Repositori institucional URV
Español Català English
TITLE:
On the basin of attraction of a critical three-cycle of a model for the secant map - imarina:9382519

Author, as appears in the article.:Fontich, Ernest; Garijo, Antonio; Jarque, Xavier
Author's mail:antonio.garijo@urv.cat
Journal publication year:2024
Publication Type:info:eu-repo/semantics/article
Abstract:We consider the secant method Sp applied to a real polynomial p of degree d + 1 as a discrete dynamical system on R2 . If the polynomial p has a local extremum at a point α then the discrete dynamical system generated by the iterates of the secant map exhibits a critical periodic orbit of period 3 or three-cycle at the point (α, α). We propose a simple model map Ta,d having a unique fixed point at the origin which encodes the dynamical behaviour of S 3 p at the critical three-cycle. The main goal of the paper is to describe the geometry and topology of the basin of attraction of the origin of Ta,d as well as its boundary. Our results concern global, rather than local, dynamical behaviour. They include that the boundary of the basin of attraction is the stable manifold of a fixed point or contains the stable manifold of a two-cycle, depending on the values of the parameters of d (even or odd) and a ∈ R (positive or negative).
Article's DOI:10.3934/dcds.2024122
Link to the original source:https://www.aimsciences.org//article/doi/10.3934/dcds.2024122
Papper version:info:eu-repo/semantics/publishedVersion
licence for use:https://creativecommons.org/licenses/by/3.0/es/
Department:Enginyeria Informàtica i Matemàtiques
Funding program:Herramientas para el análisis de diagramas de bifurcación en sistemas dinámicos
Funding program action:Proyectos I+D Generación de Conocimiento
Acronym:ATBiD
Project code:PID2020-118281GB-C33
Search your record at:

Available files
FileDescriptionFormat
DocumentPrincipalDocumentPrincipalapplication/pdf

Information

© 2011 Universitat Rovira i Virgili