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Asymmetric price adjustments: A supply side approach
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Abstract

Using a model of dynamic price competition, we provide an explanation from the supply

side for the well-established observation that output prices react faster in response to input

cost increases than to decreases. When costs decline, the opportunity of profitable storing in

anticipation of higher future costs allows competitive firms to coordinate on prices above current

marginal costs. The initial price response is only partial and profitable storing relaxes compe-

tition. Conversely, when costs rise, storing is not beneficial in anticipation of lower future costs

and firms immediately adjust their prices to current marginal costs, which entails the standard

Bertrand outcome. Our results shed new light on the empirical evidence about asymmetric

pricing and can stimulate further empirical investigation on this puzzle.
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1 Introduction

A common observation in several markets is that output prices react asymmetrically over time in

response to changes in input costs. In particular, the price adjustment is faster when input costs

increase than when they decrease. A well-known example that corroborates this phenomenon is

the gasoline market.1

The economic literature provides systematic empirical support for the phenomenon of asym-

metric price adjustments, which is also known as ‘rockets and feathers’ (e.g., Arbatskaya and Baye

2004; Asplund et al. 2000; Bacon 1991; Blair and Rezek 2008; Borenstein et al. 1997; Borenstein

and Shepard 1996; Chen et al. 2008; Deltas 2008; Green et al. 2010; Hannan and Berger 1991;

Peltzman 2000; Valadkhani 2013; Verlinda 2008). Peltzman (2000, p. 466) emphasizes that “out-

put prices tend to respond faster to input increases than to decreases. This tendency is found in

more than two of every three markets examined.”

Asymmetric price adjustments have sometimes been associated with the firms’ collusive behav-

ior. However, as Peltzman (2000) points out, the pattern of rockets and feathers is equally likely

to be found in concentrated and atomistic markets. As discussed below, a recent strand of the

economic literature has focused on competitive environments, where consumers are imperfectly in-

formed about market prices and incur search costs. Prices respond asymmetrically to cost changes

since the firms’ pass-through increases with the search intensity in the market.

In this paper we attempt to shed new light on the phenomenon of asymmetric price adjustments

in a standard competitive environment where firms provide a homogeneous good and compete in

prices, abstracting from market imperfections such as collusion and limited information. The

traditional economic theory predicts that firms make zero profits and prices react symmetrically to

cost shocks. Focusing on the supply side, we show that the nature of this result changes drastically

if the storage of a non-perishable good is allowed.

We consider a repeated Bertrand-Edgeworth competition model where two firms set prices and

then quantities. In the absence of a cost shock, the scope for price undercutting drives prices to

marginal costs, and firms are trapped in the Bertrand paradox. When a cost shock occurs, firms

revise their expectations about future costs. In our setting, costs evolve according to a Markov

process that exhibits mean reversion, consistently with some empirical evidence from the crude

oil and gasoline markets (e.g., Anderson et al. 2014; Bessembinder et al. 1995; Chesnes 2016;

Deltas 2008). When costs decline, the unique prediction of our model is that the opportunity of

profitable storing for the next period in anticipation of higher future costs allows competitive firms

to coordinate on prices above current marginal costs. The first period equilibrium price reflects

the second period expected marginal cost weighted by the discount factor. Since profitable storing

induces each firm to fill its depository irrespective of what the rival does, a firm that prices at the

discounted expected future input cost is indifferent between selling today or tomorrow, and it can

store the quantity purchased (or produced) if the rival undercuts its price and serves the market

1Other examples can be found in the coffee, corn and banking industries.
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today. Hence, the initial price response to a cost decrease is only partial and profitable storing

relaxes competition.

When costs increase, storing is not beneficial in anticipation of lower future costs and firms

immediately adjust their prices to current marginal costs. The firms’ incentives for price undercut-

ting restore the standard Bertrand outcome. Our results provide theoretical corroboration for the

empirical evidence that the initial price response to a cost change is more significant when costs

increase than when they fall.

