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Abstract

We analyze a divisible good uniform-price auction that features two groups each with

a finite number of identical bidders. At equilibrium the relative market power (price

impact) of a group increases with the precision of its private information and declines with

its transaction costs. An increase in transaction costs and/or a decrease in the precision

of a bidding group’s information induces a strategic response from the other group, which

thereafter attenuates its response to both private information and prices. A "stronger"

bidding group -which has more precise private information, faces lower transaction costs,

and is more oligopsonistic- has more price impact and so will behave competitively only if

it receives a higher per capita subsidy rate. When the strong group values the asset no less

than the weak group, the expected deadweight loss increases with the quantity auctioned

and also with the degree of payoff asymmetries. Price impact and the deadweight loss may

be negatively associated. The results are consistent with the available empirical evidence.
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auctions, Treasury auctions, electricity auctions, market integration.

JEL: D44, D82, G14, E58

∗For helpful comments we are grateful to Roberto Burguet, Maryam Farboodi, Vitali Gretschko, Jakub Kastl,

Leslie Marx, Meg Meyer, Antonio Miralles, Stephen Morris, Andrea Prat, and Tomasz Sadzik as well as seminar

participants at the BGSE Summer Forum, Chicago, Columbia, Como Information Economics Workshop, EARIE,

ESSET, Federal Reserve Board, Jornadas de Economía Industrial, Northwestern, Princeton, UPF, Queen Mary

Theory Workshop, Stanford, UC Berkeley, UC San Diego, and Wharton. We are also indebted to Jorge Paz for

excellent research assistance.
†Financial support from the Spanish Ministry of Economy and Competitiveness (Ref. ECO2016-75410-P) is

gratefully acknowledged.
‡Financial support from the Spanish Ministry of Economy and Competitiveness (Ref. ECO2015-63711-P)

and from the Generalitat de Catalunya, AGAUR grant 2014 SGR 1496, is gratefully acknowledged.



1 Introduction

Divisible good auctions are common in many markets, including government bonds, liquidity

(refinancing operations), electricity, and emission markets.1 In those auctions, both market

power (price impact) and asymmetries among the participants are important; asymmetries can

make price impact relevant even in large markets. However, theoretical work in this area has

been hampered by the diffi culties of dealing with bidders that are asymmetric, have market

power, and are competing in terms of demand or supply schedules in the presence of private

information. This paper helps to fill that research gap by analyzing asymmetric uniform-price

auctions in which there are two groups of bidders. Our aims are to characterize the equilib-

rium, to perform comparative statics and welfare analysis (from the standpoint of revenue and

deadweight loss), and finally to derive implications for policy.

Divisible good auctions are typically populated by heterogenous participants in a concen-

trated market, and often we can distinguish a core group of bidders together with a fringe. The

former are strong in the sense that they have better information, endure lower transaction costs,

and are more oligopolistic (or oligopsonistic) than members of the fringe. As examples we dis-

cuss Treasury and liquidity auctions in addition to wholesale electricity markets. Uniform-price

auctions are often used in Treasury, liquidity and electricity auctions.

Treasury auctions have bidders with significant market shares. That will be the case in

most systems featuring a primary dealership, where participation is limited to a fixed number

of bidders (this occurs, for example, in 29 out of 39 countries surveyed by Arnone and Iden

2003). A prime example are US Treasury auctions, which are uniform-price auctions since 1998.

In these auctions, the top five bidders typically purchase close to half of US Treasury issues.2

Primary dealers went from 46 in 1998 to 23 presently. Those account for a very substantial

portion of volume (from 69% to 88% of tendered quantities in the sample of Hortaçsu et al.

(2016) for the years 2009-2013). Indirect bidders place their bids through the primary dealers

and other direct bidders tender from 6 to 13%.

Primary dealers enjoy an information advantage because they aggregate the information of

indirect bidders and face lower transaction costs.3 Primary dealers bid systematically lower

prices than the other participants in the auction, according to Hortaçsu et al. (2016), not

1See Lopomo et al. (2011) for examples of such auctions.
2According to Euromoney, the top five commanded 58% of the market in 2016, up from 43% in 2006; and

the top ten dealers 85%. See also Malvey and Archibald (1998).
3A proxy for the information advantage of a primary dealer is the number of indirect bidders that go through

this dealer. For evidence from Canadian Treasury auctions, see Hortaçsu and Kastl (2012); for a theoretical

model see Boyarchenko et al. (2015).
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because they have a lower valuation of the securities but because they exercise market power.4

Armantier and Sbaï (2006) test for whether the bidders in French Treasury auctions are sym-

metric; these authors conclude that such auction participants can be divided into two distinct

groups as a function of (a) their level of risk aversion and (b) the quality of their information

about the value of the security to be sold. One small group consists of large financial institu-

tions, which possess better information and are willing to take more risks. Kastl (2011) also

finds evidence of two distinct groups of bidders in (uniform-price) Czech Treasury auctions.

Other papers that report asymmetries between bidders in Treasury auctions include, among

others, Umlauf (1993) for Mexico, Bjonnes (2001) for Norway, and Hortaçsu and McAdams

(2010) for Turkey.

Bindseil et al. (2009) and Cassola et al. (2013) find that the heterogeneity of bidders in

liquidity auctions is relevant. Cassola et al. (2013) analyze the evolution of bidding data from

the European Central Bank’s weekly refinancing operations before and during the early part

of the financial crisis. The authors show that effects of the 2007 subprime market crisis were

heterogeneous among European banks, and they conclude that the significant shift in bidding

behavior after 9 August 2007 may reflect a change in the cost of short-term funding on the

interbank market and/or a strategic response to other bidders. In particular, Cassola et al.

(2013) find that one third of bidders experienced no change in their costs of short-term funds

from alternative sources; this means that their altered bidding behavior was mainly strategic:

bids were increased as a best response to the higher bids of rivals.5

Concentration is high also in other markets, such as wholesale electricity. This issue has

attracted attention from academics and policymakers alike. A number of empirical studies have

concluded that sellers have exercised significant market power in wholesale electricity markets

(see, e.g., Green and Newbery 1992; Wolfram 1998; Borenstein et al. 2002; Joskow and Kahn

2002).6 Most wholesale electricity markets prefer using a uniform-price auction to using a pay-

as-bid auction (Cramton and Stoft 2006, 2007). In several of these markets (e.g., California,

Australia), generating companies bid to sell power and wholesale customers bid to buy power. In

such markets, asymmetries are prevalent. For example, some generators of wholesale electricity

rely heavily on nuclear technology, which has flat marginal costs, whereas others rely mostly

4Experimental work has found also substantial demand reduction in uniform-price auctions (see e.g. Kagel

and Levin 2001; Engelbrecht-Wiggans et al. 2006).
5Bidder asymmetry has also been found in procurement markets, including school milk (Porter and Zona

1999; Pesendorfer 2000) and public works (Bajari 1998).
6European Commission (2007) has asserted that “at the wholesale level, gas and electricity markets remain

national in scope, and generally maintain the high level of concentration of the pre-liberalization period. This

gives scope for exercising market power”(Inquiry pursuant to Article 17 of Regulation (EC) No 1/2003 into the

European gas and electricity sectors (Final Report), Brussels, 10.1.2007).
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on fuel technologies, which have steep marginal costs. Holmberg and Wolak (2015) argue that,

in wholesale electricity markets, information on suppliers’production costs is asymmetric. For

evidence on the effect of cost heterogeneity on bidding in wholesale electricity markets, see

Crawford et al. (2007) and Bustos-Salvagno (2015).

Our paper makes progress within the linear-Gaussian family of models by incorporating

bidders’asymmetries with regard to payoffs and information. We model a uniform-price auction

where asymmetric strategic bidders compete in terms of demand schedules for an inelastic supply

(we can easily accommodate supply schedule competition for an inelastic demand). Bidders may

differ in their valuations, transaction costs, and/or the precision of their private information.

For simplicity and with an empirical basis, we reduce heterogeneity to two groups; within each

group, agents are identical.7 We seek to identify the conditions under which there exists a

linear equilibrium with symmetric treatment of agents in the same group (i.e., we are looking

for equilibria such that demand functions are both linear and identical among individuals of the

same type). After showing that any such equilibrium must be unique, we derive comparative

statics results.

More specifically, our analysis establishes that the number of group members, the transac-

tions costs, the extent to which bidders’valuations are correlated, and the precision of private

information affect the sensitivity of traders’demands to private information and prices. When

valuations are more correlated, traders react less to the private signal and to the price. We

also find that the relative price impact of a group increases with the precision of its private

information and decreases with its transaction costs. Furthermore, if the transaction costs of a

group increase, then the traders of the other group respond strategically by diminishing their

reaction to private information and submitting steeper schedules. This result is consistent with

the empirical findings of Cassola et al. (2013) in European post-crisis liquidity auctions.

If a group of traders is stronger in the sense described previously (i.e., if its private infor-

mation is more precise, its transaction costs are lower, and it is more oligopolistic), then the

members of that group react more (than do the bidders of the other group) to the private signal

and also to the price. This result may help explain the finding of Hortaçsu and Puller (2008)

for the Texas balancing market where, there is no accounting for private information on costs

that, small firms use steeper schedules than the theory would predict.8

7All traders in a group receive the same signal. In case one group does not receive a signal we reproduce the

information structure in Grossman and Stiglitz (1980) of uninformed and informed traders.
8Linear supply function models have been used extensively for estimating market power in wholesale elec-

tricity auctions. Holmberg et al. (2013) provide a foundation for the continuous approach as an approximation

to the discrete supply bids in a spot market. In their experimental work, Brandts et al. (2014) find that ob-

served behavior is more consistent with a supply function model than with a discrete multi-unit auction model.
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We also find that, when the expected valuations between groups differ, the auction’s expected

revenue needs not be decreasing in the transaction costs of bidders, the noise in their signals,

or the correlation of values. These findings contrast with the results obtained when groups are

symmetric. We bound the expected revenue of the auction between the revenues of auctions

involving extremal yet symmetric groups.

In this paper we consider large markets and find that, if there is both a small and a large

group of bidders, then the former (oligopsonistic) group has more price impact and yet even

the latter (large) group does not behave competitively since it retains some price impact due

to incomplete information. We also prove that the equilibrium under imperfect competition

converges to a price-taking equilibrium in the limit as the number of traders (of both groups)

becomes large.

Finally, we provide a welfare analysis. Toward that end, we characterize the deadweight loss

at the equilibrium and show how a subsidy scheme may induce an effi cient allocation. We find

that if one group is stronger (as previously defined), then it should garner a higher per capita

subsidy rate; the reason is that traders in the stronger group will behave more strategically

and so must be compensated more to become competitive. The paper also underscores how the

bidder heterogeneity (in terms of information, preferences, or group size documented in previous

work) may increase deadweight losses. In particular, when the strong group values the asset at

least as much as the weak group, the deadweight loss increases with the quantity auctioned and

also with the degree of payoff asymmetries.

Our work is related to the literature on divisible good auctions. Results in symmetric pure

common value models have been obtained by Wilson (1979), Back and Zender (1993), and Wang

and Zender (2002), among others.9 Kastl (2011) extends the Wilson model to consider discrete

bids in an independent values context. This model is extended in Hortaçsu and Kastl (2012)

and Hortaçsu et al. (2016).

Results in interdependent values models with symmetric bidders are obtained by Vives (2011,

Ciarreta and Espinosa (2010) use Spanish data in finding more empirical support for the smooth supply model

than the discrete-bid auction model.
9Wilson (1979) compares a uniform-price auction for a divisible good with an auction in which the good

is treated as an indivisible good; he finds that the price can be significantly lower if bidders are allowed to

submit bid schedules rather than a single bid price. That work is extended by Back and Zender (1993), who

compare a uniform-price auction with a discriminatory auction. These authors demonstrate the existence of

equilibria in which the seller’s revenue in a uniform-price auction can be much lower than the revenue obtained

in a discriminatory auction. According to Wang and Zender (2002), if supply is uncertain and bidders are risk

averse, then there may exist equilibria of a uniform-price auction that yield higher expected revenue than that

from a discriminatory auction.
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2014) and Ausubel et al. (2014), for example.10 Vives (2011), while focusing on the tractable

family of linear-Gaussian models, shows how increased correlation in traders’ valuations in-

creases the price impact of those traders. Bergemann et al. (2015) generalize the information

structure in Vives (2011) while retaining the assumption of symmetry. Rostek and Weretka

(2012) partially relax that assumption and replace it with a weaker “equicommonality” as-

sumption on the matrix correlation among the agents’values.11 Du and Zhu (2015) consider a

dynamic auction model with ex post equilibria. For the case of complete information, progress

has been made in divisible good auction models by characterizing linear supply function equilib-

ria (e.g., Klemperer and Meyer 1989; Akgün 2004; Anderson and Hu 2008). An exception that

incorporates incomplete information is the paper by Kyle (1989), who considers a Gaussian

model of a divisible good double auction in which some bidders are privately informed and

others are uninformed.12 Sadzik and Andreyanov (2016) study the design of robust exchange

mechanisms in a two-type model similar to the one we present here.

Despite the importance of bidder asymmetry, results in multi-unit auctions have been dif-

ficult to obtain. As a consequence, most papers that deal with this issue focus on auctions

for a single item. In sealed-bid, first-price, single-unit auctions, an equilibrium exists under

quite general conditions (Lebrun 1996; Maskin and Riley 2000a; Athey 2001; Reny and Zamir

2004). Uniqueness is explored in Lebrun (1999) and Maskin and Riley (2003). Maskin and

Riley (2000b) study asymmetric auctions, and Cantillon (2008) shows that the seller’s expected

revenue declines as bidders become less symmetric. On the multi-unit auction front, progress

in establishing the existence of monotone equilibria has been made by McAdams (2003, 2006);

those papers address uniform-price auctions characterized by multi-unit demand, interdepen-

dent values and independent types.13 Reny (2011) stipulates more general existence conditions

that allow for infinite-dimensional type and action spaces; these conditions apply to uniform-

price, multi-unit auctions with weakly risk-averse bidders and interdependent values (and where

10Ausubel et al. (2014) find that, in symmetric auctions with decreasing linear marginal utility, the seller’s

revenue is greater in a discriminatory auction than in a uniform-price auction. Pycia and Woodward (2016)

demonstrate that a discriminatory pay-as-bid auction is revenue-equivalent to the uniform-price auction provided

that supply and reserve prices are set optimally.
11This assumption states that the sum of correlations in each column of this matrix (or, equivalently, in each

row) is the same and that the variances of all traders’ values are also the same. Unlike our model, Rostek

and Weretka’s (2012) model maintains the symmetry assumption as regards transaction costs and the precision

of private signals. The equilibrium they derive is therefore still symmetric because all traders use identical

strategies.
12Lambert et al. (2016) extend the Kyle (1985) model to general correlation patterns among random variables.
13McAdams (2006) uses a discrete bid space and atomless types to show that, with risk neutral bidders,

monotone equilibria exist. The demonstration is based on checking that the single-crossing condition used by

Athey (2001) for the single-object case extends to multi-unit auctions.
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bids are restricted to a finite grid).

The rest of our paper is organized as follows. Section 2 outlines the model. Section 3

characterizes the equilibrium, analyzes its existence and uniqueness, and derives comparative

statics results. We address large markets in Section 4 and develop the welfare analysis in

Section 5. Section 6 concludes. Proofs are gathered in Appendix A and complementary material

in Appendix B.

2 The model

Traders, of whom there are a finite number, face an inelastic supply for a risky asset. Let Q

denote the aggregate quantity supplied in the market. In this market there are buyers of two

types: type 1 and type 2. Suppose that there are ni traders of type i, i = 1, 2. In that case, if

the asset’s price is p, then the profits of a representative type-i trader who buys xi units of the

asset are given by

πi = (θi − p)xi − λix2
i /2.

So, for any trader of type i, the marginal benefit of buying xi units of the asset is θi − λixi,
where θi denotes the valuation of the asset and λi > 0 reflects an adjustment for transaction

costs or opportunity costs (or a proxy for risk aversion). Traders maximize expected profits and

submit demand schedules, after which the auctioneer selects a price that clears the market. The

case of supply schedule competition for inelastic demand is easily accommodated by considering

negative demands (xi < 0 ) and a negative inelastic supply (Q < 0). In this case, a producer of

type i has a quadratic production cost −θixi + λix
2
i /2.

We assume that θi is normally distributed with mean θi and variance σ2
θ, i = 1, 2. The

random variables θ1 and θ2 may be correlated, with correlation coeffi cient ρ ∈ [0, 1]. Therefore,

cov(θ1, θ2) = ρσ2
θ.
14 All type-i traders receive the same noisy signal si = θi + εi, where εi is

normally distributed with null mean and variance σ2
εi
. Error terms in the signals are uncor-

related across groups (cov(ε1, ε2) = 0) and are also uncorrelated with valuations of the asset

(cov(εi, θj) = 0, i, j = 1, 2).

In our model, two traders of distinct types may differ in several respects:

• different willingness to possess the asset (θ1 6= θ2),

• different transaction costs (λ1 6= λ2), and/or

• different levels of precision of private information (σ2
ε1
6= σ2

ε2
).

