URV's Author/s: | Medina Cabello, Francisco |
Author, as appears in the article.: | Jaramillo-Fierro, Ximena; Capa, Luis Fernando; Medina, Francesc; Gonzalez, Silvia; |
Author's mail: | francesc.medina@urv.cat |
Author identifier: | 0000-0002-3111-1542 |
Journal publication year: | 2021 |
Publication Type: | Journal Publications |
APA: | Jaramillo-Fierro, Ximena; Capa, Luis Fernando; Medina, Francesc; Gonzalez, Silvia; (2021). DFT Study of Methylene Blue Adsorption on ZnTiO3 and TiO2 Surfaces (101). Molecules, 26(13), -. DOI: 10.3390/molecules26133780 |
Papper original source: | Molecules. 26 (13): |
Abstract: | The search for alternative materials with high dye adsorption capacity, such as methylene blue (MB), remains the focus of current studies. This computational study focuses on oxides ZnTiO3 and TiO2 (anatase phase) and on their adsorptive properties. Computational calculations based on DFT methods were performed using the Viena Ab initio Simulation Package (VASP) code to study the electronic properties of these oxides. The bandgap energy values calculated by the Hubbard U (GGA + U) method for ZnTiO3 and TiO2 were 3.17 and 3.21 eV, respectively, which are consistent with the experimental data. The most favorable orientation of the MB adsorbed on the surface (101) of both oxides is semi-perpendicular. Stronger adsorption was observed on the ZnTiO3 surface (-282.05 kJ/mol) than on TiO2 (-10.95 kJ/mol). Anchoring of the MB molecule on both surfaces was carried out by means of two protons in a bidentate chelating (BC) adsorption model. The high adsorption energy of the MB dye on the ZnTiO3 surface shows the potential value of using this mixed oxide as a dye adsorbent for several technological and environmental applications. |
Article's DOI: | 10.3390/molecules26133780 |
Link to the original source: | https://www.mdpi.com/1420-3049/26/13/3780 |
Papper version: | info:eu-repo/semantics/publishedVersion |
licence for use: | https://creativecommons.org/licenses/by/3.0/es/ |
Department: | Enginyeria Química |
Licence document URL: | https://repositori.urv.cat/ca/proteccio-de-dades/ |
Thematic Areas: | Zootecnia / recursos pesqueiros Saúde coletiva Química Psicología Planejamento urbano e regional / demografia Physical and theoretical chemistry Pharmaceutical science Organic chemistry Odontología Nutrição Molecular medicine Medicine (miscellaneous) Medicina veterinaria Medicina iii Medicina ii Medicina i Materiais Matemática / probabilidade e estatística Interdisciplinar Geografía General medicine Farmacia Ensino Engenharias iv Engenharias iii Engenharias ii Engenharias i Educação física Economia Drug discovery Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Ciências ambientais Ciências agrárias i Ciência de alimentos Ciência da computação Chemistry, organic Chemistry, multidisciplinary Chemistry (miscellaneous) Biotecnología Biodiversidade Biochemistry & molecular biology Astronomia / física Analytical chemistry |
Keywords: | Zntio3 Tio2 Stability Sensitized solar-cells Rhodamine-b Quantum Pollutants Photocatalytic degradation Performance Nanoparticles Nanocomposites Methylene blue Electronic-structure Dft Adsorption |
Entity: | Universitat Rovira i Virgili |
Record's date: | 2024-07-27 |
Journal volume: | 26 |
Description: | The search for alternative materials with high dye adsorption capacity, such as methylene blue (MB), remains the focus of current studies. This computational study focuses on oxides ZnTiO3 and TiO2 (anatase phase) and on their adsorptive properties. Computational calculations based on DFT methods were performed using the Viena Ab initio Simulation Package (VASP) code to study the electronic properties of these oxides. The bandgap energy values calculated by the Hubbard U (GGA + U) method for ZnTiO3 and TiO2 were 3.17 and 3.21 eV, respectively, which are consistent with the experimental data. The most favorable orientation of the MB adsorbed on the surface (101) of both oxides is semi-perpendicular. Stronger adsorption was observed on the ZnTiO3 surface (-282.05 kJ/mol) than on TiO2 (-10.95 kJ/mol). Anchoring of the MB molecule on both surfaces was carried out by means of two protons in a bidentate chelating (BC) adsorption model. The high adsorption energy of the MB dye on the ZnTiO3 surface shows the potential value of using this mixed oxide as a dye adsorbent for several technological and environmental applications. |
Type: | Journal Publications |
Contributor: | Universitat Rovira i Virgili |
Títol: | DFT Study of Methylene Blue Adsorption on ZnTiO3 and TiO2 Surfaces (101) |
Subject: | Analytical Chemistry,Biochemistry & Molecular Biology,Chemistry (Miscellaneous),Chemistry, Multidisciplinary,Chemistry, Organic,Drug Discovery,Medicine (Miscellaneous),Molecular Medicine,Organic Chemistry,Pharmaceutical Science,Physical and Theoretical Chemistry Zntio3 Tio2 Stability Sensitized solar-cells Rhodamine-b Quantum Pollutants Photocatalytic degradation Performance Nanoparticles Nanocomposites Methylene blue Electronic-structure Dft Adsorption Zootecnia / recursos pesqueiros Saúde coletiva Química Psicología Planejamento urbano e regional / demografia Physical and theoretical chemistry Pharmaceutical science Organic chemistry Odontología Nutrição Molecular medicine Medicine (miscellaneous) Medicina veterinaria Medicina iii Medicina ii Medicina i Materiais Matemática / probabilidade e estatística Interdisciplinar Geografía General medicine Farmacia Ensino Engenharias iv Engenharias iii Engenharias ii Engenharias i Educação física Economia Drug discovery Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Ciências ambientais Ciências agrárias i Ciência de alimentos Ciência da computação Chemistry, organic Chemistry, multidisciplinary Chemistry (miscellaneous) Biotecnología Biodiversidade Biochemistry & molecular biology Astronomia / física Analytical chemistry |
Date: | 2021 |
Creator: | Jaramillo-Fierro, Ximena Capa, Luis Fernando Medina, Francesc Gonzalez, Silvia |
Rights: | info:eu-repo/semantics/openAccess |
Search your record at: |
File | Description | Format | |
---|---|---|---|
DocumentPrincipal | DocumentPrincipal | application/pdf |
© 2011 Universitat Rovira i Virgili