Repositori institucional URV
Español Català English
TITLE:
Exploiting the Nucleic Acid Nature of Aptamers for Signal Amplification - imarina:9286981

URV's Author/s:Jauset Rubio, Miriam / O'SULLIVAN, CIARA KATHLEEN / Ortíz Rodríguez, Mayreli
Author, as appears in the article.:Jauset-Rubio M; Ortiz M; O'Sullivan CK
Author's mail:mayreli.ortiz@urv.cat
miriam.jauset@urv.cat
mayreli.ortiz@urv.cat
Author identifier:0000-0002-9423-0055
0000-0002-9943-6132
0000-0002-9423-0055
Journal publication year:2022
Publication Type:Journal Publications
APA:Jauset-Rubio M; Ortiz M; O'Sullivan CK (2022). Exploiting the Nucleic Acid Nature of Aptamers for Signal Amplification. Biosensors, 12(11), -. DOI: 10.3390/bios12110972
Papper original source:Biosensors. 12 (11):
Abstract:Aptamer-based assays and sensors are garnering increasing interest as alternatives to antibodies, particularly due to their increased flexibility for implementation in alternative assay formats, as they can be employed in assays designed for nucleic acids, such as molecular aptamer beacons or aptamer detection combined with amplification. In this work, we took advantage of the inherent nucleic acid nature of aptamers to enhance sensitivity in a rapid and facile assay format. An aptamer selected against the anaphylactic allergen β-conglutin was used to demonstrate the proof of concept. The aptamer was generated by using biotinylated dUTPs, and the affinity of the modified aptamer as compared to the unmodified aptamer was determined by using surface plasmon resonance to calculate the dissociation constant (KD), and no significant improvement in affinity due to the incorporation of the hydrophobic biotin was observed. The modified aptamer was then applied in a colorimetric competitive enzyme-linked oligonucleotide assay, where β-conglutin was immobilized on the wells of a microtiter plate, competing with β-conglutin free in solution for the binding to the aptamer. The limit of detection achieved was 68 pM, demonstrating an improvement in detection limit of three orders of magnitude as compared with the aptamer simply modified with a terminal biotin label. The concept was then exploited by using electrochemical detection and screen-printed electrodes where detection limits of 326 fM and 7.89 fM were obtained with carbon and gold electrodes, respectively. The assay format is generic in nature and can be applied to all aptamers, facilitating an easy and cost-effective means to achieve lower detection limits.
Article's DOI:10.3390/bios12110972
Link to the original source:https://www.mdpi.com/2079-6374/12/11/972
Papper version:info:eu-repo/semantics/publishedVersion
licence for use:https://creativecommons.org/licenses/by/3.0/es/
Department:Enginyeria Química
Licence document URL:https://repositori.urv.cat/ca/proteccio-de-dades/
Thematic Areas:Química
Nanoscience & nanotechnology
Medicine (miscellaneous)
Materiais
Instruments & instrumentation
Instrumentation
Engineering (miscellaneous)
Clinical biochemistry
Ciencias sociales
Ciências biológicas iii
Ciências biológicas i
Chemistry, analytical
Biotecnología
Biotechnology
Biomedical engineering
Astronomia / física
Analytical chemistry
Keywords:High-affinity
Enzyme-linked oligonucleotide assay (elona)
Electrochemical detection
Chronoamperometry
Biotinylated dntps
Aptasensors
Aptamer
rna
probes
nucleotides
generation
enzyme-linked oligonucleotide assay (elona)
electrochemical detection
dntps
dna
chronoamperometry
biotinylated dntps
binding
avidin
aptasensors
Entity:Universitat Rovira i Virgili
Record's date:2024-09-07
Search your record at:

Available files
FileDescriptionFormat
DocumentPrincipalDocumentPrincipalapplication/pdf

Information

© 2011 Universitat Rovira i Virgili