Repositori institucional URV
Español Català English
TITLE:
Food places classification in egocentric images using Siamese neural networks - imarina:6390078

URV's Author/s:Abdellatif Fatahallah Ibrahim Mahmoud, Hatem / Abdelnasser Mohamed Mahmoud, Mohamed / Banu, Syeda Furruka / Puig Valls, Domènec Savi
Author, as appears in the article.:Kamal Sarker, Md Mostafa; Furruka Banu, Syeda; Rashwan, Hatem A; Abdel-Nasser, Mohamed; Kumar Singh, Vivek; Chambon, Sylvie; Radeva, Petia; Puig, Domenec
Author's mail:mohamed.abdelnasser@urv.cat
hatem.abdellatif@urv.cat
syedafurruka.banu@estudiants.urv.cat
domenec.puig@urv.cat
Author identifier:0000-0002-1074-2441
0000-0001-5421-1637
0000-0002-5624-1941
0000-0002-0562-4205
Journal publication year:2019
Publication Type:Proceedings Paper
APA:Kamal Sarker, Md Mostafa; Furruka Banu, Syeda; Rashwan, Hatem A; Abdel-Nasser, Mohamed; Kumar Singh, Vivek; Chambon, Sylvie; Radeva, Petia; Puig, Dome (2019). Food places classification in egocentric images using Siamese neural networks. Amsterdam: IOS Press
Papper original source:Frontiers In Artificial Intelligence And Applications. 319 145-151
Abstract:© 2019 The authors and IOS Press. All rights reserved. Wearable cameras are become more popular in recent years for capturing the unscripted moments of the first-person that help to analyze the users lifestyle. In this work, we aim to recognize the places related to food in egocentric images during a day to identify the daily food patterns of the first-person. Thus, this system can assist to improve their eating behavior to protect users against food-related diseases. In this paper, we use Siamese Neural Networks to learn the similarity between images from corresponding inputs for one-shot food places classification. We tested our proposed method with'MiniEgoFoodPlaces' with 15 food related places. The proposed Siamese Neural Networks model with MobileNet achieved an overall classification accuracy of 76.74% and 77.53% on the validation and test sets of the “MiniEgoFoodPlaces” dataset, respectively outperforming with the base models, such as ResNet50, InceptionV3, and InceptionResNetV2.
Article's DOI:10.3233/FAIA190117
Link to the original source:https://ebooks.iospress.nl/publication/52830
Papper version:info:eu-repo/semantics/submittedVersion
licence for use:https://creativecommons.org/licenses/by/3.0/es/
Department:Enginyeria Informàtica i Matemàtiques
Licence document URL:https://repositori.urv.cat/ca/proteccio-de-dades/
Thematic Areas:Medicina ii
Interdisciplinar
Información y documentación
General o multidisciplinar
Engenharias iv
Engenharias iii
Comunicació i informació
Ciências agrárias i
Artificial intelligence
Keywords:Siamese neural networks
Scene classification
One-shot learning
Food pattern classification
Egocentric vision
Entity:Universitat Rovira i Virgili
Record's date:2024-09-21
Search your record at:

Available files
FileDescriptionFormat
DocumentPrincipalDocumentPrincipalapplication/pdf

Information

© 2011 Universitat Rovira i Virgili