Belongs to PC:SerieArticles collection

TITLE:

Symmetry-breaking mechanism for the formation of cluster chimera patterns - imarina:9242971
URV's Author/s: | Arenas Moreno, Alejandro |

Author, as appears in the article.: | Asllani, Malbor; Siebert, Bram A.; Arenas, Alex; Gleeson, James P.; |

Author's mail: | alexandre.arenas@urv.cat |

Author identifier: | 0000-0003-0937-0334 |

Journal publication year: | 2022 |

Publication Type: | Journal Publications |

APA: | Asllani, Malbor; Siebert, Bram A.; Arenas, Alex; Gleeson, James P.; (2022). Symmetry-breaking mechanism for the formation of cluster chimera patterns. Chaos, 32(1), -. DOI: 10.1063/5.0060466 |

Papper original source: | Chaos. 32 (1): |

Abstract: | The emergence of order in collective dynamics is a fascinating phenomenon that characterizes many natural systems consisting of coupled entities. Synchronization is such an example where individuals, usually represented by either linear or nonlinear oscillators, can spontaneously act coherently with each other when the interactions' configuration fulfills certain conditions. However, synchronization is not always perfect, and the coexistence of coherent and incoherent oscillators, broadly known in the literature as chimera states, is also possible. Although several attempts have been made to explain how chimera states are created, their emergence, stability, and robustness remain a long-debated question. We propose an approach that aims to establish a robust mechanism through which cluster synchronization and chimera patterns originate. We first introduce a stability-breaking method where clusters of synchronized oscillators can emerge. At variance with the standard approach where synchronization arises as a collective behavior of coupled oscillators, in our model, the system initially sets on a homogeneous fixed-point regime, and, only due to a global instability principle, collective oscillations emerge. Following a combination of the network modularity and the model's parameters, one or more clusters of oscillators become incoherent within yielding a particular class of patterns that we here name cluster chimera states.& nbsp;(c) 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |

Article's DOI: | 10.1063/5.0060466 |

Link to the original source: | https://aip.scitation.org/doi/10.1063/5.0060466 |

Papper version: | info:eu-repo/semantics/publishedVersion |

licence for use: | https://creativecommons.org/licenses/by/3.0/es/ |

Department: | Enginyeria Informàtica i Matemàtiques |

Licence document URL: | https://repositori.urv.cat/ca/proteccio-de-dades/ |

Thematic Areas: | Statistical and nonlinear physics Physics, mathematical Physics and astronomy (miscellaneous) Physics and astronomy (all) Medicine (miscellaneous) Medicina veterinaria Medicina ii Mathematics, applied Mathematical physics Matemática / probabilidade e estatística Interdisciplinar Geociências General physics and astronomy Engenharias iv Engenharias iii Engenharias ii Engenharias i Ciências ambientais Ciência da computação Astronomia / física Applied mathematics |

Keywords: | Synchronization States Instability |

Entity: | Universitat Rovira i Virgili |

Record's date: | 2024-09-07 |

Description: | The emergence of order in collective dynamics is a fascinating phenomenon that characterizes many natural systems consisting of coupled entities. Synchronization is such an example where individuals, usually represented by either linear or nonlinear oscillators, can spontaneously act coherently with each other when the interactions' configuration fulfills certain conditions. However, synchronization is not always perfect, and the coexistence of coherent and incoherent oscillators, broadly known in the literature as chimera states, is also possible. Although several attempts have been made to explain how chimera states are created, their emergence, stability, and robustness remain a long-debated question. We propose an approach that aims to establish a robust mechanism through which cluster synchronization and chimera patterns originate. We first introduce a stability-breaking method where clusters of synchronized oscillators can emerge. At variance with the standard approach where synchronization arises as a collective behavior of coupled oscillators, in our model, the system initially sets on a homogeneous fixed-point regime, and, only due to a global instability principle, collective oscillations emerge. Following a combination of the network modularity and the model's parameters, one or more clusters of oscillators become incoherent within yielding a particular class of patterns that we here name cluster chimera states.& nbsp;(c) 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |

Type: | Journal Publications |

Contributor: | Universitat Rovira i Virgili |

Títol: | Symmetry-breaking mechanism for the formation of cluster chimera patterns |

Subject: | Applied Mathematics,Mathematical Physics,Mathematics, Applied,Medicine (Miscellaneous),Physics and Astronomy (Miscellaneous),Physics, Mathematical,Statistical and Nonlinear Physics Synchronization States Instability Statistical and nonlinear physics Physics, mathematical Physics and astronomy (miscellaneous) Physics and astronomy (all) Medicine (miscellaneous) Medicina veterinaria Medicina ii Mathematics, applied Mathematical physics Matemática / probabilidade e estatística Interdisciplinar Geociências General physics and astronomy Engenharias iv Engenharias iii Engenharias ii Engenharias i Ciências ambientais Ciência da computação Astronomia / física Applied mathematics |

Date: | 2022 |

Creator: | Asllani, Malbor Siebert, Bram A. Arenas, Alex Gleeson, James P. |

Rights: | info:eu-repo/semantics/openAccess |

Search your record at: |

File | Description | Format | |
---|---|---|---|

DocumentPrincipal | DocumentPrincipal | application/pdf |

© 2011 Universitat Rovira i Virgili