To the best of our knowledge, this work is the first contribution which sheds some light on

recent empirical findings about asymmetric price adjustments driven by the anticipation of future

cost changes. Using US gasoline data from 1991 to 2010, Radchenko and Shapiro (2011) show that

gasoline prices react asymmetrically to oil price changes and the response to an anticipated change

is larger than the response to an unanticipated change. Our results suggest that a channel for

asymmetric price adjustments to anticipated cost changes is the opportunity of profitable storing,

which mitigates the initial price response to a cost decrease. Since Radchenko and Shapiro (2011)

only capture the impact of anticipated current cost changes on current prices, we expect that

the pattern of asymmetric pricing should be even more pronounced if the effect of anticipated

future cost changes on current prices is also considered. As discussed in Section 4, our results lend

themselves to an empirically testable validation and can stimulate further empirical investigation

on this puzzle.

Notably, our analysis can also help to explain why inventories have often been advocated as a

determinant of asymmetric pricing but the empirical literature (e.g., Borenstein and Shepard 2002;

Peltzman 2000) generally finds no correlation between asymmetric pricing and inventory costs.

Consistently with the empirical evidence, our results indicate that asymmetric price adjustments

are not driven by inventory costs. The channel identified in our analysis, which relates inventories to

asymmetric pricing, is indeed the opportunity of profitable storing in anticipation of higher future

costs. As shown in Section 5, the mechanism for asymmetric pricing that our model generates is

robust to changes in different assumptions and the driving force of our results persists in alternative

scenarios.

Even though we do not aim at modeling explicitly the retail gasoline market, our setting

reflects some relevant features of this market. As documented by the Retail Fuels Report of the

Association for Convenience and Fuel Retailing (NACS 2015), an estimated 80% of gasoline in the

US is currently sold by convenience stores, whose vast majority (about 95%) is owned by small

independent companies. A station usually obtains gasoline either directly at a (publicly observable)

terminal price known as the ‘rack’ price or through an intermediate supplier (a ‘jobber’), which

typically charges a competitive margin over the rack price. The market exhibits intense price

competition, since the consumers’ priority is to search for the lowest price. This limits the profits of

a gasoline station, whose average margin ranges between 3 and 5 cents per gallon. Retail gasoline

prices are publicly observable, and in some states (e.g., New Jersey and Wisconsin) consumer

protection laws require that posted gasoline prices remain in effect at least for a given period,
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generally 24 hours. Moreover, a gasoline station usually receives multiple deliveries each week and

adjusts the output to the consumer demand according to its storage capacity. Remarkably, the

asymmetric price mechanism that our model generates — characterized by higher profit margins

when costs decrease — provides theoretical support for the evidence that “[t]he pattern of retail

profitability is the opposite of what most consumers think. Due to the volatility in the wholesale

price of gasoline and the competitive structure of the market, fuel retailers typically see profitability

decrease as prices rise, and increase when prices fall” (NACS 2015, p. 20).

Related literature The phenomenon of asymmetric pricing has been widely explored in the

economic literature, which provides alternative explanations. A recent strand of literature considers

competitive markets where consumers cannot perfectly observe prices and search is costly. The

main contributions differ in the driving force of asymmetric price adjustments and in the empirical

predictions. Tappata (2009) develops a non-sequential search model with symmetric learning, while

Yang and Ye (2008) provide an explanation for asymmetric pricing based on asymmetric learning

by consumers. Lewis (2011) assumes that consumers’ price expectations are based on the prices

observed during previous purchases. Cabral and Fishman (2012) investigate asymmetric price

adjustments in a setting where agents are inattentive to new information most of the time and

only update their information at pre-specified intervals. We feel that the supply side approach to

asymmetric pricing provided in our paper nicely complements the results of search models that

focus on consumer behavior.

Our analysis is also related to the literature on the role of inventories in the firms’ decisions.

