Repositori institucional URV
Español Català English
TITLE:
Facile Synthesis of Barium-Doped Cadmium Sulfide Quantum Dots for the Treatment of Polluted Water: Experimental and Computational Investigations - imarina:9287531

URV's Author/s:Nabgan, Walid
Author, as appears in the article.:Rehman, Ata Ur; Ikram, Muhammad; Haider, Ali; Raza, Muhammad Asif; Shujah, Tahira; Naz, Misbah; Ul-Hamid, Anwar; Shahzadi, Iram; Goumri-Said, Souraya; Kanoun, Mohammed Benali; Nabgan, Walid
Author's mail:walid.nabgan@urv.cat
Author identifier:0000-0001-9901-862X
Journal publication year:2022
Publication Type:Journal Publications
APA:Rehman, Ata Ur; Ikram, Muhammad; Haider, Ali; Raza, Muhammad Asif; Shujah, Tahira; Naz, Misbah; Ul-Hamid, Anwar; Shahzadi, Iram; Goumri-Said, Souraya; (2022). Facile Synthesis of Barium-Doped Cadmium Sulfide Quantum Dots for the Treatment of Polluted Water: Experimental and Computational Investigations. Acs Omega, 7(50), 46325-46336. DOI: 10.1021/acsomega.2c04862
Paper original source:Acs Omega. 7 (50): 46325-46336
Abstract:In this study, cadmium sulfide (CdS) quantum dots (QDs) and barium (Ba) (3 and 6 wt %)-doped CdS QDs were synthesized via a hydrothermal technique. The basic purpose of this work is to degrade methylene blue (MB) dye and evaluate density functional theory (DFT). The synthesized samples were characterized through X-ray powder diffraction (XRD), selected area electron diffraction (SAED), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), high-resolution transmission electron microscopy (HR-TEM), UV-vis spectrophotometer, PL, and density functional theory (DFT). The XRD (structural analysis) confirmed that the hexagonal crystal structure and crystallinity increased upon doping. Selected area electron diffraction (SAED) analysis confirmed the polycrystalline nature of the prepared QDs. The functional groups have been investigated using FTIR analysis. The surface and structural morphologies of the synthesized specimen have been investigated by applying TEM and FE-SEM, and it was found to exhibit the topology of QDs. In addition, optical characteristics have been investigated via UV-vis absorption spectroscopy, which exhibited a bathochromic shift (red shift) as a consequence of the reduction of the band-gap energy upon doping from 2.56 to 2.38 eV. PL analysis was used to observe the electron-hole recombination rate. Moreover, the electronic and optical properties of Ba-doped CdS were further explored using density functional theory. Pristine and Ba-doped QDs exhibit sufficient catalytic activity (CA) against the MB dye in all media as 62.59, 70.15, and 72.74% in neutral, basic, and acidic solutions, respectively.
Article's DOI:10.1021/acsomega.2c04862
Link to the original source:https://pubs.acs.org/doi/10.1021/acsomega.2c04862
Paper version:info:eu-repo/semantics/publishedVersion
licence for use:https://creativecommons.org/licenses/by/3.0/es/
Department:Enginyeria Química
Licence document URL:https://repositori.urv.cat/ca/proteccio-de-dades/
Thematic Areas:Química
Interdisciplinar
General chemistry
General chemical engineering
Engenharias ii
Ciências agrárias i
Chemistry, multidisciplinary
Chemistry (miscellaneous)
Chemistry (all)
Chemical engineering (miscellaneous)
Chemical engineering (all)
Keywords:Thin-films
Nanocrystalline cds
Enhanced photocatalytic activity
Entity:Universitat Rovira i Virgili
Record's date:2025-01-28
Search your record at:

Available files
FileDescriptionFormat
DocumentPrincipalDocumentPrincipalapplication/pdf

Information

© 2011 Universitat Rovira i Virgili