Casanova-Chafer, J; Blanch, X; Moreno, A; Garcia-Aboal, R; Atienzar, P; Llobet, E; Feliz, M (2024). Graphene based Mo6 cluster hybrid for detecting simulant nerve agent DMMP. Sensing And Bio-Sensing Research, 43(), 100603-. DOI: 10.1016/j.sbsr.2023.100603
Referencia al articulo segun fuente origial:
Sensing And Bio-Sensing Research. 43 100603-
Resumen:
Nerve agents are highly toxic chemical compounds that pose significant threats to human health and safety. Detecting and identifying these agents quickly is crucial for preventing their exposure and providing timely treatment. This study proposes the use of nanohybrids comprising crystalline octahedral molybdenum iodide cluster material supported on graphene (Mo6@Graphene) as a novel sensing material for the detection of dimethyl methylphosphonate (DMMP), a simulant of sarin nerve agent. The electrical sensing performance towards different concentrations of DMMP and at room temperature demonstrated fast and sensitive responses to DMMP, with almost full recovery of the sensor baseline in a few minutes. The calibration curve obtained showed a linear relationship between the sensor response and DMMP concentration, enabling the estimation of the limit of detection (LOD) of 270 ppb. The robustness of the Mo6@Graphene nanomaterial towards DMMP was assessed using various techniques, including Raman spectroscopy, X-ray diffraction and photoelectron spectroscopy. The binding energies (BEs) between DMMP and the supported Mo6 clusters determined by DFT calculations revealed H-bonding interactions involved in the sensing mechanism. The excellent sensing performance of the Mo6@Graphene film, combined with its low power consumption and high stability, makes it a promising candidate for the detection of nerve agents and their simulants.
Nerve agents are highly toxic chemical compounds that pose significant threats to human health and safety. Detecting and identifying these agents quickly is crucial for preventing their exposure and providing timely treatment. This study proposes the use of nanohybrids comprising crystalline octahedral molybdenum iodide cluster material supported on graphene (Mo6@Graphene) as a novel sensing material for the detection of dimethyl methylphosphonate (DMMP), a simulant of sarin nerve agent. The electrical sensing performance towards different concentrations of DMMP and at room temperature demonstrated fast and sensitive responses to DMMP, with almost full recovery of the sensor baseline in a few minutes. The calibration curve obtained showed a linear relationship between the sensor response and DMMP concentration, enabling the estimation of the limit of detection (LOD) of 270 ppb. The robustness of the Mo6@Graphene nanomaterial towards DMMP was assessed using various techniques, including Raman spectroscopy, X-ray diffraction and photoelectron spectroscopy. The binding energies (BEs) between DMMP and the supported Mo6 clusters determined by DFT calculations revealed H-bonding interactions involved in the sensing mechanism. The excellent sensing performance of the Mo6@Graphene film, combined with its low power consumption and high stability, makes it a promising candidate for the detection of nerve agents and their simulants.
Biotechnology,Chemistry, Analytical,Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials,Signal Processing Trace levels Potential basis-sets Polarization functions Performance Parameters Nerve agent Nanocomposite Mo 6 cluster Mo cluster 6 Graphene Generation Gas sensors Dmmp Ab-initio pseudopotentials Signal processing Engenharias iv Electronic, optical and magnetic materials Electrical and electronic engineering Chemistry, analytical Biotechnology