Particular attention has been devoted to the importance of inventory adjustments as a means

of smoothing the effects of shocks over time (e.g., Amihud and Mendelson 1983; Borenstein and

Shepard 2002; Reagan 1982; Reagan and Weitzman 1982). Differently from these contributions,

we unveil the role of inventories as a driver of asymmetric pricing.

The rest of the paper is organized as follows. Section 2 sets out the formal model. Section 3

derives the main results. Section 4 investigates the empirical implications of our results. Section

5 extends our model in different directions and explores the robustness of our results. Section 6

concludes. The main formal proofs are collected in the Appendix. Additional proofs are relegated

to a Supplementary Appendix available online.

2 The model

2.1 Setting

We consider two symmetric firms, A and B, which provide a homogeneous good and engage in

repeated Bertrand-Edgeworth competition by first setting prices and then quantities. This is known

in the literature as ‘production to order’ (e.g., Chowdhury 2005; Dixon 1984; Maskin 1986).2 As

2We also refer to Allen and Hellwig (1986), Dasgupta and Maskin (1986a, 1986b) and Osborne and Pitchik (1986)
for an analysis of equilibrium existence in Bertrand-Edgeworth models. More recently, Chowdhury (2009) explores
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documented by the Retail Fuels Report of the Association for Convenience and Fuel Retailing

(NACS 2015), gasoline stations can choose prices and quantities sequentially. Our qualitative

results go through when prices and quantities are set simultaneously, as discussed in Section 6. In

each period τ ∈ {1, 2}, firm i ∈ {A,B} sets a price pτi for the good and then orders from its provider

(or produces) a quantity qτi. We denote by sτi the quantity that firm i places on the market in

period τ (which corresponds to firm i’s sales in equilibrium). Since we aim at analyzing short-

term events, we assume that market demand is inelastic and in each period consumers purchase a

quantity d > 0 irrespective of the price level.3

Following the relevant literature (e.g., Chowdhury 2005), the residual demand for firm i vis-à-vis

firm j is given by

Dτi(pτi, pτj , sτj) =


max {0, d− sτj} if pτi > pτj

max
{
d
2 , d− sτj

}
if pτi = pτj

d if pτi < pτj .

(1)

The residual demand in (1) is distributed according to the efficient rationing rule. As long as the

demand is inelastic, this formulation captures any combined rationing rule, including the propor-

tional rationing rule (e.g., Tasnádi 1999). The second line of equation (1) identifies the tie-breaking

rule used, among others, in Kreps and Scheinkman (1983) and Davidson and Deneckere (1986).

This formulation exhibits the attractive feature that it allows for the spillover of the uncovered

residual demand from one firm to another.4

In each period firms set their prices and decide on the quantity ordered and placed in their

depositories. Therefore, one period is identified by the firms’ choice of prices and orders. This

seems to reflect the practice in the retail gasoline market, where price changes are usually associated

with new deliveries (NACS 2015). The quantity qτi that firm i orders in period τ cannot exceed

d, which represents the firm’s storage capacity.5 This assumption is reasonable in markets where

storing large quantities is unfeasible. For instance, gasoline evaporates quite quickly and the size

of tanks in gasoline stations is limited by physical constraints. Notably, a storage capacity equal to

d allows each firm to serve the whole market, and therefore the opportunity of price undercutting

could drive prices to marginal costs. In Section 5.3 we show that our qualitative results carry over

with alternative storage capacities.

The quantity qτi ordered by firm i in period τ can be either placed on the market or (partially)

stored for the next period. Let rτi be the quantity that firm i stores in period τ for the period

τ + 1, namely, firm i’s reserves.6 Firms incur the same unit input cost cτ in period τ , which evolves

a model of Bertrand competition in the presence of non-rigid capacity constraints. In Section 5.6 we investigate
alternative market structures.

3The consumer demand for gasoline is largely unresponsive to price changes at least in the short run. In Section
5.4 we show that our qualitative results carry over under more general assumptions about the demand function.