14The value of ρ will depend of the type of security. In this sense, Bindseil et al. (2009) argue that the

common value component is less important in a central bank repo auction than in a T-bill auction.
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Applications of this model are Treasury auctions and liquidity auctions. For Treasury auc-

tions, θi is the private value of the securities to a bidder of type i; that value incorporates

not only the resale value but also idiosyncratic elements as different liquidity or portfolio im-

munization needs of bidders in the two groups. Financial intermediaries may assign different

values to the Treasury instruments according to their use as collateral. In particular, primary

dealers may attach a value to a bond beyond resale value to be used as collateral in operations

with the Fed. For liquidity auctions, θi is the price (or interest rate) that group i commands

in the secondary interbank market (which is over-the-counter). Here λi reflects the structure

of a counterparty’s pool of collateral in a repo auction. A bidder bank prefers to offer illiquid

collateral to the central bank in exchange for funds; as allotments increase, however, the bidder

must offer more liquid types of collateral which have a higher opportunity cost. This yields a

declining marginal valuation.15

3 Equilibrium

Denote by Xi the strategy of a type-i bidder, i = 1, 2, which is a mapping from the signal space

to the space of demand functions. Thus, Xi(si, ·) is the demand function of a type-i bidder
that corresponds to a given signal si. Given her signal si, each bidder in a Bayesian equilibrium

chooses a demand function that maximizes her conditional profit (while taking as given the

other traders’strategies). We assume that there is a unique market clearing price given the

submitted demand schedules and signal realizations.16 Our attention will be restricted to

anonymous linear Bayesian equilibria in which strategies are linear and identical among traders

of the same type (for short, equilibria).

Definition. An equilibrium is a linear Bayesian equilibrium such that the demand functions

for traders of type i, i = 1, 2, are identical and equal to

Xi(si, p) = bi + aisi − cip,

where bi, ai, and ci are constants.

3.1 Equilibrium characterization

Consider a trader of type i. If rival’s strategies are linear and identical among traders of

the same type and if the market clears, that is, if (ni − 1)Xi(si, p) + xi + njXj(sj, p) = Q,

15See Ewerhart et al. (2010).
16If there is no market clearing price the market shuts down and if there are multiple clearing prices the

auctioneer choses the one that maximizes volume traded.
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for j = 1, 2 and j 6= i, then this trader faces the residual inverse supply p = Ii + dixi, where

Ii = ((ni − 1) (bi + aisi) + nj (bj + ajsj)−Q) / ((ni − 1) ci + njcj) and di = 1/ ((ni − 1) ci + njcj).

The slope of residual supply (di) is an index of the trader’s market power or price impact.17

Indeed, by putting one more unit in the market a trader of type i will move the price by di.

A competitive trader would face a flat residual supply (di = 0). The slope di increases, and

the residual supply becomes less elastic, the steeper are the demand functions submitted by the

other traders (i.e., the lower are ci and cj).

As a consequence, this trader’s information set (si, p) is informationally equivalent to (si, Ii).

Note that only the intercept of the residual supply for a trader of type i is informative about

the signal of traders of type j. The bidder therefore chooses xi to maximize

E [πi|si, p] = (E [θi|si, Ii]− Ii − dixi)xi − λix2
i /2.

The first-order condition (FOC) is given by E [θi|si, Ii]− Ii − 2dixi − λixi = 0, or equivalently,

Xi (si, p) = (E [θi|si, p]− p) / (di + λi) . (1)

The second-order condition (SOC) that guarantees a maximum is 2di + λi > 0, which implies

that di + λi > 0.

Using the expression for Ii and assuming that aj 6= 0, we can show that (si, p) is informa-

tionally equivalent to (s1, s2). Therefore, since E [θi|si, p] = E [θi|si, Ii], it follows that

E [θi|si, p] = E [θi|s1, s2] . (2)

According to Gaussian distribution theory,

E [θi|si, sj] = θi + Ξi

(
si − θi

)
+ Ψi

(
sj − θj

)
, (3)

where

Ξi =
1− ρ2 + σ̂2

εj(
1 + σ̂2

εi

) (
1 + σ̂2

εj

)
− ρ2

and Ψi =
ρσ̂2

εi(
1 + σ̂2

εi

) (
1 + σ̂2

εj

)
− ρ2

,

with σ̂2
εi

= σ2
εi
/σ2

θ and σ̂
2
εj

= σ2
εj
/σ2

θ. We remark that Equation (3) has the following implications.

1. The private signal si is useful for predicting θi whenever 1 − ρ2 + σ̂2
εj
6= 0, that is, when

either the liquidation values are not perfectly correlated (ρ 6= 1) or type-j traders are

imperfectly informed about θj (σ2
εj
6= 0).

17We assume that (ni − 1) ci + njcj 6= 0.
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2. The private signal sj is useful for predicting θi whenever ρσ̂
2
εi
6= 0, that is, when the private

liquidation values are correlated (ρ 6= 0) and type-i traders are imperfectly informed about

θi (σ2
εi
6= 0).

Our first proposition summarizes the previous results. It shows the relationship between

ai and ci in equilibrium and also indicates that these coeffi cients are positive (see Lemma A1

and A2 in Appendix A for more details).

Proposition 1. Let ρ < 1. If equilibrium exists, then it is unique and the demand

function of a trader of type i (i = 1, 2), Xi(si, p) = bi + aisi − cip, is given by Xi (si, p) =

(E [θi|si, p]− p) / (di + λi), with di = 1/ ((ni − 1) ci + njcj). In addition, we have that ai =

∆ici > 0, where ∆i = 1
/(

1 + (1 + ρ)−1 σ̂2
εi

)
, ci = (1− Λi)/ (di + λi), where Λi ≡ Ψi

(
nici
njcj

+ 1
)
/∆j,

and the ratio c1/c2 is the unique positive solution of a cubic polynomial.

The term Λi in the price coeffi cient in the equilibrium demand ci is the information-sensitivity

weight of the price (i.e., the coeffi cient of the price in E [θi|si, p]). The larger Λi, the lower the

price coeffi cient in demand will be (lower ci). From the perspective of a bidder in group i a

high price conveys the news that sj is high and, therefore, that the value θi will tend to be

high. If the price is more informative about θi, then a bidder in group i is more cautious and

submits then a steeper schedule. Furthermore, Λi vanishes when Ψi = 0, that is, when either

the valuations are uncorrelated (ρ = 0) or the private signal si is perfectly informative (σ2
εi

= 0),

since in those cases the price conveys no additional information to a trader of type i. In this case

ci = 1/ (di + λi) and since di = 1/ ((ni − 1) ci + njcj) we observe, therefore, a basic strategic

complementarity in the slopes of the demands submitted by the traders. According to this

strategic effect if the rivals of a trader of type i, say traders of type j, bid a steeper demand

function with a lower cj, then the slope of the (inverse) residual supply di for this trader increases

and so he also has an incentive to bid a steep demand function (lower ci). However, if Ψi > 0

then there is also an inference effect from the information conveyed by the price. A lower cj
increases Λi and also will tend to depress ci. This is so because a lower reaction to the price and

signal by rivals induces a trader of type i to give a higher weight to the price in the estimation

of his value and, hence,the magnitude of the inference effect raises.

Since ai > 0 and ci > 0, for i = 1, 2, it follows that in equilibrium the higher the value of

the trader’s observed private signal (or the lower the price), the higher the quantity she will

demand. When σ2
εi
> 0 we have ai < ci, since ∆i < 1 in this case; when σ2

εi
= 0, we have ∆i = 1

and ai = ci. Observe that we can write the demand as Xi(si, p) = bi + ci (∆isi − p).
Because p is a linear function of s1 and s2, for i = 1, 2 we have E [θi|si, p] = E [θi|s1, s2] (i.e.,

Equation (2) holds). The equilibrium price is therefore privately revealing, in other words, the
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private signal and the price enable a type-i trader to learn as much as about θi if she had access

to all the information available in the market, (s1, s2).

If ρ = 0 or if both signals, i = 1, 2, are perfectly informative (σ2
εi

= 0), or useless (or σ2
εi

=

∞), then bidders do not learn about θi from prices. Hence, E [θi|si] = E [θi|si, p] = E [θi|s1, s2]

for i = 1, 2. The demand functions are given by

Xi (si, p) = (E [θi|si]− p) / (di + λi) , i = 1, 2.

Hence, ci = 1/ (di + λi) and in this case, the equilibrium coincides with the full-information

equilibrium (denoted by superscript f).18 Furthermore, when ρ = 0, di is independent of σ2
εi
,

i = 1, 2; and when σ2
εi

= 0 or σ2
εi

=∞, for i = 1, 2, di is independent of ρ.

Our next proposition summarizes when equilibrium exists. If an equilibrium does exist, then

Proposition 1 implies that it is unique.

Proposition 2. Equilibrium exists iff ci > 0, i = 1, 2.

Complete information. When ρ = 0, or σ2
εi

= 0, or σ2
εi

=∞, i = 1, 2, equilibrium exists iff

n1 + n2 ≥ 3.

Incomplete information. When ρσ2
εi
> 0 and σ2

εj
≥ 0, j 6= i, and ρ < 1, we find a necessary

and suffi cient condition for ci > 0, i = 1, 2 (see Proposition 2A in Appendix A). It follows that

equilibrium exists if: (i) n1, n2 are large enough; (ii) given ni, nj is large enough and ρ low

enough, for i, j = 1, 2, j 6= i, (iii) σ2
εj

= 0 and nj ≥ 2.

Remark 1. Equilibrium does not exist for ρ close to 1 and low ni. This is so because

in those cases the market power of traders explodes and the demand schedules would become

vertical (with ci → 0, i = 1, 2). As ρ increases the informational component of the price is

more important and traders submit steeper demands (see Proposition 3 below). Neither does

an equilibrium exist when ρ = 1. If the price reveals a suffi cient statistic for the common

valuation, then no trader has an incentive to place any weight on her signal. But if traders put

no weight on signals, then the price contains no information about the common valuation. This

conundrum is related to the Grossman-Stiglitz (1980) paradox. In fact, ρ < 1 and n1 + n2 ≥ 3

are necessary conditions for the existence of equilibrium with incomplete information (in line

with Kyle 1989; Vives 2011).19

18In the full (shared) information setup, traders can access (s1, s2). In this framework the price does not

provide any useful information.
19Du and Zhu (2016) consider ex post nonlinear equilibria in a bilateral divisible double auction and show

that with more than three symmetric traders there are no nonlinear equilibria in the class of smooth demands

downward sloping in price and upward sloping in signals.
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To develop a better understanding of the equilibrium and the condition that guarantees

its existence, we consider three particular cases of the model: a monopsony competing with a

fringe, symmetric groups, and an informed and an uninformed group.

Monopsony competing with fringe

Corollary 1. For n2 = 1 the equilibrium exists if 1 − ρ2 > (2ρ− 1) σ̂2
ε1
and n1 >

n̄1

(
ρ, σ̂2

ε1
, σ̂2

ε2

)
, where n̄1 increases with ρ, σ̂2

ε1
, and σ̂2

ε2
. If, also, λ2 = 0 and σ2

ε2
= 0, then

n̄1

(
ρ, σ̂2

ε1
, 0
)

= 1 + ρσ̂2
ε1

/(
1− ρ2 − (2ρ− 1) σ̂2

ε1

)
and x2 = c2 (θ2 − p), with c2 = n1c1.

An equilibrium with linear demand functions exists provided there is a suffi ciently competi-

tive trading environment (n1 high enough, and with the threshold n̄1 increasing with ρ and σ̂
2
εi

(i = 1, 2), which raise the informational component of the price). In the particular case where

λ2 = 0 and σ2
ε2

= 0, expressions for the equilibrium coeffi cients can be characterized explic-

itly (see Appendix A). From the expressions for ci (i = 1, 2) it follows that, if n1 = n̄1, then

the equilibrium cannot exist because in this case the demand functions would be completely

inelastic (ci = 0, i = 1, 2).

Symmetric groups

Consider the following symmetric case: ni = n, λi = λ, and σ2
εi

= σ2
ε, i = 1, 2. We find that

equilibrium exists iff n > 1 + ρσ̂2
ε

/(
(1− ρ)

(
1 + ρ+ σ̂2

ε

))
, where σ̂2

ε = σ2
ε/σ

2
θ. Therefore, the

equilibrium’s existence is guaranteed provided either that n is high enough or that ρ or σ̂2
ε is

low enough.

Vives (2011) also analyzes divisible good auctions with symmetric bidders, but in his model

the bidders receive different private signals. The condition that guarantees existence of an

equilibrium in Vives’setup is n > 1+nρσ̂2
ε

/(
(1− ρ)

(
1 + (2n− 1)ρ+ σ̂2

ε

))
. Direct computation

yields that the condition derived in the model of Vives is more stringent than the condition

derived in our setup. The reason is that, in Vives (2011), the degree of asymmetry in information

(and induced market power) is greater because each of the 2n traders receives a private signal.

Informed and uninformed groups

Consider the case where group 1 is uninformed (with no signal) while group 2 is informed

(σ2
ε2
< ∞). This is akin to the information structure considered by Grossman and Stiglitz

(1980). Then equilibrium exists if and only if ρ < n2(n1+n2−2)
2n1+n2−2

, which again holds for ρ small (the
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threshold is increasing in n2 and decreasing in n1 for n2 > 2). We have that a2 =
(
1 + σ̂2

ε2

)−1
c2.20

This expression is different from the case in which group 1 is informed (σ2
ε1
< ∞) since then

a2 =
(

1 +
σ̂2ε2
1+ρ

)−1

c2. Therefore, the equilibrium that we obtain here is not the limit of the

general case when σ2
ε1
→∞ for ρ > 0. This is so, since when ρ > 0, no matter how large σ2

ε1
is,

but finite, there is learning from the price by the two groups. By contrast, when group 1 does

not receive any private signal, there is no learning from the price by group 2. Furthermore, in

this last case, we have that c1 and c2 (d1 and d2) are independent of σ2
ε2
, and b2 is independent

of θ1 and Q.

3.2 Comparative statics

We start by considering how the model’s underlying parameters affect the equilibrium and, in

particular, price impact (Proposition 3). We then explore how the equilibrium is affected when

there are two distinct groups of traders, that is, a strong group and a weak group (Corollary 2).

Proposition 3. Let ρσ2
ε1
σ2
ε2
> 0. Then, for i = 1, 2, i 6= j, the following statements hold.

(i) An increase in θi or Q, or a decrease in θj, raises the demand intercept bi.

(ii) An increase in λi, λj, σ2
εi
, σ2

εj
, or ρ makes demand less responsive to private signals and

prices (lower ai and ci) and increases price impact (di).

(iii) If σ2
εi
and/or λi increase, then di/dj decreases.

(iv) If ni and/or nj increase, then di decreases.

Remark 2. In the complete information setting (ρ = 0 or when σ2
εi

= 0, or σ2
εi

= ∞,
i = 1, 2) prices do not convey information, dfi and dfj , j 6= i, are independent of σ2

εi
; and

comparative statics of dfi , d
f
j on λi, ni hold as in the proposition. Indeed, if ρ = 0, then: (a)

both ci and di (as well as cj and aj, j 6= i) are independent of σ2
εi
; (b) ai decreases with σ2

εi
; and

(c) bi is independent of both Q and θj. If σ2
εi

= 0 for i = 1, 2, then bi = 0, and ci, cj, ai, aj, di,

and dj, i = 1, 2, j 6= i, are independent of ρ. That is, for the information parameters to matter

for price impact, it is necessary that prices convey information. Proposition 3(ii) implies that,

if ρσ2
ε1
σ2
ε2
> 0, then dfi < di, i = 1, 2. Thus, asymmetric information increases the price impact

of traders in both groups beyond the full-information level.

Remark 3. When groups are symmetric then results (ii) and (iv) hold when λi = λj, σ2
εi

=

σ2
εj
, and ni = nj move together.

The only equilibrium coeffi cient affected by the quantity offered in the auction (Q) and by

the prior mean of the valuations (θi and θj) is bi. Proposition 3(i) indicates that if Q increases,

20In the case where σ2ε1 <∞ and σ2ε2 = 0, then b2 = 0 and a1 = c1.
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then all the bidders will increase their demand (higher b1 and b2). Moreover, if the prior mean of

the valuation of group i increases, then the bidders in this group will demand a greater quantity

of the risky asset (higher bi). Then the intercept Ij of the inverse residual supply for the group j

bidder rises in response to a higher θi. That reaction leads the traders in group j to reduce

their demand for the risky asset (and lower bj). We see thus here a strategic substitutability in

demand intercepts.

All these results provide testable predictions. Furthermore, if we have estimates of trans-

actions costs, precision of the signals and correlation of values we can predict how changes in

these parameters lead to changes in the slopes of submitted demands and the price impact of

the two groups.

Part (ii) of Proposition 3 shows how the response to private information and price varies

with several parameters. If the transaction costs for a bidder of type i, λi, increase, then the

bidder sets lower ai and ci. Moreover, any increase in a group’s transaction costs also affects

the behavior of traders in the other group. If λi increases, then ai and ci decrease, in which case

the slope of the inverse residual supply for group j increases (higher dj) as well as the weight on

the price Λj in the estimation of θj. That is, both the strategic and the inference effects work

in the same direction. This change leads group-j traders to reduce their demand sensitivity to

signals and prices (lower aj and cj). We can therefore see how an increase in the transaction

costs for group-i traders (say, a deterioration of their collateral in liquidity auctions that raises

λi) leads not only to steeper demands for bidders in group i but also, as a reaction, to steeper

demands for group-j traders.

We also analyze how the response to private information and price varies with a change in

the precision of private signals. If the private signal of type-i bidders is less precise (higher

σ2
εi
), then their demand is less sensitive to private information and prices. A private signal of

reduced precision also gives the type-i bidder more incentive to consider prices when predicting

θi (higher Λi),21 which leads in turn to this bidder having a steeper demand function (lower ci).

The same can be said for a bidder of type j because of strategic complementarity in the slopes

of demand functions (the decrease in ci leads to increased dj and to lower aj and cj in turn).22

This result (in the supply competition model) may help explain why, in the Texas balancing

market, small firms use steeper supply functions than predicted by theory (Hortaçsu and Puller

2008). Indeed, smaller firms may receive lower-quality signals owing to economies of scale in

information gathering.

