Repositori institucional URV
Español Català English
TITLE:
On the cyclicity of Kolmogorov polycycles - imarina:9280619

Author, as appears in the article.:Marin, David; Villadelprat, Jordi
Author's mail:jordi.villadelprat@urv.cat
Journal publication year:2022
Publication Type:info:eu-repo/semantics/article
Abstract:In this paper we study planar polynomial Kolmogorov's differential systems Xμ{x˙=f(x,y;μ),y˙=g(x,y;μ), with the parameter μ varying in an open subset Λ⊂RN . Compactifying Xμ to the Poincaré disc, the boundary of the first quadrant is an invariant triangle Γ , that we assume to be a hyperbolic polycycle with exactly three saddle points at its vertices for all μ∈Λ. We are interested in the cyclicity of Γ inside the family {Xμ}μ∈Λ, i.e., the number of limit cycles that bifurcate from Γ as we perturb μ. In our main result we define three functions that play the same role for the cyclicity of the polycycle as the first three Lyapunov quantities for the cyclicity of a focus. As an application we study two cubic Kolmogorov families, with N=3 and N=5 , and in both cases we are able to determine the cyclicity of the polycycle for all μ∈Λ, including those parameters for which the return map along Γ is the identity.
Article's DOI:10.14232/ejqtde.2022.1.35
Link to the original source:https://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=9904
Papper version:info:eu-repo/semantics/publishedVersion
licence for use:https://creativecommons.org/licenses/by/3.0/es/
Department:Enginyeria Informàtica i Matemàtiques
Funding program:Herramientas para el análisis de diagramas de bifurcación en sistemas dinámicos
Funding program action:Proyectos I+D Generación de Conocimiento
Acronym:ATBiD
Project code:PID2020-118281GB-C33
Search your record at:

Available files
FileDescriptionFormat
DocumentPrincipalDocumentPrincipalapplication/pdf

Information

© 2011 Universitat Rovira i Virgili