Bueno, Olalla; Isabel Berrocal-Zaragoza, Maria; Molloy, Anne M; Ueland, Per M; Meyer, Klaus; Murphy, Michelle M |
Author's mail: | michelle.murphy@urv.cat |
Author identifier: | 0000-0002-6304-6204 |
Journal publication year: | 2014 |
Publication Type: | Journal Publications |
ISSN: | 15558932 |
APA: | Garcia-Minguillan, Carlos J; Fernandez-Ballart, Joan D; Ceruelo, Santiago; Rios, Lidia; Bueno, Olalla; Isabel Berrocal-Zaragoza, Maria; Molloy, Anne M (2014). Riboflavin status modifies the effects of methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR) polymorphisms on homocysteine. Genes And Nutrition, 9(6), 435-. DOI: 10.1007/s12263-014-0435-1 |
Paper original source: | Genes And Nutrition. 9 (6): 435- |
Abstract: | © 2014, Springer-Verlag Berlin Heidelberg. Methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR), riboflavin-dependent enzymes, participate in homocysteine metabolism. Reported effects of riboflavin status on the association between the MTHFR 677C>T polymorphism and homocysteine vary, and the effects of the MTRR 66A>G or MTRR 524C>T polymorphisms on homocysteine are unclear. We tested the hypothesis that the effects of the MTHFR 677C>T, MTRR 66A>G and MTRR 524C>T polymorphisms on fasting plasma total homocysteine (tHcy) depend on riboflavin status (erythrocyte glutathionine reductase activation coefficient, optimum: <1.2; marginally deficient: 1.2–1.4; deficient: ≥1.4) in 771 adults aged 18–75 years. MTHFR 677T allele carriers with middle or low tertile plasma folate (<14.7 nmol/L) had 8.2 % higher tHcy compared to the 677CC genotype (p < 0.01). This effect was eliminated when riboflavin status was optimal (p for interaction: 0.048). In the lowest cobalamin quartile (≤273 pmol/L), riboflavin status modifies the relationship between the MTRR 66 A>G polymorphism and tHcy (p for interaction: 0.034). tHcy was 6.6 % higher in MTRR 66G allele carriers compared to the 66AA genotype with marginally deficient or optimal riboflavin status, but there was no difference when riboflavin status was deficient (p for interaction: 0.059). tHcy was 13.7 % higher in MTRR 524T allele carriers compared to the 524CC genotype when cobalamin status was low (p < 0.01), but no difference was observed when we stratified by riboflavin status. The effect of the MTHFR 677C>T polymorphism on tHcy depends on riboflavin status, that of the MTRR 66A>G polymorphism on cobalamin and riboflavin status and that of the MTRR 524C>T polymorphism on cobalamin status. |
Article's DOI: | 10.1007/s12263-014-0435-1 |
Link to the original source: | https://link.springer.com/article/10.1007/s12263-014-0435-1#citeas |
Paper version: | info:eu-repo/semantics/publishedVersion |
licence for use: | https://creativecommons.org/licenses/by/3.0/es/ |
Department: | Ciències Mèdiques Bàsiques |
Licence document URL: | https://repositori.urv.cat/ca/proteccio-de-dades/ |
Thematic Areas: | Zootecnia / recursos pesqueiros Nutrition & dietetics Nutrição Medicina ii Medicina i Interdisciplinar Genetics & heredity Genetics Endocrinology, diabetes and metabolism Educação física Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Ciências ambientais Ciência de alimentos Biotecnología |
Keywords: | Vitamin b6 Riboflavin Mtrr Mthfr Homocysteine Egrac Eastac |
Entity: | Universitat Rovira i Virgili |
Record's date: | 2025-02-01 |
Description: | © 2014, Springer-Verlag Berlin Heidelberg. Methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR), riboflavin-dependent enzymes, participate in homocysteine metabolism. Reported effects of riboflavin status on the association between the MTHFR 677C>T polymorphism and homocysteine vary, and the effects of the MTRR 66A>G or MTRR 524C>T polymorphisms on homocysteine are unclear. We tested the hypothesis that the effects of the MTHFR 677C>T, MTRR 66A>G and MTRR 524C>T polymorphisms on fasting plasma total homocysteine (tHcy) depend on riboflavin status (erythrocyte glutathionine reductase activation coefficient, optimum: <1.2; marginally deficient: 1.2–1.4; deficient: ≥1.4) in 771 adults aged 18–75 years. MTHFR 677T allele carriers with middle or low tertile plasma folate (<14.7 nmol/L) had 8.2 % higher tHcy compared to the 677CC genotype (p < 0.01). This effect was eliminated when riboflavin status was optimal (p for interaction: 0.048). In the lowest cobalamin quartile (≤273 pmol/L), riboflavin status modifies the relationship between the MTRR 66 A>G polymorphism and tHcy (p for interaction: 0.034). tHcy was 6.6 % higher in MTRR 66G allele carriers compared to the 66AA genotype with marginally deficient or optimal riboflavin status, but there was no difference when riboflavin status was deficient (p for interaction: 0.059). tHcy was 13.7 % higher in MTRR 524T allele carriers compared to the 524CC genotype when cobalamin status was low (p < 0.01), but no difference was observed when we stratified by riboflavin status. The effect of the MTHFR 677C>T polymorphism on tHcy depends on riboflavin status, that of the MTRR 66A>G polymorphism on cobalamin and riboflavin status and that of the MTRR 524C>T polymorphism on cobalamin status. |
Title: | Riboflavin status modifies the effects of methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR) polymorphisms on homocysteine |
Type: | Journal Publications |
Contributor: | Universitat Rovira i Virgili |
Subject: | Endocrinology, Diabetes and Metabolism,Genetics,Genetics & Heredity,Nutrition & Dietetics Vitamin b6 Riboflavin Mtrr Mthfr Homocysteine Egrac Eastac Zootecnia / recursos pesqueiros Nutrition & dietetics Nutrição Medicina ii Medicina i Interdisciplinar Genetics & heredity Genetics Endocrinology, diabetes and metabolism Educação física Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Ciências ambientais Ciência de alimentos Biotecnología |
Date: | 2014 |
Creator: | Garcia-Minguillan, Carlos J Fernandez-Ballart, Joan D Ceruelo, Santiago Rios, Lidia Bueno, Olalla Isabel Berrocal-Zaragoza, Maria Molloy, Anne M Ueland, Per M Meyer, Klaus Murphy, Michelle M |
Rights: | info:eu-repo/semantics/openAccess |
Search your record at: | ![]() ![]() |
File | Description | Format | |
---|---|---|---|
DocumentPrincipal | DocumentPrincipal | application/pdf |
© 2011 Universitat Rovira i Virgili