We also find that the more highly the valuations are correlated (higher ρ), the less is trader

21It is easy to check that Ψi/∆j , i 6= j, i = 1, 2, is increasing in σ2εi .
22An increased σ2εi leads to lower inference component in the price for a bidder of type j, Λj , but this effect

is overpowered by the increase in dj in its influence on cj .
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responsiveness to private signals (lower ai, i = 1, 2) and the steeper are inverse demand functions

(lower ci, i = 1, 2). We can explain these results by recalling that, when the valuations are

correlated (ρ > 0), a type-i trader learns about θi from prices. In fact, the information-

sensitivity weight on the price (Λi, i = 1, 2) is higher when ρ is larger,23 in which case demand

is less sensitive to private information. The rationale for the relationship between the correlation

coeffi cient (ρ) and the slopes of demand functions is as follows. An increment in the price of

the risky asset makes an agent more optimistic about her valuation, which leads to less of a

reduction in demand quantity than in the case of uncorrelated valuations.24

Cassola et al. (2013) show how distressed bidders after the August 2007 shock suffered a large

decline in the valuation of their collateral in the interbank market, which in terms of our model

shows up in an increased λi. Those banks had also an increase in the valuation for liquidity

(which in our model shows up as an increased θi).25 In Cassola et al. (2013) it is assumed that

the private valuations of the traders are independent since the common component is known.

This means that there are no information effects. However, if the common value component

is not known, as it plausible to believe, and if in the crisis the signals of the groups become

noisier, in particular for those of the group hit by the shock, and the correlation of valuations

increases, then all these effects reinforce the steepening of the demand schedules (as found in

Cassola et al. (2013)).

Figure 1 illustrates the case of initially identical groups that become differentiated after a

shock induces a higher λ1, noise in the signal for group 1 (σ2
ε1
) and correlation ρ as well as

the groups’willingness to pay for liquidity (both θ1 and θ2, which affect the intercepts of the

demand functions). This corresponds to the case of a group of banks being hit in the crisis and

the quality of their information deteriorating (or their perceived uncertainty increasing) as well

as the correlation of valuations raising. Note that the expected marginal valuation of liquidity

for the safe group need not change a lot (consistent with findings of Cassola et al. (2013)).

23It is easy to check that Ψi/∆j , i 6= j, i = 1, 2,is increasing in ρ.
24A high price conveys the good news that the private signal received by other group’s traders is high. When

valuations are positively correlated, a bidder infers from the high private signal of the other group that her own

valuation is high.
25The marginal valuation of a bidder of type i is θi − λixi. This is akin to the marginal valuation in Figure

4 in Cassola et al. (2013). There a decreased collateralized borrowing capacity of a bidder (K) will make the

slope of the marginal valuation steeper.
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Figure 1: Comparative statics on demand functions n1 = 5;n2 = 5;σ2
θ = 5;Q = 4.

Proposition 3(iii) states that any increase in the signal’s noise or in group i’s transaction

costs has the effect of reducing its relative price impact, since then the ratio di/dj (i 6= j)

decreases. Finally, part (iv) formalizes the anticipated result that an increase in the number of

auction participants (higher ni or nj) reduces the price impact of traders in both groups.

Corollary 2 (Strong and weak groups). Suppose that σ2
ε1
≥ σ2

ε2
, λ1 ≥ λ2, and n1 ≥ n2,

and suppose that at least one of these inequalities is strict. Then, in equilibrium, the following

statements hold.

(i) The stronger group (here, group 2) reacts more both to private information and to prices

(a1 < a2, c1 < c2) and has more price impact (d1 < d2) than does the weaker group.

(ii) The value of the difference d1 + λ1 − (d2 + λ2) is, in general, ambiguous:

- d1 +λ1 > d2 +λ2 whenever the differences between groups mainly stem from the transaction

costs and λ1/λ2 is high enough (with complete information, d1 + λ1 > d2 + λ2 iff λ1 > λ2);

- d1 + λ1 < d2 + λ2 with λ1 > λ2 whenever ρ is large.

Part (i) of this corollary shows that if a group of traders is less informed, has higher transac-

tion costs, and is more numerous, then it reacts less both to private signals and to prices. Observe

in particular that group-1 traders, having less precise private information, rely more on the price

for information (higher Λ1); as a result, their overall price response (c1 = (1− Λ1) / (d1 + λ1))
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is smaller. Similarly, group-1 traders, for whom n1 is larger, put more information-sensitivity

weight on the price (which depends more strongly on s1).

The precise conditions for Corollary 2(ii), which is useful for comparing allocations across

groups, are given in Corollary 2A(ii) in Appendix A. When we have that d1 +λ1 < d2 +λ2 with

λ1 > λ2 it means that traders in the group with lower transaction costs are more cautious in

order to diminish price impact.

3.3 Equilibrium quantities and expected revenue

3.3.1 Equilibrium quantities

Let ti = E [θi|s1, s2], i = 1, 2, be the predicted values with full information (s1, s2). After some

algebra, it follows that equilibrium quantities are functions of the vector of predicted values

t = (t1, t2):

xi (t) =
nj (ti − tj)

u︸ ︷︷ ︸
xVi (t)

+
dj + λj
u

Q︸ ︷︷ ︸
xCi (t)

, i = 1, 2, j 6= i, (4)

where u = ni (dj + λj) + nj (di + λi) . (5)

Observe that, according to these expressions, the equilibrium quantities can be decomposed

into two terms: a valuation trading term and a clearing trading term, which we denote by

(respectively) xVi (t) and xCi (t) for group i, i = 1, 2. With regard to the information trading

term, it vanishes when t1 = t2, but has a positive (resp. negative) value for the group with the

higher (resp. lower) value of ti. Higher "total" transaction costs (di + λi) lower the response to

valuation differences ti− tj. Moreover, n1x
V
1 (t)+n2x

V
2 (t) = 0. As for the clearing trading term,

we remark that it vanishes when Q = 0; otherwise, it is positive for both groups yet lower (resp.

higher) for the group with higher (resp. lower) di + λi. In addition, n1x
C
1 (t) + n2x

C
2 (t) = Q.

Taking expectations in Equation (4), we have

E [x1 (t)]− E [x2 (t)] =
(n1 + n2)

(
θ1 − θ2

)
+ (d2 + λ2 − (d1 + λ1))Q

n1 (d2 + λ2) + n2 (d1 + λ1)
.

Group 1 trades more when it values the asset more highly (θ1 > θ2) and when its traders

are less cautious (d2 +λ2 > d1 +λ1) than group 2. By combining Corollary 2 with the equation

just displayed, we obtain the following remarks.

Remark 4. If Q is low enough, then E [x1 (t)] > E [x2 (t)] whenever θ1 > θ2. In contrast, if

Q is high enough, then E [x1 (t)] > E [x2 (t)] whenever d2 +λ2 > d1 +λ1. Under the assumptions

of Corollary 2, this latter inequality is satisfied if (34) holds or if λ1/λ2 is suffi ciently low.

16



Remark 5. When Q = 0 (i.e., the so-called double auction case), then E [x2 (t)] < 0 <

E [x1 (t)] iff θ1 > θ2. Then group 1 consists of buyers and group 2 of sellers.

3.3.2 Expected price and revenue

Our aim here is to identify factors that affect expected price and revenue in the auction (see

Appendix B for an analysis of bid shading). Let t̃ = (n1t1 + n2t2) / (n1 + n2). From the demand

of bidders it follows that p (t) = ti − (di + λi)xi (t), i = 1, 2. Therefore,

p (t) = t̃− ((d1 + λ1)n1x1 (t) + (d2 + λ2)n2x2 (t)) /(n1 + n2).

From the above expression we can derive the expected price:

E [p (t)] =

(
n1

d1 + λ1

θ1 +
n2

d2 + λ2

θ2 −Q
)/(

n1

d1 + λ1

+
n2

d2 + λ2

)
. (6)

It is worth noting that, in the double auction case (Q = 0), E [p] is a convex combination of

θ1 and θ2. Also, for symmetric groups (except possibly with respect to the means) we have

E [p] =
(
θ1 + θ2

)
/2.

Proposition 4. Let ρσ2
ε1
σ2
ε2
> 0. In equilibrium, the following statements hold.

(i) If θ1 = θ2, then the expected price is increasing in ni but is decreasing in λi, σ2
εi
, and ρ,

i = 1, 2. Otherwise, if
∣∣θ1 − θ2

∣∣ is large enough, then these results need not hold.
(ii) The seller’s expected revenue E [p]Q:

- increases with θi for i = 1, 2;

- is maximum when Q =
(

n1
d1+λ1

θ1 + n2
d2+λ2

θ2

)/
2, which increases with ni and θi and de-

creases with ρ, λi and σ2
εi
, i = 1, 2.

Corollary 3. The expected revenue is between (a) the larger expected revenue of the auction
in which both groups are ex ante identical with a large number of bidders (each group with

max {n1, n2}), high expected valuation (max
{
θ1, θ2

}
), low transaction costs (min {λ1, λ2}) and

precise signals (min
{
σ2
ε1
, σ2

ε2

}
) and (b) the smaller expected revenue of the auction in which both

groups are ex ante identical but with the opposite characteristics (i.e., min {n1, n2}, min
{
θ1, θ2

}
,

max {λ1, λ2}, and max
{
σ2
ε1
, σ2

ε2

}
).

Remark 6. If ρ = 0, then E [p] is independent of σ2
εi
(i = 1, 2), and if σ2

εi
= 0, i = 1, 2,

then E [p] is independent of ρ. The reason is that in both cases, di is independent of σ2
εi
and ρ.

If σ2
ε1

=∞, then E [p] is independent of σ2
ε2
.

Proposition 4 indicates that the relationship between expected price (on the one hand) and

λi, σ2
εi
, and ρ, i = 1, 2 (on the other hand) is potentially ambiguous. For example, if θ2 − θ1 is
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high enough, then E [p] is decreasing in n1; yet, if θ1 = θ2, then the derived results are in line

with those in the symmetric case, where E [p] = θ − (d+ λ)Q/2n (see Vives 2010, Prop. 2).

We should like to understand how ex ante differences among bidders affect the seller’s ex-

pected revenue. Suppose that group 2 is our strong group; it has lower transaction costs

(λ2 < λ1), is less numerous (n2 < n1), and is better informed (σ2
ε2
< σ2

ε1
). If this group values

the asset less, θ2 < θ1 (resp., values it more, θ2 > θ1), then expected revenue is lower (resp.,

higher) than in the case where θ1 = θ2. If θ1 ≈ θ2, then Proposition 4(i) suggests that group 2’s

relatively small size (n2 < n1) reduces the seller’s expected revenue, although both its relatively

low transaction costs (λ2 < λ1) and its relatively precise signals (σ2
ε2
< σ2

ε1
) have the opposite

effect. So in general, the ex ante differences between the two groups have an ambiguous effect

on the seller’s expected revenue. Nonetheless, part (ii) of Proposition 4 directly follows from

part (i).

4 Large markets

Our objective in this section is to determine whether (or not) the equilibrium under imperfect

competition converges to a price-taking equilibrium in the limit as the number of traders becomes

large. We examine two possible scenarios: in the first, only group 1 is large; in the second, both

groups of bidders are large. The per capita supply (denoted by q) is assumed to be inelastic,

that is, Q = (n1 + n2)q.

4.1 Oligopsony with competitive fringe

Proposition 5. Let ρσ2
ε1
> 0. Suppose that n1 →∞ and n2 <∞. Then an equilibrium exists

iff n2 > n̄2

(
ρ, σ̂2

ε1
, σ̂2

ε2

)
, where n̄2 is increasing in ρ and σ̂

2
ε1
and where n̄2 is decreasing in σ̂

2
ε2

whenever (2ρ− 1) σ̂2
ε1
< 1−ρ2. An agent in the large group absorbs the inelastic per capita supply

in the limit ( lim
n1→∞

b1 = q, lim
n1→∞

a1 = lim
n1→∞

c1 = 0) and retains some price impact ( lim
n1→∞

d1 >

0), while an agent in the small group commands a higher degree of market power ( lim
n1→∞

d2 >

lim
n1→∞

d1).

When n2 = 1, the existence condition stated in Proposition 5 boils down to (2ρ− 1) σ̂2
ε1
<

1 − ρ2 from Corollary 1. Equation (38) in Appendix A shows that, when n2 = n̄2

(
ρ, σ̂2

ε1
, σ̂2

ε2

)
,

the demand functions for bidders in group 2 would be completely inelastic
(

lim
n1→∞

c2 = 0

)
. This

explains why the inequality n2 > n̄2

(
ρ, σ̂2

ε1
, σ̂2

ε2

)
is required for the existence of equilibrium.

Neither group 1 nor group 2 has flat aggregate demand in the limit, and each group has some

price impact. We see that an agent in the large group just absorbs the inelastic per capita supply,
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behaving like a "Cournot quantity setter", and keeping some price impact ( lim
n1→∞

d1 > 0), while

bidders in the small group command relatively more market power ( lim
n1→∞

d2 > lim
n1→∞

d1). It is

worth to remark that the large group retains price impact in the limit only if this group learns

from the price (incomplete information and correlation of values, ρσ2
ε1
> 0). In this case the

aggregate demand of group 1 does not become flat, lim
n1→∞

n1c1 <∞. If ρσ2
ε1

= 0, lim
n1→∞

n1c1 =∞
and there is no price impact in the limit: lim

n1→∞
di = 0, i = 1, 2. It is easy to see also that, in the

limit, the price depends only on the valuations and price impact of agents in the competitive

fringe: lim
n1→∞

p = E [θ1|s1, s2]−
(

lim
n1→∞

d1 + λ1

)
q.26

If the small group is fully informed (σ2
ε2

= 0) and the large group is entirely uninformed

(σ2
ε1
→ ∞), then: n̄2 = 2ρ; an equilibrium always exists for n2 > 2; and the equilibrium

coeffi cients for group 2 are lim
n1→∞

b2 = 0, and lim
n1→∞

a2 = lim
n1→∞

c2 = (n2 − 2ρ) / ((n2 − ρ)λ2). In

this case, the groups’relative price impact is given by lim
n1→∞

(d2/d1) = 1 + ρ/ (n2 − ρ). As ρ

increases the relative price impact of group 2 increases also. This accords with the general

theme that increased correlation in the presence of asymmetric information raises price impact.

4.2 A large price-taking market

Consider now the following setup. There is a continuum of bidders along the interval [0, 1],

and we let q denote the aggregate (average) quantity supplied in the market. Suppose that a

fraction µi (0 < µi < 1) of these bidders are traders of type i, i = 1, 2. Then the following

proposition characterizes the equilibrium of this continuum economy and shows that it is the

limit of a finite economy’s equilibrium.

Proposition 6. Let Q = (n1 + n2)q. Suppose that n1 and n2 both approach to infinity and

that ni/(n1 + n2) converges to µi (0 < µi < 1) for i = 1, 2. Then, the equilibrium coeffi cients

converge to the equilibrium coeffi cients of the equilibrium of the continuum economy setup, which

are given by

bi =
σ̂2
εi

(
µj
(
θi − ρθj

)
+ ρλjq

)
µiρσ̂

2
εi
λj + µj

(
1− ρ2 + σ̂2

εi

)
λi
, ai =

µj (1− ρ2)

µiρσ̂
2
εi
λj + µj

(
1− ρ2 + σ̂2

εi

)
λi
, and

ci =
µj (1− ρ)

(
1 + ρ+ σ̂2

εi

)
µiρσ̂

2
εi
λj + µj

(
1− ρ2 + σ̂2

εi

)
λi
, where i, j = 1, 2, j 6= i.

26The limit expected quantity of a bidder of group 2 is given by lim
n1→∞

E [x2 (t)] =(
θ2 − θ1 +

(
lim

n1→∞
d1 + λ1

)
q

)
/

(
lim

n1→∞
d2 + λ2

)
.
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5 Welfare analysis

This section focuses on the welfare loss at the equilibrium. We characterize the equilibrium and

effi cient allocations in Subsection 5.1 and analyze deadweight losses in Subsection 5.2.

5.1 Characterizing the equilibrium and effi cient allocations

Recall that ti = E [θi|s1, s2], i = 1, 2, that is, the predicted values with full information (s1, s2)

and t = (t1, t2). The strategies in the equilibrium induce outcomes as functions of the realized

vector of predicted values t and are given in Equation (4). One can easily show that the

equilibrium outcome solves the following distorted benefit maximization program:27

max
x1,x2

E
[
n1

(
θ1x1 − (d1 + λ1)x2

1/2
)

+ n2

(
θ2x2 − (d2 + λ2)x2

2/2
)∣∣ t]

s.t. n1x1 + n2x2 = Q,

where d1 and d2 are the equilibrium parameters. The effi cient allocation would obtain if we set

d1 = d2 = 0, which corresponds to a price-taking equilibrium (denoted by superscript o). The

equilibrium strategy of a type-i bidder (i = 1, 2) will be of the form Xo
i (si, p) = boi + aoi s1− coip,

i = 1, 2, and is derived by maximizing the following program:

max
xi

(E [θi|si, p]− p)xi − λix2
i /2,

while taking prices as given. The FOC of this optimization problem yields

E [θi|si, p]− p− λixi = 0.

After identifying coeffi cients and solving the corresponding system of equations, we find that

there exists a unique equilibrium in this setup. The equilibrium coeffi cients coincide with those

in Proposition 6 for the continuum market.

Proposition 7. Let Q = (n1 +n2)q and let µi = ni/(n1 +n2) for i = 1, 2. Then there exists

a unique price-taking equilibrium, and the equilibrium coeffi cients coincide with the equilibrium

coeffi cients of the continuum setup (whose expressions are given in the statement of Proposition

6 ).

Our next corollary provides some comparative statics results.

Corollary 4. Let ρσ2
ε1
σ2
ε2
> 0. Then the only equilibrium coeffi cients affected by Q, θi, and

θj are the intercepts of the demand functions (with boi increasing in θi and Q and decreasing in

27See Lemma A3 in Appendix A.
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θj) for i, j = 1, 2 and i 6= j. Furthermore, the demands of group i are less sensitive to private

signals and prices (lower ai and ci) in response to an increase in λi, λj, ρ, σ2
εi
, and µi, and to

a decrease in µj; however, group i’s demands are not affected by σ
2
εj
.

Observe that, under competitive behavior, we can derive an additional comparative statics

result: the relationship between the equilibrium coeffi cients and the proportion of individuals in

group 1. In particular, increasing the proportion µ1 of type-1 traders leads, for those traders, to

an increased information-sensitivity weight of the price (higher Ψ1 (n1c
o
1 + n2c

o
2) (n2a

o
2)−1) and

so a lower overall response to the price (co1 = λ−1
1

(
1−Ψ1 (n1c

o
1 + n2c

o
2) (n2a

o
2)−1)); the opposite

holds for type-2 traders.

Thus the auction outcome can be obtained as the solution to a maximization problem with a

more concave objective function than the expected total surplus, which suggests that ineffi ciency

may be eliminated by quadratic subsidies (κix2
i /2, i = 1, 2) that compensate for the distortions.

The per capita subsidy rate (κi) to a trader of type i must be such that it compensates for

the distortion di (κi) while accounting for the subsidy. Since the aim is to induce competitive

behavior, the trader should be led to respond with coi to the price. This means that the exact

amount of κi must be di(co1, c
o
2), since that would be the distortion arising when traders use

the competitive linear strategies. The following proposition shows that, if subsidies are selected

properly, then bidders behave competitively and so the equilibrium allocation is effi cient.

Proposition 8. Let i = 1, 2 and i 6= j. Then the effi cient allocation is induced by the

quadratic subsidies κix2
i /2, where κi = di(c

o
i , c

o
j) = 1/

(
(ni − 1) coi + njc

o
j

)
. If ρσ2

εi
σ2
εj
> 0, then

the per capita subsidy rates (κi, i = 1, 2) increase with ρ, σ̂2
ε1
, σ̂2

ε2
, λ1, and λ2 but decrease with

n1 and n2. We have that κ1 < κ2 iff co1 < co2.

Combining Propositions 7 and 8 now yields closed-form expressions for the optimal subsidy

rates:

κi =
1

nj (1− ρ)

 (ni − 1)
(
1 + σ̂2

εi
+ ρ
)

niλjρσ̂
2
εi

+ njλi
(
1− ρ2 + σ̂2

εi

) +
ni

(
1 + σ̂2

εj
+ ρ
)

niλj

(
1− ρ2 + σ̂2

εj

)
+ njλiρσ̂

2
εj

−1

,

i = 1, 2, i 6= j. If ρ = 0 (or, with full information, if σ2
εi

= 0, i = 1, 2), then κfi =

1/
(
(ni − 1)λ−1

i + njλ
−1
j

)
, i = 1, 2. Proposition 8 implies that the optimal subsidy rates with

incomplete information and learning from prices are higher than with full information: κi > κfi

if (a) ρ > 0 and (b) at least one of σ̂2
ε1
or σ̂2

ε2
is strictly positive. If σ2

ε1
=∞ then κi, i = 1, 2, is

independent of σ2
ε2
.

Remark 7. With symmetric groups we obtain symmetric optimal subsidies which change
as described in Proposition 8 with changes in λi = λj, σ2

εi
= σ2

εj
, and ni = nj.
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Note that the optimal subsidy rates are decreasing in the number of traders because, when

there are many agents, competitive behavior is already being approached in the market without

subsidies. Moreover, sgn{κ1 − κ2} =sgn{co1 − co2}. Hence κ1 < κ2 iff co1 < co2. The implication is

that the bidders who require a higher per capita subsidy rate are the ones whose demands are

more sensitive to price. Corollary 3 allows us to conclude that, if there is a group with more

precise private information, with lower transaction costs, and that is less numerous, then it is

the group meriting a higher per capita subsidy rate. The reason is that the stronger group’s

strategic behavior is more pronounced and so it must receive more compensation in order to

become competitive.

The expected (total) optimal subsidy for group i is κiE
[
(xoi (t))2] /2.28 If θ2 ≥ θ1, then

E
[
(xo2 (t))2] > E

[
(xo1 (t))2], from which it follows that the bidders from the stronger group

(group 2) should receive the higher expected subsidy. However, if θ1 > θ2, then there are

parameter configurations under which bidders from the weaker group (group 1) should receive

the higher expected subsidy, even though κ1 < κ2. These conclusions would have to be revised

if redistributive considerations come into play.29

Our result has policy implications. It implies, for example, that a central bank seeking

an effi cient distribution of liquidity among banks should relax collateral requirements (i.e.,

provide a larger subsidy) to the strong group. This prescription sounds counterintuitive because

the effi ciency motive may conflict with the central bank’s function as lender of last resort,

which often involves shoring up weak banks (e.g., the European Central Bank relaxing the

collateral requirements for Greek banks to avoid a meltdown of that country’s banking system).

Another example is that of a wholesale electricity market characterized by a small (oligopolistic)

group and a fringe; in this case, a regulator looking to improve productive effi ciency should

set a higher subsidy rate for the oligopolistic group. This could be accomplished by offering

differential subsidies to renewable energy technologies, for instance, that lower the marginal cost

of production.

It is worth noting that primary dealers in the US Treasury are required to bid at least the

pro-rate share of those dealers present in the auction ("demonstrate substantial presence") and

in exchange enjoy privileges such as exclusive intermediation of OMO, and in the crisis period

access to the QE auction mechanism as well as to the Primary Dealer Credit Facility. This may

be interpreted as a subsidy that lowers the effective transaction cost of the dealers since they

28We have that xoi (t) = (nj (ti − tj) + λjQ) / (niλj + njλi) .
29Athey et al. (2013) find with regard to US Forest Service timber auctions that restricting entry increases

small business participation but substantially reduces effi ciency and revenue. In contrast, subsidizing small

bidders directly increases revenue and the profits of small bidders without much cost in effi ciency. See also

Loertscher and Marx (2016) and Pai and Vohra (2012).
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have the obligation to bid a minimum amount.

5.2 Deadweight loss

The expected deadweight loss, E [DWL], at an anonymous allocation (x1 (t) , x2 (t)) is the dif-

ference between expected total surplus at the effi cient allocation, ETSo, and at the baseline

allocation, denoted simply by ETS. Lemma A4 in Appendix A shows that

E [DWL] =
1

2
λ1n1E

[
(x1 (t)− xo1 (t))2]+

1

2
λ2n2E

[
(x2 (t)− xo2 (t))2] ,

where (xo1 (t) , xo2 (t)) corresponds to the price-taking equilibrium. We can use the equilibrium

expressions for (x1 (t) , x2 (t)) and (xo1 (t) , xo2 (t)) to show that

E [DWL] = φE
[
((n2d1 + n1d2) (t1 − t2) + (λ2d1 − λ1d2)Q)2] ,

where φ = n1n2/ (2 (n2λ1 + n1λ2)u2).

In a double auction (Q = 0) or when λ2d1 = λ1d2,

E [DWL] = φ (n2d1 + n1d2)2 E (t1 − t2)2

and is due to differential expected valuations. It is the product of two factors, φ (n2d1 + n1d2)2

which increases in d1 and d2, and

E
[
(t1 − t2)2] =

(
θ1 − θ2

)2
+ (1− ρ)2 σ2

θ

2 (1 + ρ) + σ̂2
ε1

+ σ̂2
ε2(

1 + σ̂2
ε1

) (
1 + σ̂2

ε2

)
− ρ2

, (7)

which decreases in ρ and in σ̂2
εi
, vanishes when ρ approaches 1 or when there is no uncertainty

(σ2
θ = 0) provided θ1 = θ2, and increases in

(
θ1 − θ2

)2
. It is worth noting that both ETSo

and ETS increase in E
[
(t1 − t2)2], which is associated to gains from trade by the two groups.

However, the weight of E
[
(t1 − t2)2] in ETSo is larger than in ETS and therefore E [DWL]

increases in E
[
(t1 − t2)2].

Since d1 and d2 increase in ρ, σ2
εi
we have that φ (n2d1 + n1d2)2 increases in ρ and σ2

εi
. It

follows that E [DWL] may increase or decrease in ρ and σ̂2
εi
. However, if σ2

εi
= ∞, then di is

independent of σ2
εj
, i = 1, 2, j 6= i, and E [DWL] decreases with σ2

εj
.

The term (λ2d1 − λ1d2)Q derives from the absorption of Q by the traders, and is positive

whenever d1/d2 6= λ1/λ2.When d1/d2 = λ1/λ2, the expected deadweight loss only derives from

valuation differences. That is because, in this case, the non-informational trading term corre-

sponding to the equilibrium with imperfect competition coincides with the one corresponding

to the competitive equilibrium. Note that if we interpret the traders as producers competing

to supply a fixed demand Q, then the condition d1/d2 = λ1/λ2 means that the ratio of the
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production of the two types of firms is aligned with the ratio of the slopes of their respective

marginal costs. This condition guarantees productive effi ciency provided that θ1 = θ2 and ρ = 1

and, since demand is fixed, this coincides with overall effi ciency.

The impact of a small amount of asymmetry may be large. Suppose, for example, that the

initial situation is symmetric for the groups and that σ2
θ is low. Then the E [DWL] is close to

zero since we have that d1/d2 = λ1/λ2. However, if λ1 is lowered somewhat then we know from

Proposition 3 (iii) that d1/d2 increases and therefore d1/d2 > λ1/λ2, in which case E [DWL]

may be quite large if Q is large. This is consistent with the results in Hortaçsu et al. (2016)

who document a significant amount of effi ciency losses due to heterogeneity at long maturities

in US Treasury auctions.

Furthermore, if group 1 has higher transaction costs (λ1 > λ2), is more numerous (n1 > n2),

and is less informed (σ2
ε1
> σ2

ε2
) than group 2, then d1/d2 < λ1/λ2 (and therefore λ2d1−λ1d2 <

0). Then the expected deadweight loss increases with Q and
∣∣θ1 − θ2

∣∣ when the stronger group
values the asset no less than does the weaker group (θ1 ≤ θ2). This is so since the second

term in the quadratic expansion of E [DWL] is an interaction term that is positive for Q > 0

iff (λ2d1 − λ1d2)
(
θ1 − θ2

)
> 0, that is, when the relative distortion between groups (di/dj) is

large whenever θi > θj. For example, primary dealers in a Treasury auction may value more the

bonds than other direct bidders because they have more clout in reselling them. In Hortaçsu

et al. (2016) it is found that the willingness to pay of primary dealers is no lower than those

of other direct bidders (as well as of indirect bidders). However, group strength and preference

strength need not be aligned always. This is the case for example when a weaker group of banks

is hit by a crisis, then its valuation for liquidity may increase more than for a strong group of

banks.

Under full information (i.e., σ2
ε1

= σ2
ε2

= 0), both d1 and d2 are independent of ρ; in this

case, then E [DWL] decreases with ρ. Similarly, if ρ = 0, then d1 and d2 are independent of σ2
ε1

and σ2
ε2
, from which it follows that E [DWL] decreases with σ2

ε1
and σ2

ε2
. Some of these results

are summarized in our last proposition.

Proposition 9.
(i) The expected deadweight loss may be increasing or decreasing in the information parame-

ters (ρ, σ̂2
ε1
, and σ̂2

ε2
) and, therefore, price impact (d1, d2) and the E [DWL] may be negatively

associated.

(ii) The E [DWL] increases with payoff asymmetry and with Q whenever group strength and

preference strength are aligned (i.e., when the stronger group 2, with λ1 > λ2, n1 > n2, and

σ2
ε1
> σ2

ε2
, values the asset no less than does the weaker group, θ1 ≤ θ2).

(iii)When groups are symmetric, the expected deadweight loss is independent of Q, and price
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impact d and the E [DWL|t] are positively associated, given predicted values t, for changes in
information parameters. This need not be the case with asymmetric groups (e.g., for Q large,

di/dj > λi/λj implies that E [DWL|t] increases in di and decreases in dj).

Market integration Our analysis can shed light also on the effects of integrating separated

markets.30 Suppose that groups 1 and 2 operate in separate markets (auctions), that is, in

market i all the buyers (ni) are of type i and supply is niQ/(n1 + n2). In this framework, given

that all the individuals are identical in market i, the market clearing condition implies that the

equilibrium quantities are given by Q/(n1 + n2). Let (1− ρ)σ2
θ > 0, then market integration (a

unified auction):

1. Increases ETS if bidders behave competitively (strictly except if θ1 = θ2, σ2
ε1

= σ2
ε2

=∞,
and λ1 = λ2). In the latter case payoffs are symmetric among bidders of the two groups

and there is no information on values. Therefore, there are no gains from trade among

the groups.

2. Increases ETS, because of gains from trade, provided σ2
εi
<∞ for some i, if θ1 6= θ2 and

Q = 0, or if groups are symmetric.

3. May decrease ETS, if Q is large and the groups asymmetric. In this case gains from trade

of integration are overpowered by the ineffi ciency generated by group asymmetries and

price impact. This may happen with no asymmetric information but asymmetric payoffs.

For example, if θ1 = θ2, σ2
ε1

= σ2
ε2

= ∞, λ1 > λ2, and d1 + λ1 < d2 + λ2. In this case

group 2 (with lower transaction costs) gets less in the integrated market because of higher

price impact (see (4)) and diminishes total surplus. Note that this could not happen if

traders behaved competitively. With asymmetric precisions of information (σ2
ε1
6= σ2

ε2
) and

incomplete information (ρ > 0) but symmetric payoffs (θ1 = θ2, λ1 = λ2) integration may

be also welfare decreasing. Note that this would not happen with complete information,

ρ = 0.

6 Concluding remarks

We analyze a divisible good uniform-price auction, where two types of bidders compete. Each

of these two groups contains a finite number of identical bidders. At the unique equilibrium, a

group’s relative price impact increases with the precision of private information and decreases

30See Appendix B for a more developed analysis and proof of the results.
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with the group’s transaction costs. Consistently with the empirical evidence for liquidity auc-

tions (Cassola et al. 2013), we find that an increase in the transaction costs of a group of

bidders induces a strategic response from the other group, whose members then submit steeper

schedules. The effect is reinforced with the impact of changes in the information parameters

in a crisis situation. The group that is stronger (because it has more precise private informa-

tion, faces lower transaction costs, and is more oligopsonistic) has more price impact and must

therefore receive a higher subsidy to behave competitively. This result is consistent with the

evidence of US Treasury auctions (Hortaçsu et al. 2016) where primary dealers (strong group)

exercise market power and earn significant surplus on top of having privileges in exchange for

bidding minimum amounts in the auctions. The expected deadweight loss increases with the

quantity auctioned and with the degree of payoff asymmetry provided the stronger group values

the asset no less than does the weaker group. A small amount of asymmetry may generate large

deadweight losses. The link of heterogeneity and effi ciency losses is corroborated empirically for

Treasury auctions by Hortaçsu et al. (2016).

Our findings have policy implications. Consider a regulator who wants to reduce ineffi ciency

in an industry with two groups of firms (e.g., a small oligopolistic group and a competitive

fringe). This regulator must bear in mind that any intervention directed toward one group will

also affect the other’s behavior. In addition, the regulator should set a higher subsidy rate for

the group that has better information, is more oligopsonistic, and has lower transaction costs.

The framework developed here can be adapted to study competition policy analyzing the effects

of merger and industry capacity redistribution.

Appendix A

Proposition 1 follows from Lemmata A1 and A2.

Lemma A1. Let ρ < 1. In equilibrium, the demand function for a trader of type i, i = 1, 2,

is given by Xi (si, p) = (E [θi|si, p]− p) / (di + λi), with di + λi > 0. The equilibrium coeffi cients

satisfy the following system of equations:

bi =

(
(1− Ξi) θi −Ψiθj −

Ψi (nibi + njbj −Q)

njaj

)/
(di + λi) , (8)

ai =

(
Ξi −

niai
njaj

Ψi

)/
(di + λi) , and (9)

ci =

(
1− Ψi (nici + njcj)

njaj

)/
(di + λi) , (10)

where i, j = 1, 2, j 6= i. Moreover, in equilibrium, ai > 0, i = 1, 2.
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Proof: Consider a trader of type i. Recall that at the beginning of Subsection 3.1 we obtain

Xi (si, p) = (E [θi|si, p]− p) / (di + λi) and E [θi|si, p] = E [θi|si, sj]. Since we are looking for
strategies of the form Xi (si, p) = bi + aisi − cip, from the market clearing condition we have

that sj = ((nici + njcj) p+Q− ni (bi + aisi)− njbj) / (njaj). Thus, from (3), it follows that

E [θi|si, sj] = (1− Ξi) θi−Ψiθj+Ψi

(
Q− nibi − njbj

njaj

)
+

(
Ξi −

niai
njaj

Ψi

)
si+Ψi

(
nici + njcj

njaj

)
p.

Substituting the foregoing expression in (1), and then identifying coeffi cients, we obtain the

expressions for the demand coeffi cients given in (8)-(10).

Finally, we show the positiveness of the coeffi cients ai, i = 1, 2. From (9), we get ai =

Ξi/ (di + λi + niΨi/ (njaj)), i, j = 1, 2, j 6= i. Combining the previous expressions, we have

ai =
nj (ΞiΞj −ΨiΨj)

niΨi (dj + λj) + Ξjnj (di + λi)
, i, j = 1, 2, j 6= i. (11)

Direct computation yields ΞiΞj − ΨiΨj = (1− ρ2)
/((

1 + σ̂2
ε1

) (
1 + σ̂2

ε2

)
− ρ2

)
> 0 , whenever

ρ < 1. Moreover, using the positiveness of di + λi, Ξi, and Ψi, i = 1, 2, we conclude that, in

equilibrium, the coeffi cients ai, i = 1, 2, are strictly positive.

Lemma A2. In equilibrium,

bi =
Ψi

ninj

niΞj
ai
aj
− njΨj

ΞiΞj −ΨiΨj

Q+ ai

(
Ξjθi −Ψiθj
ΞiΞj −ΨiΨj

− θi
)
, (12)

ai = ∆ici, (13)

c1 =

(
Ξ1∆−1

1 −
n1

n2

(
1− Ξ1∆−1

1

)
z − z

(n1 − 1) z + n2

)/
λ1, and (14)

c2 =

(
Ξ2∆−1

2 −
n2

n1

(
1− Ξ2∆−1

2

) 1

z
− 1

n1z + n2 − 1

)/
λ2, (15)

where ∆i = 1
/(

1 + (1 + ρ)−1 σ̂2
εi

)
, i, j = 1, 2, j 6= i. Moreover, z ≡ c1/c2 is the unique positive

solution to the cubic polynomial g(z) = g3z
3 + g2z

2 + g1z + g0, with

g3 = n2
1 (n1 − 1)

(
n2Ξ2∆−1

2 λ1 + n1

(
1− Ξ1∆−1

1

)
λ2

)
,

g2 = n1

(
(3n2n1 − n1 − 2n2 + 1)

(
n2Ξ2∆−1

2 λ1 − n1Ξ1∆−1
1 λ2

)
+

+λ2n1 (2n2n1 − n1 + 1)− (n1 − 1) (n2 + 1)n2λ1) ,

g1 = n2

(
(3n2n1 − 2n1 − n2 + 1)

(
n2Ξ2∆−1

2 λ1 − n1Ξ1∆−1
1 λ2

)
+

+λ2n1 (n2 − 1) (n1 + 1)− (2n2n1 − n2 + 1)n2λ1) , and

g0 = −n2
2 (n2 − 1)

(
n2

(
1− Ξ2∆−1

2

)
λ1 + n1Ξ1∆−1

1 λ2

)
.

Proof: In relation to the expression for bi, notice that (9) implies

di + λi =

(
Ξi −

niai
njaj

Ψi

)/
ai, i, j = 1, 2, j 6= i. (16)
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Substituting these expressions in (8), it follows that

bi = ai
(1− Ξi) θi −Ψiθj − Ψi(nibi+njbj−Q)

njaj

Ξi − niai
njaj

Ψi

, i, j = 1, 2, j 6= i. (17)

Thus,

nibi + njbj = niai
(1− Ξi) θi −Ψiθj − Ψi(nibi+njbj−Q)

njaj

Ξi − niai
njaj

Ψi

+ njaj
(1− Ξj) θj −Ψjθi − Ψj(nibi+njbj−Q)

niai

Ξj − njaj
niai

Ψj

,

Isolating nibi + njbj in the previous formula and substituting the resulting expression in (17),

Expression (12) is obtained.

Concerning the expression for ai, substituting (16) in (10), it follows that

ci = ai

(
1− Ψi (nici + njcj)

njaj

)/(
Ξi −

niai
njaj

Ψi

)
, i, j = 1, 2, j 6= i. (18)

Hence, nici + njcj = niai
njaj−Ψi(nici+njcj)

njajΞi−niaiΨi + njaj
niai−Ψj(nici+njcj)

niaiΞj−njajΨj . Isolating nici + njcj in the

previous formula and substituting the resulting expression in (18), we obtain a formula which

is equivalent to (13). Using (13) in (10), we get the expression for ci given in the statement of

Proposition 1.

In relation to c1 and c2, using the expression for di and (13), (16) implies that

λi =

(
Ξi

∆i

− niΨici
nj∆jcj

)
c−1
i − ((ni − 1) ci + njcj)

−1 , i, j = 1, 2, j 6= i.

or, since

Ψi∆
−1
j = 1− Ξi∆

−1
i , (19)

λi =
(

Ξi∆
−1
i − ni

nj

(
1− Ξi∆

−1
i

)
ci
cj

)
c−1
i − ((ni − 1) ci + njcj)

−1, i, j = 1, 2, j 6= i, which imply

(14) and (15) since z = c1/c2. Moreover, dividing the previous two equalities, it follows that

λ1

λ2

=
Ξ1∆−1

1 − n1
n2

(
1− Ξ1∆−1

1

)
z − z ((n1 − 1) z + n2)−1

Ξ2∆−1
2 z − n2

n1

(
1− Ξ2∆−1

2

)
− z (n1z + n2 − 1)−1 . (20)

After some algebra, (20) is equivalent to g(z) = 0, where g(z) = g3z
3 +g2z

2 +g1z+g0, as stated

in this lemma. Notice that g(0) < 0 and lim
z→∞

g(z) = ∞. Consequently, there exists z ∈ (0,∞)

such that g(z) = 0. Furthermore, we have that g2/n1 > g1/n2. Combining this inequality with

the fact that g3 > 0 and g0 < 0 allows us to conclude that at least there is only one sign change

of the coeffi cients of g(z). To show that, we distinguish 3 cases:

(1) 0 ≥ g2
n1
> g1

n2
. This implies that 0 ≥ g2 and 0 > g1. As g3 > 0 and g0 < 0, we conclude that

there is only one sign change of the coeffi cients of g(z).
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(2) g2
n1
> 0 ≥ g1

n2
. This implies that g2 > 0 ≥ g1. As g3 > 0 and g0 < 0, we conclude that there

is only one sign change of the coeffi cients of g(z).

(3) g2
n1
> g1

n2
> 0. This implies that g2 > 0 and g1 > 0. As g3 > 0 and g0 < 0, we conclude that

there is only one sign change of the coeffi cients of g(z).

This property implies that there exists only one sign change in the coeffi cients of g(z).

Applying the Descartes’rule, we conclude that there exists a unique positive root of g(z).

Proposition 2A. Let ρ < 1.

(a) There exists an equilibrium if and only if ci > 0, i = 1, 2, where

c1 =
qN (z)

((n1 − 1) z + n2)n2λ1

and c2 =
qD (z)

(n1z + n2 − 1)n1zλ2

, (21)

where z = c1/c2 and the expressions of qN (Z) and qD (Z) are given by

qN (Z) = n2
2Ξ1∆−1

1 + n2

(
Ξ1∆−1

1 (2n1 − 1)− (n1 + 1)
)
Z − (n1 − 1)

(
1− Ξ1∆−1

1

)
n1Z

2 and

qD (Z) = −n2 (n2 − 1)
(
1− Ξ2∆−1

2

)
+ n1

(
Ξ2∆−1

2 (2n2 − 1)− (n2 + 1)
)
Z + n2

1Ξ2∆−1
2 Z2.

(b) Complete information. When ρ = 0, or σ2
εi

= 0, or σ2
εi

=∞, i = 1, 2, equilibrium exists

iff n1 + n2 ≥ 3.

(c) Incomplete information.

(c.1) Let ρσ2
ε1
σ2
ε2
> 0. Then ci > 0 ( i = 1, 2) if and only if zN > zD, where zN and zD

denote the highest root of qN (Z) and qD (Z), respectively.

(c.2) Let ρσ2
εi
> 0 and σ2

εj
= 0, i 6= j. Then ci > 0 (i = 1, 2) if nj ≥ 2, or if nj = 1, ni

large enough and ρ low enough.

Remark 8. For an equilibrium to exist we must have ci > 0 (i = 1, 2) and these inequalities

hold if and only if zD < z < zN . If n1 = 1 and n2 = 1, then zN = 1/
(
2∆1Ξ−1

1 − 1
)
and

zD = 2∆2Ξ−1
2 − 1. Since ∆iΞ

−1
i ≥ 1, i = 1, 2, and ∆1Ξ−1

1 = ∆2Ξ−1
2 = 1 do not hold, we can

use direct computation to obtain zN < zD. Applying Proposition 2A, we conclude that no

equilibrium exists in this case. Therefore, n1 + n2 ≥ 3 is a necessary condition for the existence

of an equilibrium.

Remark 9. In c.1, we obtain that lim
λ1→0

z = zN and lim
λ2→0

z = zD.

Remark 10. In c.2, when σ2
ε2

= 0, zD = 1/n1 if n2 = 1, whereas zD = 0 if n2 ≥ 2.

Proof: (a) (Necessity). From Proposition 1 we know that ai > 0, i = 1, 2, whenever ρ < 1.

Combining this property with expressions given in (13), we have that, in equilibrium, the

coeffi cients ci, i = 1, 2, are strictly positive. Moreover, (14) and (15) can be rewritten as the

expressions given in (21).
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(Suffi ciency). Suppose that the candidates equilibrium coeffi cients c1 and c2 are positive

and satisfy (21). Then, the ratio z = c1/c2 > 0 and satisfies (20). Then, we conclude that

an equilibrium exists and it is unique since we know that (20) has a unique positive solution.

Finally, substituting this value of z in the expressions stated in Lemma A2, we obtain the

equilibrium coeffi cients of the demand functions.

(b) When ρ = 0 or σ2
εi

= 0, i = 1, 2, the demand functions are given by

Xi (si, p) = (E [θi|si]− p) / (di + λi) , i = 1, 2,

while when σ2
εi

=∞, i = 1, 2, the demand functions hold

Xi (si, p) =
(
θi − p

)
/ (di + λi) , i = 1, 2.

Moreover recall that the SOCs imply di+λi > 0. Moreover, in all these cases we can express the

coeffi cients of the demand functions in terms of di, i = 1, 2. In particular, ci = 1/ (di + λi) > 0,

i = 1, 2. Given our expression for di, we characterize di, i = 1, 2, as the positive solutions of the

following system of equations:

di =

(
ni − 1

di + λi
+

nj
dj + λj

)−1

for i, j = 1, 2 and j 6= i.

After some algebra, we conclude that this system has positive solutions if and only if n1+n2 ≥ 3.

(c.1) (Necessity). Let zN and zD denote the highest root of qN (Z) and qD (Z), respectively.

Notice that the positiveness of ci, i = 1, 2, is equivalent to zN > z > zD. Therefore, zN > zD.

(Suffi ciency). Suppose that zN > zD. Recall that Lemma A2 shows that there exists a

unique positive value of z that solves (20), which can be rewritten as

λ1

λ2

=
n1 (n2 − 1 + n1z) qN (z)

(n2 + (n1 − 1) z)n2qD (z)
. (22)

This implies that zN > z > zD. Notice that these inequalities guarantee the positiveness of ci,

i = 1, 2.

(c.2) Suppose that ρσ2
ε1
> 0 and σ2

ε2
= 0. In this case Ξ2∆−1

2 = 1 and, hence, qD (Z) =

Zn1 (n2 + Zn1 − 2). On the one hand, if n2 = 1, then zD = 1/n1. As in c.1) the condition that

guarantees the existence of equilibrium is zN > zD, which is equivalent to n1

(
2Ξ1∆−1

1 − 1
)
>

Ξ1∆−1
1 , i.e., Ξ1∆−1

1 > 1/2 and n1 > Ξ1∆−1
1 /

(
2Ξ1∆−1

1 − 1
)
or, using the expressions of Ξ1 and

∆1, 1− ρ2 + (1− 2ρ) σ̂2
ε1
> 0 and n1 > 1 + σ̂2

ε1
ρ/(1− ρ2 + (1− 2ρ) σ̂2

ε1
), which implies when ρ

is low enough and n1 is large enough.

On the other hand, if n2 ≥ 2, qD (Z) > 0 for all Z > 0 and, therefore, we have that c2 > 0 is

satisfied. The positiveness of c1 requires that zN > z. But, this inequality holds since z solves
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Equation (22). To sum up, when σ2
ε2

= 0, an equilibrium exists if n2 = 1, n1 large enough and

ρ low enough, or if n2 ≥ 2.

Now, suppose that ρσ2
ε2
> 0 and σ2

ε1
= 0. In this case Ξ1∆−1

1 = 1 and, hence, qN (Z) =

n2
2 + n2 (n1 − 2)Z. On the one hand, if n1 = 1, then zN = n2. As in c.1) the condition that

guarantees the existence of equilibrium is zN > zD, which is equivalent to n2

(
2Ξ2∆−1

2 − 1
)
>

Ξ2∆−1
2 , i.e., Ξ2∆−1

2 > 1/2 and n2 > Ξ2∆−1
2 /

(
2Ξ2∆−1

2 − 1
)
or, using the expressions of Ξ2 and

∆2, 1− ρ2 + (1− 2ρ) σ̂2
ε2
> 0 and n2 > 1 + σ̂2

ε2
ρ/(1− ρ2 + (1− 2ρ) σ̂2

ε2
), which implies when ρ

is low enough and n2 is large enough.

On the other hand, if n1 ≥ 2, qN (Z) > 0 for all Z > 0 and, therefore, we have that c1 > 0

is satisfied. The positiveness of c2 requires that z > zD. But, this inequality holds since the

equilibrium value, z, solves Equation (22). To sum up, when σ2
ε1

= 0, an equilibrium exists if

n1 = 1, n2 large enough and ρ low enough, or if n1 ≥ 2.

Lemma 2A. The condition zN > zD given in the statement of Proposition 2A is satisfied

in the following cases:

(i) if ρ < 1 and n1, n2 are large enough;

(ii) given ni, nj is large enough and ρ low enough, for i, j = 1, 2 and j 6= i.

Proof: We distinguish two cases: n1 > 1 and n1 = 1.

Case 1: n1 > 1. In this case

zN =

n2

(
(n1 − 1)

(
2Ξ1∆−1

1 − 1
)
−
(
2− Ξ1∆−1

1

)
+
√(

2− Ξ1∆−1
1

)2
+ (n1 − 1)

(
n1 + 3− 6Ξ1∆−1

1

))
2n1 (n1 − 1)

(
1− Ξ1∆−1

1

)
(23)

and

zD =
n2 + 1− Ξ2∆−1

2 (2n2 − 1) +
√(

2− Ξ2∆−1
2

)2
+ (n2 − 1)

(
n2 + 3− 6Ξ2∆−1

2

)
2Ξ2∆−1

2 n1

. (24)

Proposition 2A indicates that an equilibrium exists if and only if zN > zD, or equivalently,

n1zN/n2 > n1zD/n2. Using the expressions of zN and zD, we have that n1zN/n2 is increasing

in n1 and n1zD/n2 is decreasing in n2. Taking limits, it follows that

lim
n1→∞

n1zN/n2 = Ξ1∆−1
1 /

(
1− Ξ1∆−1

1

)
and lim

n2→∞
n1zD/n2 =

(
1− Ξ2∆−1

2

)
/
(
Ξ2∆−1

2

)
.

Moreover, using the expressions of Ξi and ∆i, i = 1, 2, we have that

Ξ1∆−1
1

1− Ξ1∆−1
1

− 1− Ξ2∆−1
2

Ξ2∆−1
2

=
(1− ρ2)

(
1 + ρ+ σ̂2

ε1

) ((
1 + σ̂2

ε1

) (
1 + σ̂2

ε2

)
− ρ2

)
ρσ̂2

ε1

(
1 + ρ+ σ̂2

ε2

) (
1− ρ2 + σ̂2

ε1

) > 0.
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Hence, we get that, as ρ < 1, lim
n1→∞

n1zN/n2 > lim
n2→∞

n1zD/n2. This implies that whenever ρ < 1

and n1 and n2 large enough, the existence of the equilibrium is guaranteed.

Consider now a fixed positive integer n1, such that n1 > 1. Using the fact that zN is the

positive root of qN (Z), it follow that n1zN/n2 > Ξ1∆−1
1 /

(
2− Ξ1∆−1

1

)
. Moreover,

Ξ1∆−1
1 /

(
2− Ξ1∆−1

1

)
>
(
1− Ξ2∆−1

2

)
/
(
Ξ2∆−1

2

)
, (25)

whenever ρ is low enough. Therefore,

n1zN/n2 > Ξ1∆−1
1 /

(
2− Ξ1∆−1

1

)
>
(
1− Ξ2∆−1

2

)
/
(
Ξ2∆−1

2

)
= lim

n2→∞
n1zD/n2.

Hence, we conclude that if n2 is large enough, as n1zD/n2 is decreasing in n2, the previous

inequalities imply that n1zN/n2 > n1zD/n2 or, equivalently, zN > zD. Applying Proposition

2A, it follows that in this case there exists an equilibrium provided that n2 is high enough and

ρ low enough.

Consider now a fixed positive integer n2, such that n2 ≥ 1, and assume again that ρ < 1. Us-

ing the fact that zD is the positive root of qD (Z), it follow that n1zD/n2 ≤
(
2− Ξ2∆−1

2

)
/
(
Ξ2∆−1

2

)
.

In addition, when ρ is low enough, then we have that(
2− Ξ2∆−1

2

)
/
(
Ξ2∆−1

2

)
< Ξ1∆−1

1 /
(
1− Ξ1∆−1

1

)
= lim

n1→∞
n1zN/n2.

Thus, we have that n1zD/n2 < lim
n1→∞

n1zN/n2. Using the fact that n1zN/n2 increases with n1,

we have that, when n1 is high enough, n1zD/n2 < n1zN/n2 or, equivalently, zD < zN , which

guarantees the existence of equilibrium. To sum up, we have that given n2, there exists an

equilibrium provided that n1 is high enough and ρ low enough.

Case 2: n1 = 1. In this case, we have that zN = n2Ξ1∆−1
1 /

(
2− Ξ1∆−1

1

)
and

zD =
n2 + 1− Ξ2∆−1

2 (2n2 − 1) +
√(

2− Ξ2∆−1
2

)2
+ (n2 − 1)

(
n2 + 3− 6Ξ2∆−1

2

)
2Ξ2∆−1

2

.

Furthermore, whenever ρ is low enough, (25) holds. Therefore, it follows that

zN/n2 = Ξ1∆−1
1 /

(
2− Ξ1∆−1

1

)
>
(
1− Ξ2∆−1

2

)
/
(
Ξ2∆−1

2

)
= lim

n2→∞
zD/n2.

Using the fact that zD/n2 decreases with n2, the previous inequality implies that zN/n2 > zD/n2

whenever n2 is high enough, i.e., zN > zD, which guarantees the existence of equilibrium. To

sum up, we have that when n1 = 1, there exists an equilibrium provided that n2 is high enough

and ρ low enough.

Proof of Proposition 2 : This proposition directly follows from Proposition 2A and Lemma

2A.
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Remark (symmetric groups). Let ni = n, λi = λ, and σ2
εi

= σ2
ε, i = 1, 2. Here z = 1

in equilibrium. From Proposition 2A we know that, if an equilibrium exists, then the value of

z is in the interval (zD, zN). It follows that zN > 1 > zD or, equivalently, that qN (1) > 0 and

qD (1) > 0. After performing some algebra, we find that the foregoing inequalities are satisfied

iff n > 1 + ρσ̂2
ε

/(
(1− ρ)

(
1 + ρ+ σ̂2

ε

))
, where σ̂2

ε = σ2
ε/σ

2
θ.

Proof of Proposition 3: In what follows we prove the following comparative statics results

for i, j = 1, 2, i 6= j:

(a) ∂bi/∂θi > 0, ∂ai/∂θi = 0, and ∂ci/∂θi = 0,

(b) ∂bi/∂θj < 0, ∂ai/∂θj = 0, and ∂ci/∂θj = 0,

(c) ∂bi/∂Q > 0,∂ai/∂Q = 0, and ∂ci/∂Q = 0,

(d) ∂ai/∂λi < 0 and ∂ci/∂λi < 0,

(e) ∂ai/∂λj < 0 and ∂ci/∂λj < 0,

(f) ∂ai/∂ρ < 0 and ∂ci/∂ρ < 0,

(g) ∂ (di/dj) /∂σ
2
εi
< 0, ∂ (di/dj) /∂σ

2
εj
> 0, ∂ (di/dj) /∂λi < 0, and ∂ (di/dj) /∂λj > 0,

(h) ∂ai/∂σ2
εi
< 0 and ∂ci/∂σ2

εi
< 0,

(i) ∂ai/∂σ2
εj
< 0 and ∂ci/∂σ2

εj
< 0, and

(j) ∂di/∂ni < 0 and ∂dj/∂ni < 0.

From Lemma A1, we know that the equilibrium coeffi cients that depend on θi, θj and Q

are b1 and b2. Using Lemma A2 and after some algebra, the results given in (a), (b) and (c)

are obtained. In what follows, without any loss of generality, let i = 1. First, we prove that

∂z/∂λ1 < 0. From Lemma A2, we know that z is the unique positive solution of the following

equation:
λ1

λ2

− N(z)

D(z)
= 0, (26)

where

N(z) = Ξ1∆−1
1 − n1

(
1− Ξ1∆−1

1

)
z/n2 − z ((n1 − 1) z + n2)−1 and

D(z) = Ξ2∆−1
2 z − n2

(
1− Ξ2∆−1

2

)
/n1 − z (n1z + n2 − 1)−1 ,

with Ξi∆
−1
i =

(
1− ρ2 + σ̂2

εj

) (
1 + ρ+ σ̂2

εi

) (((
1 + σ̂2

εi

) (
1 + σ̂2

εj

)
− ρ2

)
(1 + ρ)

)−1

, i, j = 1, 2, i 6=
j. Applying the Implicit Function Theorem,

∂z

∂λi
= −∂ (λ1/λ2 −N(z)/D(z)) /∂λi

∂ (λ1/λ2 −N(z)/D(z)) /∂z
, i = 1, 2.
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As ∂ (λ1/λ2 −N(z)/D(z)) /∂λ1 > 0, ∂ (λ1/λ2 −N(z)/D(z)) /∂λ2 < 0, and

∂ (λ1/λ2 −N(z)/D(z))

∂z
> 0, (27)

because of z ∈ (zD, zN), we conclude that ∂z/∂λ1 < 0 and ∂z/∂λ2 > 0.

Next, we study the relationship between c′s and λ1. Differentiating (15), we have

∂c2

∂λ1

=
∂c2

∂z

∂z

∂λ1

=
1

λ2

(
n2

(
1− Ξ2∆−1

2

)
n1z2

+
n1

(n1z + n2 − 1)2

)
∂z

∂λ1

< 0,

since ∂z/∂λ1 < 0. Moreover, as c1 = zc2, it follows that ∂c1/∂λ1 = (∂z/∂λ1) c2 + z (∂c2/∂λ1) <

0, because of the positiveness of c2 and z, and the negativeness of ∂z/∂λ1 and ∂c2/∂λ1. In

relation to a1 and a2, from (13), direct computation yields ∂a1/∂λ1 < 0 and ∂a2/∂λ1 < 0, since

∂c1/∂λ1 < 0 and ∂c2/∂λ1 < 0.

Now, we study how the correlation coeffi cient ρ affects a1. Let y = a1/a2. As a1 = ∆1c1 and

a2 = ∆2c2, then z = ∆2y/∆1. Substituting this expression in (20), and after some algebra, we

have that
λ1

λ2

y =
Ñ(y, ρ)

D̃(y, ρ)
, (28)

where Ñ(y, ρ) =
1−ρ2+σ̂2ε2−

n1
n2
σ̂2ε1ρy

(1+σ̂2ε1)(1+σ̂2ε2)−ρ
2
−
(

(n1 − 1)
1+ρ+σ̂2ε1

1+ρ
+ n2

1+ρ+σ̂2ε2
1+ρ

1
y

)−1

and

D̃(y, ρ) =
1− ρ2 + σ̂2

ε1
− n2

n1
σ̂2
ε2
ρ 1
y(

1 + σ̂2
ε1

) (
1 + σ̂2

ε2

)
− ρ2

−
(
n1

1 + ρ+ σ̂2
ε1

1 + ρ
y + (n2 − 1)

1 + ρ+ σ̂2
ε2

1 + ρ

)−1

.

Moreover, a1 = Ñ(y, ρ)/λ1 and a2 = D̃(y, ρ)/λ2. Hence,

∂a1

∂ρ
=

(
∂Ñ(y, ρ)/∂y

)
(∂y/∂ρ) + ∂Ñ(y, ρ)/∂ρ

λ1

.

Thus, in order to show ∂a1/∂ρ < 0, it suffi ces to prove that

∂Ñ(y, ρ)

∂y

∂y

∂ρ
+
∂Ñ(y, ρ)

∂ρ
< 0. (29)

Direct computation yields ∂Ñ(y, ρ)/∂y < 0. Then, (29) is equivalent to

∂y

∂ρ
> −∂Ñ(y, ρ)/∂ρ

∂Ñ(y, ρ)/∂y
. (30)

34



Moreover, recall that y in equilibrium is the unique positive value that satisfies (28). Thus,

applying the Implicit Function Theorem, it follows that

∂y

∂ρ
= −

∂
(
λ1y/λ2 − Ñ(y, ρ)/D̃(y, ρ)

)/
∂ρ

∂
(
λ1y/λ2 − Ñ(y, ρ)/D̃(y, ρ)

)/
∂y
.

Then, (30) can be rewritten as

−
∂
(
λ1y/λ2 − Ñ(y, ρ)/D̃(y, ρ)

)/
∂ρ

∂
(
λ1y/λ2 − Ñ(y, ρ)/D̃(y, ρ)

)/
∂y

> −∂Ñ(y, ρ)/∂ρ

∂Ñ(y, ρ)/∂y
,

or using the fact that in equilibrium ∂
(
λ1y/λ2 − Ñ(y, ρ)/D̃(y, ρ)

)/
∂y > 0, (30) is satisfied iff

−
∂
(
λ1y/λ2 − Ñ(y, ρ)/D̃(y, ρ)

)
∂ρ

> −
(
∂Ñ(y, ρ)/∂ρ

∂Ñ(y, ρ)/∂y

)
∂
(
λ1y/λ2 − Ñ(y, ρ)/D̃(y, ρ)

)
∂y

. (31)

Notice that

−
∂
(
λ1y/λ2 − Ñ(y, ρ)/D̃(y, ρ)

)
∂ρ

= −

(
∂Ñ(y, ρ)/∂ρ

)
D̃(y, ρ)− Ñ(y, ρ)

(
∂D̃(y, ρ)/∂ρ

)
D̃2(y, ρ)

,

or using (26),

−
∂
(
λ1y/λ2 − Ñ(y, ρ)/D̃(y, ρ)

)
∂ρ

= −
∂Ñ(y, ρ)/∂ρ− λ1y

(
∂D̃(y, ρ)/∂ρ

)/
λ2

D̃(y, ρ)
.

Analogously,

∂
(
λ1y/λ2 − Ñ(y, ρ)/D̃(y, ρ)

)
∂y

=
λ1

λ2

−
∂Ñ(y, ρ)/∂y − λ1y

(
∂D̃(y, ρ)/∂y

)/
λ2

D̃(y, ρ)
.

Therefore, (31) is equivalent to

∂Ñ(y, ρ)/∂ρ− λ1y
(
∂D̃(y, ρ)/∂ρ

)/
λ2

D̃(y, ρ)
> −∂Ñ(y, ρ)/∂ρ

∂Ñ(y, ρ)/∂y
×λ1

λ2

−
∂Ñ(y, ρ)/∂y − λ1y

(
∂D̃(y, ρ)/∂y

)/
λ2

D̃(y, ρ)

 ,
or,

−
y
(
∂D̃(y, ρ)/∂ρ

)
D̃(y, ρ)

> −∂Ñ(y, ρ)/∂ρ

∂Ñ(y, ρ)/∂y

1 +
y
(
∂D̃(y, ρ)/∂y

)
D̃(y, ρ)

 . (32)
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Moreover, recall that a2 = D̃(y, ρ)/λ2. The positiveness of a2 tells us that D̃(y, ρ) > 0. After

some algebra, we have that ∂D̃(y, ρ)/∂ρ < 0, ∂Ñ(y, ρ)/∂ρ < 0 and ∂D̃(y, ρ)/∂y > 0. Hence, we

conclude that the left-hand side (LHS) of (32) is positive, whereas the right-hand side (RHS)

of (32) is negative since ∂Ñ(y, ρ)/∂y < 0. Consequently, the fact that (32) is satisfied allows us

to conclude that ∂a1/∂ρ < 0.

Concerning the effect of ρ on c1, recall that c1 = a1/∆1 =
(
1 + ρ+ σ̂2

ε1

)
a1/ (1 + ρ). This

expression tells us that c1 is the product of two decreasing positive functions in ρ. Therefore,

∂c1/∂ρ < 0.

Next, we prove that ∂ (d1/d2) /∂σ2
ε1
< 0 and ∂ (d1/d2) /∂σ2

ε2
> 0. From the expressions of

d1, d2, and z, it follows that d1/d2 = (n1z + (n2 − 1)) / ((n1 − 1)z + n2). Applying the chain

rule, we get ∂ (d1/d2) /∂σ2
εi

= (∂ (d1/d2) /∂z)
(
∂z/∂σ2

εi

)
. As ∂ (d1/d2) /∂z > 0, we know that

the sign of ∂ (d1/d2) /∂σ2
εi
is the same as the sign of ∂z/∂σ2

εi
. Applying the Implicit Function

Theorem,
∂z

∂σ2
εi

= −
∂ (λ1/λ2 −N(z)/D(z)) /∂σ2

εi

∂ (λ1/λ2 −N(z)/D(z)) /∂z
.

Using ∂ (λ1/λ2 −N(z)/D(z)) /∂σ2
ε1
> 0, ∂ (λ1/λ2 −N(z)/D(z)) /∂σ2

ε2
< 0, and the inequal-

ity given in (27), we obtain ∂z/∂σ2
ε1
< 0 and ∂z/∂σ2

ε2
> 0, and hence, we conclude that

∂ (d1/d2) /∂σ2
ε1
< 0 and ∂ (d1/d2) /∂σ2

ε2
> 0. Analogously, the negativeness of ∂z/∂λ1 and the

positiveness of ∂z/∂λ2 allows us to conclude that ∂ (d1/d2) /∂λ1 < 0 and ∂ (d1/d2) /∂λ2 > 0.

Now, we study how a1 and c1 vary with a change in σ2
εi
, i = 1, 2. In order to do that

first we analyze the effect of σ2
εi
on d1 and d2. From Proposition 1, we know that di =

((ni − 1) ci + njcj)
−1 and ai = ∆ici > 0, i = 1, 2. Therefore, di =

(
(ni − 1) ∆−1

i ai + nj∆
−1
j aj

)−1
,

i, j = 1, 2, j 6= i. Substituting the expressions of (11) and the expression for ∆i given in Lemma

A2, it follows that

di =

(
(ni − 1)nj

Ωi

+
njni
Ωj

)−1

,

where Ωi = njΥi (di + λi)+ni (Υi − 1) (dj + λj) and Ωj = niΥj (dj + λj)+nj (Υj − 1) (di + λi),

with Υi = Ξj/ (Ξj −Ψi) =
(
1− ρ2 + σ̂2

εi

)
/
(
(1− ρ)

(
1 + ρ+ σ̂2

εi

))
> 1, i, j = 1, 2, j 6= i. There-

fore, we derive the following equations that are satisfied in equilibrium: Fi
(
σ2
ε1
, σ2

ε2
, d1, d2

)
= 0,

i = 1, 2, where

Fi
(
σ2
ε1
, σ2

ε2
, d1, d2

)
=

(ni − 1)njdi
Ωi

+
ninjdi

Ωj

− 1,

i, j = 1, 2, j 6= i. Let DFd1,d2
(
σ2
ε1
, σ2

ε2
, d1, d2

)
denote the following matrix:(

∂F1

(
σ2
ε1
, σ2

ε2
, d1, d2

)
/∂d1 ∂F1

(
σ2
ε1
, σ2

ε2
, d1, d2

)
/∂d2

∂F2

(
σ2
ε1
, σ2

ε2
, d1, d2

)
/∂d1 ∂F2

(
σ2
ε1
, σ2

ε2
, d1, d2

)
/∂d2

)
.
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After some tedious algebra, it can be shown that the determinant of DFd1,d2
(
σ2
ε1
, σ2

ε2
, d1, d2

)
is

strictly positive. In particular, it is not null and, therefore, this matrix is invertible. Hence, we

can apply the Implicit Function Theorem, we have(
∂d1/∂σ

2
ε1

∂d1/∂σ
2
ε2

∂d2/∂σ
2
ε1

∂d2/∂σ
2
ε1

)
=

−
(
DFd1,d2

(
σ2
ε1
, σ2

ε2
, d1, d2

))−1

(
∂F1

(
σ2
ε1
, σ2

ε2
, d1, d2

)
/∂σ2

ε1
∂F1

(
σ2
ε1
, σ2

ε2
, d1, d2

)
/∂σ2

ε2

∂F2

(
σ2
ε1
, σ2

ε2
, d1, d2

)
/∂σ2

ε1
∂F2

(
σ2
ε1
, σ2

ε2
, d1, d2

)
/∂σ2

ε2

)
.

(33)

It is easy to see that all the elements of
(
DFd1,d2

(
σ2
ε1
, σ2

ε2
, d1, d2

))−1
are positive. Moreover,

∂Fi
(
σ2
ε1
, σ2

ε2
, d1, d2

)
/∂σ2

εi
< 0 and ∂Fi

(
σ2
ε1
, σ2

ε2
, d1, d2

)
/∂σ2

εj
< 0, i, j = 1, 2, j 6= i. Hence, (33)

implies that ∂di/∂σ2
εi
> 0 and ∂di/∂σ2

εj
> 0.

Next, we study the comparative statics of c1 and c2 with respect to σ2
ε1
. Recall that ci =

nj/Ωi, i, j = 1, 2, j 6= i. Using the fact that Υ1, d1, and d2 are increasing in σ2
ε1
and that

Υ2 is independent of σ2
ε1
, we have that Ω1 and Ω2 are increasing in σ2

ε1
, which allows us to

conclude that c1 and c2 are decreasing in σ2
ε1
. Combining these results with the fact that ∆1 is

decreasing in σ2
ε1
and ∆2 is independent of σ2

ε1
, it follows that a1 and a2 are decreasing in σ2

ε1
,

since a1 = ∆1c1 and a2 = ∆2c2.

Finally, concerning h), notice that doing a similar reasoning as before we derive the fol-

lowing equations that are satisfied in equilibrium: Fi (n1, n2, d1, d2) = 0, i = 1, 2, where

Fi (n1, n2, d1, d2) = Fi
(
σ2
ε1
, σ2

ε2
, d1, d2

)
, i, j = 1, 2, j 6= i. Hence,(

∂d1/∂n1 ∂d1/∂n2

∂d2/∂n1 ∂d2/∂n2

)
=

− (DFd1,d2 (n1, n2, d1, d2))−1

(
∂F1 (n1, n2, d1, d2) /∂n1 ∂F1 (n1, n2, d1, d2) /∂n2

∂F2 (n1, n2, d1, d2) /∂n1 ∂F2 (n1, n2, d1, d2) /∂n2

)
.

Taking into account that all the elements of the previous two matrices are positive, we conclude

that ∂di/∂ni < 0 and ∂di/∂nj < 0, i, j = 1, 2, j 6= i.

Proof of Corollary 2(i): Suppose that σ2
ε1
≥ σ2

ε2
, λ1 ≥ λ2, and n1 ≥ n2. Using the expressions

of Ξi and ∆i, i = 1, 2, it is easy to see that in this case Ξ2∆−1
2 > Ξ1∆−1

1 . Next, we distinguish

two cases:

Case 1: (n1 + n2 − 2)n1/ ((n1 + n2) (n1 + n2 − 1)) ≥ 1 − Ξ2∆−1
2 . Evaluating the polynomial

g(z), stated in the proof of Lemma A2, at z = 1, we have that in this case g(1) ≥ 0. This

implies that z ≤ 1, and therefore, c1 ≤ c2. In addition, using the expressions of d1 and d2, we
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get sgn{d1 − d2} =sgn{c1 − c2}, which implies d1 ≤ d2. Finally, notice that ∆1 ≤ ∆2 whenever

σ2
ε1
≥ σ2

ε2
. Hence, a1/a2 = z∆1/∆2 ≤ 1.

Case 2: (n1 + n2 − 2)n1/ ((n1 + n2) (n1 + n2 − 1)) < 1− Ξ2∆−1
2 . Notice that

(n1 + n2 − 2)n2

(n1 + n2) (n1 + n2 − 1)
−
(
1− Ξ1∆−1

1

)
≤ (n1 + n2 − 2)n1

(n1 + n2) (n1 + n2 − 1)
−
(
1− Ξ2∆−1

2

)
,

since Ξ2∆−1
2 > Ξ1∆−1

1 and n1 ≥ n2. Thus, in this case we have that qN (1) < 0 and qD (1) < 0.

Taking into account the shape of these polynomials, the previous two inequalities imply that

zD > 1 > zN . However, Proposition 2A indicates that in this case there is no equilibrium.

Corollary 2A(ii). Suppose that σ2
ε1
≥ σ2

ε2
, λ1 ≥ λ2, and n1 ≥ n2, and suppose that at least

one of these inequalities is strict. If

(1− ρ)n1

(
n2

(
1 + ρ+ σ̂2

ε1

)
n2

(
1− ρ2 + σ̂2

ε1

)
+ n1ρσ̂

2
ε1

+
(n2 − 1)

(
1 + ρ+ σ̂2

ε2

)
n1

(
1− ρ2 + σ̂2

ε2

)
+ n2ρσ̂

2
ε2

)
≤ 1, (34)

then d1 + λ1 < d2 + λ2 always holds. Otherwise, d1 + λ1 > d2 + λ2 iff λ1/λ2 is high enough.

Proof: By virtue of (16), the inequality d1 + λ1 > d2 + λ2 is equivalent to(
Ξ1 −

n1

n2

a1

a2

Ψ1

)/
a1 >

(
Ξ2 −

n2

n1

a2

a1

Ψ2

)/
a2.

Using (13) and (19), and after some algebra, the previous inequality is equivalent to

z < ẑ, (35)

where ẑ =
(
Ξ1∆−1

1 + n2n
−1
1

(
1− Ξ2∆−1

2

)) /(
Ξ2∆−1

2 + n1n
−1
2

(
1− Ξ1∆−1

1

))
. We distinguish two

cases:

Case I: Ξ2∆−12 +Ξ1∆−11 −1

(1−Ξ1∆−11 )n1n−12 +Ξ2∆−12
≤ Ξ1∆−11 +n2n

−1
1 (1−Ξ2∆−12 )

n1(Ξ1∆−11 +n2n
−1
1 (1−Ξ2∆−12 ))+(n2−1)((1−Ξ1∆−11 )n1n−12 +Ξ2∆−12 )

. Using

the expressions of Ξi and∆i, we get that the previous inequality is equivalent to (34). Moreover,

after some algebra, we have that qD (ẑ) ≤ 0. Consequently, ẑ ≤ zD < z, which implies that in

this case d1 + λ1 < d2 + λ2 holds. Note that inequality holds for ρ close to 1.

Case II: Ξ2∆−12 +Ξ1∆−11 −1

(1−Ξ1∆−11 )n1n−12 +Ξ2∆−12
>

Ξ1∆−11 +n2n
−1
1 (1−Ξ2∆−12 )

n1(Ξ1∆−11 +n2n
−1
1 (1−Ξ2∆−12 ))+(n2−1)((1−Ξ1∆−11 )n1n−12 +Ξ2∆−12 )

. In this

case, taking into account that z is the unique positive solution of (20), (35) is equivalent to

λ1

λ2

>

Ξ2∆−12 +Ξ1∆−11 −1

(1−Ξ1∆−11 )n1n−12 +Ξ2∆−12
− (Ξ1∆−11 +n2n

−1
1 (1−Ξ2∆−12 ))

(n1−1)(Ξ1∆−11 +n2n
−1
1 (1−Ξ2∆−12 ))+n2((1−Ξ1∆−11 )n1n−12 +Ξ2∆−12 )

Ξ2∆−12 +Ξ1∆−11 −1

(1−Ξ1∆−11 )n1n−12 +Ξ2∆−12
− Ξ1∆−11 +n2n

−1
1 (1−Ξ2∆−12 )

n1(Ξ1∆−11 +n2n
−1
1 (1−Ξ2∆−12 ))+(n2−1)((1−Ξ1∆−11 )n1n−12 +Ξ2∆−12 )

. (36)
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Taking into account that σ2
ε1
≥ σ2

ε2
, λ1 ≥ λ2, and n1 ≥ n2, and after some algebra, we get that

both sides of the inequality are higher than (or equal to) 1. Therefore, if the value of λ1/λ2 is

high enough, then we obtain d1 + λ1 > d2 + λ2. Otherwise, the opposite inequality holds. In

short, the result indicates that the inequality d1+λ1 > d2+λ2 holds whenever (a) the differences

between groups stem mainly from transaction costs;31 and (b) λ1/λ2 is high enough. Finally,

under complete information, the inequality (36) becomes λ1
λ2
> 1 and, therefore, we have that

in this case d1 + λ1 > d2 + λ2 iff λ1 > λ2.

Proof of Proposition 4: (i) First, suppose that θ1 = θ2. Then E [p] = θ1−Q
/(

n1
d1+λ1

+ n2
d2+λ2

)
.

From Proposition 3 we know that di and dj decrease with ni, and increase with σ2
εi
, λi, and ρ.

Using these results in the previous expression, we conclude that the expected price is increasing

in ni and decreasing in λi, σ2
εi
, and ρ.

Now, suppose that θ1 6= θ2. The results we have just derived may not hold if
∣∣θ1 − θ2

∣∣ is
large enough. For example, let us focus on the relationship between the expected price and

n1. To study this relationship, we first show that n2 (d1 + λ1) /(n1 (d2 + λ2)) decreases with n1.

Recall that d2 = ((n2 − 1)n1/Ω2 + n1n2/Ω1)−1. Using the expressions of Ωi, i = 1, 2, we have

1 =

(
n2 − 1

Υ2 + (Υ2 − 1) n2(d1+λ1)
n1(d2+λ2)

+
n2

Υ1
n2(d1+λ1)
n1(d2+λ2)

+ Υ1 − 1

)−1

+
λ2

d2 + λ2

.

The fact that d2 decreases with n1 implies that λ2/ (d2 + λ2) increases with n1. Then, the

previous inequality tells us that n2−1

Υ2+(Υ2−1)
n2(d1+λ1)
n1(d2+λ2)

+ n2

Υ1
n2(d1+λ1)
n1(d2+λ2)

+Υ1−1
increases with n1. For this

to be possible, n2(d1+λ1)
n1(d2+λ2)

needs to be decreasing in n1. Given that the expected price satisfies

E [p] =

(
1 +

n2 (d1 + λ1)

n1 (d2 + λ2)

)−1

θ1 +

(
1−

(
1 +

n2 (d1 + λ1)

n1 (d2 + λ2)

)−1
)
θ2−

(
n1

d1 + λ1

+
n2

d2 + λ2

)−1

Q,

we have that the relationship between the expected price and n1 is ambiguous. For instance, if

θ2 is low enough, then the fact that d1, d2, and n2 (d1 + λ1) / (n1 (d2 + λ2)) are decreasing in n1

allows us to conclude that the expected price increases with n1. However, if θ2 is large and θ1

and Q are low enough, then the expected price decreases with n1.

(ii) From the expression for the expected revenue it follows thatQE [p] increases with θi, i = 1, 2.

In addition, direct computation yields that Q =
(

n1
d1+λ1

θ1 + n2
d2+λ2

θ2

)/
2. Using Proposition 3,

it follows that this quantity increases with ni and θi and decreases with ρ, λi and σ2
εi
, i = 1, 2.

31This claim follows because if n1 = n2 and σ̂
2
ε1 = σ̂2ε2 , then the inequality given in (34) does not hold.
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Proof of Corollary 3: Using the expression for the expected price, it follows that(
min

{
θ1, θ2

}
− Q

n1
d1+λ1

+ n2
d2+λ2

)
Q ≤ E [p]Q ≤

(
max

{
θ1, θ2

}
− Q

n1
d1+λ1

+ n2
d2+λ2

)
Q.

Notice both the left-hand side (LHS) and the right-hand side (RHS) of this expression corre-

spond to the expected revenue in an auction where all participants have an expected valuation

of min
{
θ1, θ2

}
and of max

{
θ1, θ2

}
, respectively. Using Proposition 4(i), we know that both

LHS and RHS increase with ni but decrease with λi and σ2
εi
. Hence, we obtain that QE [p]

is lower than the expected revenue of the symmetric auction in which both groups are ex-ante

identical, with large size (each group with max {n1, n2} bidders), with high expected valua-
tion (max

{
θ1, θ2

}
), low transaction costs (min{λ1,λ2}), and precise signals (min{σ2

ε1
,σ2
ε2
}), and

larger than the expected revenue of the symmetric auction in which both groups are ex-ante

identical but with the opposite characteristics (i.e., min {n1, n2}, min
{
θ1, θ2

}
, max{λ1,λ2}, and

max{σ2
ε1
,σ2
ε2
}).

Proof of Proposition 5: Using (23) and (24), it follows that lim
n1→∞

zN = lim
n1→∞

zD = 0. Further-

more, after some algebra, we have that the necessary and suffi cient condition for the existence

of an equilibrium (i.e., lim
n1→∞

zN/zD > 1) is equivalent to n2 > n̄2

(
ρ, σ̂2

ε1
, σ̂2

ε2

)
, where

n̄2

(
ρ, σ̂2

ε1
, σ̂2

ε2

)
=

ρ
(
(2− ρ) σ̂2

ε2
+ 2 (1− ρ2)

)
σ̂2
ε1

(1− ρ2)
((

1 + σ̂2
ε1

) (
1 + σ̂2

ε2

)
− ρ2

) .
Moreover, taking the limit in (20), it follows that lim

n1→∞
z = 0 and

lim
n1→∞

n1z = n2Ξ1∆−1
1

/ (
1− Ξ1∆−1

1

)
. (37)

Using the expressions included in the statement of Lemma A2, and after some tedious algebra,

we get lim
n1→∞

b1 = q, lim
n1→∞

a1 = 0, lim
n1→∞

c1 = 0, lim
n1→∞

a2 = ∆2 lim
n1→∞

c2,

lim
n1→∞

b2 =

σ̂2
ε2

(
(n2−1)(1−ρ2)
(1−ρ2+σ̂2ε2)

+
(1−ρ2+σ̂2ε1 (1−2ρ))

(1+σ̂2ε1)(1+σ̂2ε2)−ρ
2

)(
θ2 − ρθ1 + qρλ1

)
(1− ρ)λ2

(
n2 (1 + ρ)− ρσ̂2ε1(1+ρ+σ̂2ε2)

(1+σ̂2ε1)(1+σ̂2ε2)−ρ
2

) +

+q
ρ2σ̂2

ε2
σ̂2
ε1

n2 (1− ρ2)
((

1 + σ̂2
ε1

) (
1 + σ̂2

ε2

)
− ρ2

) , and
lim
n1→∞

c2 =
n2 − n̄2

(
ρ, σ̂2

ε1
, σ̂2

ε2

)
λ2

1−ρ2+σ̂2ε2
1−ρ

(
n2

(1+ρ+σ̂2ε2)
− ρσ̂2ε1

(1+ρ)((1+σ̂2ε1)(1+σ̂2ε2)−ρ
2)

) . (38)
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Next, in relation to the expressions for d1 and d2, we have that

lim
n1→∞

d1 = lim
n1→∞

((n1 − 1) c1 + n2c2)−1 =

(
lim
n1→∞

(
(n1 − 1)

n1

n1z + n2

)
lim
n1→∞

c2

)−1

> 0.

The fact that n1z and c2 converge to a positive finite number (see (37) and (38)) implies that

d1 does not converge to zero (provided that ρσ̂
2
ε1
> 0; if ρσ̂2

ε1
= 0, then it is easy to see that

lim
n1→∞

n1z =∞). A similar result is obtained with the limit of d2. In particular,

lim
n1→∞

d2 =

((
lim
n1→∞

n1z + n2 − 1

)
lim
n1→∞

c2

)−1

> lim
n1→∞

d1 > 0.

Proof of Proposition 6: Suppose that n1 and n2 go to infinity and that n1/(n1 +n2) converges

to µ1. Taking limits in the equation that characterizes z (i.e., Equation (20)) and operating, we

have

z =
Ξ1∆−1

1 + µ2µ
−1
1

(
1− Ξ2∆−1

2

)
λ1λ

−1
2

µ1µ
−1
2

(
1− Ξ1∆−1

1

)
+ Ξ2∆−1

2 λ1λ
−1
2

. (39)

Moreover, taking the limit in the expressions of the equilibrium coeffi cients given in Lemma

A2, it follows that

bi = ai

(
Ξjθi −Ψiθj
ΞiΞj −ΨiΨj

− θi
)

+
Ψi

µiµj

µiΞj
ai
aj
− µjΨj

(ΞiΞj −ΨiΨj)
q, ai = ∆ici, i, j = 1, 2, j 6= i,

c1 =
Ξ1∆−1

1 − µ1µ
−1
2

(
1− Ξ1∆−1

1

)
z

λ1

, and c2 =
Ξ2∆−1

2 − µ2µ
−1
1

(
1− Ξ2∆−1

2

)
z−1

λ2

.

Substituting (39) in the previous expressions and after some algebra, we get

bi = ai

(
Ξjθi −Ψiθj
ΞiΞj −ΨiΨj

− θi
)

+
λjΨi

µjΞjλi + µiΨiλj
q, (40)

ai =
µj (ΞiΞj −ΨiΨj)

µjΞjλi + µiΨiλj
, and (41)

ci =
µj (Ξj −Ψi)

µjΞjλi + µiΨiλj
, i, j = 1, 2, j 6= i. (42)

Next, we derive the equilibrium in the following continuous setup: Consider now that there

is a continuum of bidders [0, 1]. Let q denote the aggregate quantity supplied in the market.

Suppose that a fraction µ1 of these bidders are traders of type 1 and the remainder fraction,

µ2, are bidders of type 2.

Consider a trader of type i. This bidder chooses to maximize

E [πi|si, p] = (E [θi|si, p]− p)xi − λix2
i /2.
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The FOC is given by E [θi|si, p]− p− λixi = 0, or equivalently,

Xi (si, p) = (E [θi|si, p]− p) /λi. (43)

Positing linear strategies, the market clearing condition implies that

p =
(
µi (bi + aisi) + µj (bj + ajsj)− q

)
/
(
µici + µjcj

)
, (44)

provided that µici + µjcj 6= 0. Using the expression for p and assuming that ai 6= 0, i = 1, 2, it

follows that E [θi|si, p] = E [θi|si, sj]. Hence, E [θi|si, p] = θi + Ξi

(
si − θi

)
+ Ψi

(
sj − θj

)
. Using

(44), sj =
(
q − µibi − µjbj − µiaisi + p

(
µici + µjcj

))
/
(
µjaj

)
. Therefore,

E [θi|si, p] = θi + Ξi

(
si − θi

)
+ Ψi

((
q − µibi − µjbj − µiaisi + p

(
µici + µjcj

))
/
(
µjaj

)
− θj

)
.

Substituting this expression in (43), and identifying coeffi cients, it follows that

bi =
(
(1− Ξi) θi −Ψiθj + Ψi

(
q −

(
µibi + µjbj

))
/
(
µjaj

))/
λi, (45)

ai =
(
Ξi −Ψiµiai/

(
µjaj

))/
λi, and (46)

ci =
(
1−Ψi

(
µici + cjµj

)
/
(
µjaj

))/
λi, i, j = 1, 2, j 6= i. (47)

Note that (46) implies that ai/aj = λj
(
Ξi −Ψiµiai/

(
µjaj

))/ (
λi
(
Ξj −Ψjµjaj/ (µiai)

))
. Hence,

ai/aj = µj
(
Ψjλiµj + Ξiλjµi

)
/
(
µi
(
Ψiλjµi + λiΞjµj

))
. Then, plugging the previous expression

into (46), we get (41).

Furthermore, using (45), and after some algebra, we get

µibi + µjbj =

µi
λi

(
(1− Ξi) θi −Ψiθj + Ψi

µjaj
q
)

+
µj
λj

(
(1− Ξj) θj −Ψjθi +

Ψj
µiai

q
)

Ψi
λi

µi
µjaj

+
Ψj
λj

µj
µiai

+ 1
.

Substituting (41) and the last expression in (45), we get (40). Moreover, from (47), and after

some algebra, we get µici + cjµj =
(
µi
λi

+
µj
λj

)/(
Ψi
λi

µi
µjaj

+
Ψj
λj

µj
µiai

+ 1
)
. Using (41) and the last

expression in (47), we obtain (42). Consequently, we conclude that the equilibrium coeffi cients

of the limiting case converge to the equilibrium coeffi cients of the continuous setup. Finally,

taking into account the expressions for Ξi, Ξj, Ψi, and Ψj, we obtain the expressions stated in

Proposition 6.

Lemma A3. The equilibrium quantities solve the following distorted benefit maximization

program:

max
x1,x2

E
[
n1

(
θ1x1 − (d1 + λ1)x2

1/2
)

+ n2

(
θ2x2 − (d2 + λ2)x2

2/2
)∣∣ t]

s.t. n1x1 + n2x2 = Q,
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taking as given the equilibrium parameters d1 and d2.

Proof: The Lagrangian function of the maximization program is given by

L (x1, x2, µ) = n1

(
t1x1 − (d1 + λ1)x2

1/2
)

+ n2

(
t2x2 − (d2 + λ2)x2

2/2
)
− µ (n1x1 + n2x2 −Q) ,

where µ denotes the Lagrange multiplier. Differentiating, we obtain the following FOCs:

n1 (t1 − (d1 + λ1)x1)− µn1 = 0, (48)

n2 (t2 − (d2 + λ2)x2)− µn2 = 0, and (49)

n1x1 + n2x2 = Q. (50)

From (48) and (49), it follows that xi = (ti − µ) / (di + λi), i = 1, 2. Substituting these ex-

pressions in (50) and operating, we have µ =
(

n1t1
d1+λ1

+ n2t2
d2+λ2

−Q
)(

n1
d1+λ1

+ n2
d2+λ2

)−1

. Then,

plugging this expression into (48) and (49), we get the expressions of the equilibrium quantities

given in (4). In addition, since the objective function is concave and the constraint is a linear

equation, we conclude that the critical point is a global maximum. Hence, the equilibrium

quantities are the solutions of the optimization problem stated in Lemma A3.

Proof of Proposition 7: Recall that in the competitive setup, the FOC of the two optimization

problems are given by E [θi|si, p]− p− λixi = 0, i = 1, 2. Doing similar computations as in the

proof of Lemma A1, we derive the following system of equations:32

bi =

(
(1− Ξi) θi −Ψiθj + Ψi

(
Q− nibi − njbj

njaj

))/
λi, ai =

(
Ξi −

ni
nj

ai
aj

Ψi

)/
λi, and

ci =

(
1−Ψi

(
nici + njcj

njaj

))/
λi, i, j = 1, 2, j 6= i.

Taking into account that Q = (ni+nj)q and µi = ni/(ni+nj), we have that the previous system

is identical to the system of equations given in (45)-(47). As a consequence, the equilibrium

coeffi cients given in the statement of Proposition 6 coincide with the equilibrium coeffi cients in

the competitive setup.

Proof of Proposition 8: Performing similar computations as in the proof of Lemma A1, we

obtain that the equilibrium coeffi cients with subsidies κi = di(c
o
1, c

o
2) satisfy

bi =
(1− Ξi) θi −Ψiθj − Ψi(nibi+njbj−Q)

njaj

di + λi − di(co1, co2)
, ai =

Ξi − niai
njaj

Ψi

di + λi − di(co1, co2)
> 0, and

ci =
1− Ψi(nici+njcj)

njaj

di + λi − di(co1, co2)
, i, j = 1, 2, j 6= i.

32To ease the notation the superscript o is omitted in this proof.
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Comparing this system of equations and the one derived in the proof of Proposition 7, we obtain

that the equilibrium coeffi cients of the price-taking equilibrium solves this system. Therefore,

we conclude that the quadratic subsidies κix2
i /2, with κi = di(c

o
1, c

o
2), i = 1, 2, induce an effi cient

allocation.

Lemma A4. The expected deadweight loss at an anonymous allocation (x1 (t) , x2 (t)) sat-

isfies

E [DWL] =
1

2
λ1n1E

[
(x1 (t)− xo1 (t))2]+

1

2
λ2n2E

[
(x2 (t)− xo2 (t))2] . (51)

Proof: Notice that ETS = E [E [TS|t]], where

E [TS|t] = E
[
n1

(
θ1x1 (t)− λ1 (x1 (t))2 /2

)
+ n2

(
θ2x2 (t)− λ2 (x2 (t))2 /2

)∣∣ t] =

n1

(
t1x1 (t)− λ1 (x1 (t))2 /2

)
+ n2

(
t2x2 (t)− λ2 (x2 (t))2 /2

)
.

A Taylor series expansion of E [TS|t] around the price-taking equilibrium (xo1 (t) , xo2 (t)), stop-

ping at the second term due to the fact that E [TS|t] is quadratic, yields

E [TS|t] (x (t)) = E [TS|t] (xo (t)) +∇E [TS|t] (xo (t))(x (t)− xo (t)) +

+
1

2
(x (t)− xo (t))

′
D2E [TS|t] (xo (t))(x (t)− xo (t)),

where ∇E [TS|t] (xo (t)) and D2E [TS|t] (xo (t)) are, respectively, the gradient and the Hessian

matrix of E [TS|t] evaluated at xo (t). Notice that we know

∇E [TS|t] (xo (t)) = (n1 (t1 − λ1x
o
1 (t)) , n2 (t2 − λ2x

o
2 (t))).

Using the expressions of xo1 (t) and xo2 (t), and after some algebra it follows that

∇E [TS|t] (xo (t))(x (t)− xo (t)) = 0.

In addition, D2E [TS|t] (xo (t)) =

(
−λ1n1 0

0 −λ2n2

)
. Hence,

E [TS|t] (x (t))− E [TS|t] (xo (t)) = −1

2
λ1n1 (x1 (t)− xo1 (t))2 − 1

2
λ2n2 (x2 (t)− xo2 (t))2

and, therefore, (51) is satisfied.

Proof of Proposition 9: (i) Suppose that Q = 0. Then, E [DWL] is given by

E [DWL] =
n1n2 (n2d1 + n1d2)2

2 (n2λ1 + n1λ2)u2
E (t1 − t2)2 .

Hence,
dE [DWL]

dσ2
ε1

=
∂E [DWL]

∂d1

∂d1

∂σ2
ε1

+
∂E [DWL]

∂d2

∂d2

∂σ2
ε1

+
∂E [DWL]

∂σ2
ε1

.
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It is easy to see that in this case ∂E [DWL] /∂di > 0, i = 1, 2, and ∂E [DWL] /∂σ2
ε1
< 0. Com-

bining these results with Proposition 3, we have that the first two terms of dE [DWL] /dσ2
ε1
are

positive, while the last one is negative.

We know that d1 and d2 are independent of σ2
ε1
when ρ = 0. By continuity, we know

that for very low values of ρ is ∂d1/∂σ
2
ε1
and ∂d2/∂σ

2
ε1
are positive, but very low. Hence, we

conclude that the last term in dE [DWL]/ dσ2
ε1
dominates and, hence, in this case we have that

dE [DWL]/ dσ2
ε1
< 0 although ∂d1/∂σ

2
ε1
> 0, i = 1, 2. By contrast, if we consider the case in

which ρ is not low and
(
θ1 − θ2

)2
is high enough, then the first two terms in dE [DWL]/ dσ2

ε1

dominate, which implies that dE [DWL]/ dσ2
ε1
> 0, i = 1, 2.

(ii) Omitted since it is trivial.
(iii) When groups are symmetric (n2 = n1 = n, λ1 = λ2 = λ, and σ2

ε1
= σ2

ε2
= σ2

ε) d1 = d2 = d

and λ2d1−λ1d2 = 0. Therefore, the expected deadweight loss consists of only one term, the first

one, that is independent of Q. Moreover, after some computations, we get that E [DWL|t] =

nd2 (t2 − t1)2 /
(
4 (d+ λ)2 λ

)
. Using this expression and the fact that ∂E [DWL|t] /∂d > 0

allows us to conclude that an increase in an information parameter (ρ or σ̂2
ε) raises both d and

E [DWL|t].
However, with asymmetric groups the previous results may not hold. In this case, suppose

that Q is large enough. Then, for i = 1, 2, j 6= i,

sgn
(
∂E [DWL|t]

∂di

)
= sgn

(
∂

(
n1n2 (λ1d2 − λ2d1)2

2 (λ1n2 + λ2n1)u2
Q2

)/
∂di

)
= sgn (λjdi − λidj) .

When Q is large enough we have that if di/dj > λi/λj, then ∂E [DWL|t] /∂di > 0 and

∂E [DWL|t] /∂dj < 0. Thus, with asymmetric groups price impact (d1, d2) and the E [DWL|t]
are not always positively associated, given predicted values t, for changes in information para-

meters.

Appendix B

Bid shading and expected discount

Recall that t̃ = (n1t1 + n2t2) / (n1 + n2). From the demand of bidders it follows that p (t) =

ti − (di + λi)xi (t), i = 1, 2. For a trader of type i, the expected marginal benefit of buy-

ing xi units of the asset is ti − λixi. Hence, the average marginal benefit is given by t̃ −
(λ1n1x1 + λ2n2x2) / (n1 + n2). The magnitude of (average) bid shading is the difference between
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the average marginal valuation and the auction price, that is, (d1n1x1 + d2n2x2) / (n1 + n2).33

We can use Equation (4) to write bid shading as

(n2d2 (d1 + λ1) + n1d1 (d2 + λ2))Q

(n1 + n2) (n1 (d2 + λ2) + n2 (d1 + λ1))
+

(t2 − t1) (d2 − d1)n2n1

(n1 + n2) (n1 (d2 + λ2) + n2 (d1 + λ1))
. (52)

At this juncture, some additional remarks are in order.

• Bid shading increases with Q and decreases when the group that values more the asset,

say group 1, ( t1 > t2) has less price impact (d1 < d2).

• When d1 = d2 = d as in the symmetric case, for instance, bid shading consists of only one

term (the first one) and it is equal to dQ/ (n1 + n2).

• When d1 6= d2, the second term of (52) is negative and bid shading decreases whenever

the group that values the asset more highly (ti > tj) has less price impact (di < dj).

• If group 1 has higher transaction costs (λ1 > λ2), is more numerous (n1 > n2), and is less

informed (σ2
ε1
> σ2

ε2
) than group 2, then c1 < c2, and so d1 < d2. If t1 > t2, then the

second term of (52) is negative and the two terms have opposite signs. Therefore, if Q is

low (e.g., Q = 0) or if the difference in predicted values of the asset is high, then negative

bid shading obtains.

The expected discount is defined as E
[
t̃
]
− E [p (t)]. Using (6), some algebra yields the

following expression for the expected discount:

(d1 + λ1) (d2 + λ2)

n1 (d2 + λ2) + n2 (d1 + λ1)
Q+

n1n2 (d2 + λ2 − d1 − λ1)
(
θ2 − θ1

)
(n1 + n2) (n1 (d2 + λ2) + n2 (d1 + λ1))

. (53)

Here our related comments are as follows.

• When d1 + λ1 = d2 + λ2 = d + λ (as in the symmetric case), the expected discount is

(d+ λ)Q/ (n1 + n2).

• The first term is always positive provided Q > 0, whereas the second term is positive

whenever (d2 + λ2 − d1 − λ1)
(
θ2 − θ1

)
> 0. Therefore, the expected discount is lower

whenever the group that values the asset more highly (θ2 > θ1) has a lower "total trans-

action cost" (d2 + λ2 < d1 + λ1).

33According to Cassola et al. (2013) average bid shading almost tripled after the turmoil in August 2007 in

the ECB liquidity auctions.
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• If group 1 ex ante values the asset more (θ1 > θ2), has higher transaction costs (λ1 > λ2),

is more numerous (n1 > n2), and is less informed (σ2
ε1
> σ2

ε2
), then Corollary 2 shows

that d1 + λ1 > d2 + λ2 whenever (a) the differences between groups are due mostly to

transaction costs and (b) λ1/λ2 is high enough. In this case, both terms are positive and so

the expected discount is positive. Yet, if both groups have similar transactions costs, then

the two terms in (53) have opposite signs. In particular, we expect a negative discount

when Q is low.

Effects of Integrating Separated Markets

We compare the expected total surplus of our setup with a framework with two separated

markets, the market 1 and the market 2. In market i all the buyers (ni) are of type i and the

quantity supplied is niQ/(n1 + n2). In this last framework, given that all the individuals are

identical, the market clearing condition implies that the equilibrium quantities in market i are

given by Q/(ni + nj). Hence, the expected total surplus in market i, denoted by E [TS]Market i,

satisfies

E [TS]Market i =
niθi

n1 + n2

Q− λini

(n1 + n2)2

Q2

2

and, consequently, the sum of expected total surplus in this setting

E [TS]Market 1 + E [TS]Market 2 =
n1θ1 + n2θ2

n1 + n2

Q− n1λ1 + n2λ2

(n1 + n2)2

Q2

2
.

On the other hand, in our setup (the integrated market) the expected total surplus is given by

E [TS]Integrated Market =

(
n1(d2+λ2)θ1+n2(d1+λ1)θ2

u
− n1n2(λ1d2−λ2d1)(θ1−θ2)

u2

)
Q

−n1λ1(d2+λ2)2+n2λ2(d1+λ1)2

2u2
Q2 + n1n2(n2(2d1+λ1)+n1(2d2+λ2))

2u2
E
[
(t1 − t2)2] ,

where u and E
[
(t1 − t2)2] are given by (5) and (7), respectively.

At first glance, we can observe that when Q = 0, it follows that

E [TS]Integrated Market > E [TS]Market 1 + E [TS]Market 2 ,

whenever θ1 6= θ2, or when there is an informative private signal (i.e., when σ2
ε1

= σ2
ε2

= ∞
does not hold). Under this parameter configuration, this inequality also holds if the groups are

symmetric (i.e., λ1 = λ2 = λ, n1 = n2 = n, σ2
ε1

= σ2
ε2

= σ2
ε, and θ1 = θ2 = θ). To see this, note

that in this case

E [TS]Integrated Market = θQ− λ

4n
Q2 +

n (2d+ λ)

4 (d+ λ)2 E
[
(t1 − t2)2] and
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E [TS]Market 1 + E [TS]Market 2 = θQ− λ

4n
Q2.

Therefore, we can conclude that under symmetry, market integration increases the expected

total surplus.

In what follows we show that market integration is also good in terms of E [TS] under perfect

competition, even though the groups are asymmetric. Notice that under perfect competition

(d1 = d2 = 0), we have that

E [TS]Integrated Market =
1

n1λ2 + n2λ1

((
n1λ2θ1 + n2λ1θ2

)
Q− λ1λ2

2
Q2 +

n1n2

2
E
[
(t1 − t2)2]) .

Hence,

E [TS]Integrated Market − (E [TS]Market 1 + E [TS]Market 2) =

n1n2
n1λ2+n2λ1

(
(θ1−θ2)(λ2−λ1)

n1+n2
Q+ (λ2−λ1)2

2(n1+n2)2
Q2 +

E[(t1−t2)2]
2

)
,

which is a convex function in Q. Notice that, if
(
θ1 − θ2

)
(λ2 − λ1) ≥ 0, it follows that

E [TS]Integrated Market ≥ E [TS]Market 1 + E [TS]Market 2 ,

with an equality only holds when θ1 = θ2 λ1 = λ2 and σ2
ε1

= σ2
ε2

= ∞. Otherwise, if(
θ1 − θ2

)
(λ2 − λ1) < 0, the expected total surplus is also larger in the integrated market. In or-

der to show this, we examine the value of E [TS]Integrated Market− (E [TS]Market 1 + E [TS]Market 2)

at the minimum, which is Q = n1+n2
λ1−λ2

(
θ1 − θ2

)
. Direct computation yields that this function

at its minimum is strictly positive and, therefore, for all Q ≥ 0, this difference is also strictly

positive. Therefore, we can conclude that, under perfect competition the following inequality

holds

E [TS]Integrated Market ≥ E [TS]Market 1 + E [TS]Market 2 ,

and the equality is satisfied when θ1 = θ2, λ1 = λ2 and σ2
ε1

= σ2
ε2

=∞.
To find the reverse result, we have to restrict our attention to a setup with strategic behavior.

Moreover, we assume that θ1 = θ2 = θ and σ2
ε1

= σ2
ε2

=∞. Then, it follows that

E [TS]Integrated Market = θQ− n1λ1 (d2 + λ2)2 + n2λ2 (d1 + λ1)2

u2

Q2

2
and

E [TS]Market 1 + E [TS]Market 2 = θQ− n1λ1 + n2λ2

(n1 + n2)2

Q2

2
.

Therefore, in this case

E [TS]Integrated Market − (E [TS]Market 1 + E [TS]Market 2) =

48



n1n2 (d1 + λ1 − λ2 − d2) 2(d1+λ1)(λ1−λ2)(n1+n2)+(n1(2λ1−λ2)+λ1n2)(d2+λ2−d1−λ1)

(n1+n2)2u2
Q2

2
.

In particular, whenever λ1 > λ2, d1 + λ1 < d2 + λ2, and Q 6= 0, it follows that

E [TS]Integrated Market < E [TS]Market 1 + E [TS]Market 2 .

To intuitively understand this result notice that, when bidders do not have private information

and ex-ante identically value the asset (θ1 = θ2 = θ), the individual equilibrium quantity for

the group i can be written as

Q

ni + nj
− (di + λi − dj − λj)Qnj

(ni + nj)u
.

Then, when d2 +λ2 > d1 +λ1 the group 2 with lower transaction costs (λ1 > λ2), in equilibrium,

obtains a lower quantity in the integrated market with respect to the framework with separated

markets. This result is due to the fact that in the integrated market the individuals of group 2

reduce their demand strategically and, as a result their equilibrium quantities are lower, while

the individuals with higher transaction costs get a higher quantity. All this leads to a lower

expected total surplus in the integrated market.

Finally, we end this proof with another particular case (now with incomplete information)

in which market integration also reduces the expected total surplus. Suppose that θ1 = θ2 =

θ, λ1 = λ2 = λ, n1 = n2 = n, ρ 6= 0, and σ̂2
ε1
6= σ̂2

ε2
. In this case the sum of the expected total

surplus with separated markets

E [TS]Market 1 + E [TS]Market 2 = θQ− λ

4n
Q2.

On the other hand, in the integrated market

E [TS]Integrated Market =

θQ− λ

2n

(d2 + λ)2 + (d1 + λ)2

(d1 + d2 + 2λ)2 Q2 + n
d1 + d2 + λ

(d1 + d2 + 2λ)2E
[
(t1 − t2)2] .

Suppose that Q is large enough, the comparison of the previous two expressions is simply

reduced to the comparison of the coeffi cients associated with Q2 (in absolute values).34 Note

that
λ

2n

(d2 + λ)2 + (d1 + λ)2

(d1 + d2 + 2λ)2 − λ

4n
=

λ (d1 − d2)2

4n (d1 + d2 + 2λ)2 > 0.

This implies that there are values of Q such that

E [TS]Integrated Market < E [TS]Market 1 + E [TS]Market 2 .

34To avoid the anomaly of negative expected total surplus, we have to assume that θ is high enough.
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