4Our results hold with alternative tie-breaking rules, such as Dτi = d
2

or Dτi = d sτi
sτi+sτj

(which reduces to

Dτi = d
2

if sτi + sτj = 0).
5Storage is costless. Introducing a positive cost of storage does not alter our qualitative results.
6Without any loss of generality, we assume that firm i’s reserves r2i at the end of the second period can be
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according to a Markov process whose state is given by the cost realization. With probability

ϕ ∈ (0, 1), costs do not change across the two periods, i.e., c1 = c2, which captures the degree

of cost persistence. With probability 1 − ϕ, a new cost c2 is drawn in the second period from a

distribution function with mean c.7 The firms’ expectation in the first period about the costs in

the second period is given by E [c2] = ϕc1 + (1− ϕ)c.

Firms are risk neutral. The profits of firm i ∈ {A,B} in period τ ∈ {1, 2} are

Πτi = pτi min {sτi, Dτi(pτi, pτj , sτj)} − cτqτi,

which represents the difference between total revenues and total costs. The firm’s total revenues

depend on the quantity sold on the market. Since we allow for voluntary trading, this quantity is

the minimum between the quantity sτi that the firm puts on the market and the firm’s residual

demand Dτi(pτi, pτj , sτj) in (1).8 The firm’s total costs depend on the ordered quantity qτi.

The aggregate profits of firm i ∈ {A,B} can be written as

Πi = Π1i + δΠ2i,

where δ ∈ (0, 1] is the discount factor on the second period.

2.2 Timing and equilibrium concept

Each period τ ∈ {1, 2} of the game includes the following three stages.

(I) Nature draws the unit input cost cτ .

(II) Firm i ∈ {A,B} sets the price pτi.

(III) Firm i ∈ {A,B} orders at the unit cost cτ the quantity qτi, which is either placed on the

market, sτi, or (partially) stored for the next period, rτi.

The equilibrium concept we adopt is the Subgame Perfect Nash Equilibrium (SPNE). Moving

backwards, we first derive the equilibrium prices and quantities in the second period. Afterwards,

we determine the equilibrium prices and quantities in the first period. A SPNE is specified by

the tuple {(p∗τi, q∗τi, s∗τi, r∗τi)}τ∈{1,2}, i∈{A,B}. Since the quantity q∗τi ordered by firm i in period τ

corresponds to the sales s∗τi in period τ plus the difference r∗τi − r∗τ−1i between the reserves in

periods τ and τ − 1, we omit q∗τi when presenting our results.

2.3 Input cost shock

When input costs in the first period are above the mean, i.e., c1 > c, firms anticipate that costs in

the second period will decline, i.e., E [c2] = ϕc1 + (1 − ϕ)c < c1. Conversely, when input costs in

the first period fall below the mean, i.e., c1 < c, firms anticipate that costs in the second period

will increase, i.e., E [c2] = ϕc1 + (1− ϕ)c > c1. For instance, in the crude oil and gasoline markets

discarded or destroyed at no cost.
7This stochastic process is similar to the one adopted by Cabral and Fishman (2012), with the main difference

that in our setting costs are common to both firms.
8Nothing substantial would change if firms must fully cover the consumer demand.
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cost shocks can be driven by several reasons, such as extreme weather phenomena (that may lead

to supply disruptions), changes in the political situation of oil-producing countries, or decisions of

OPEC meetings (e.g., Wirl and Kujundzic 2004). In our setting, the second period input costs are

expected to move in the opposite direction to the first period costs. In other terms, costs follow

a mean reverting stochastic process, consistently with some empirical evidence from the crude oil

and gasoline markets (e.g., Anderson et al. 2014; Bessembinder et al. 1995; Chesnes 2016; Deltas

2008). This reflects the idea that shocks are perceived as short-run and firms conjecture that input

costs tend to revert to their fundamental (mean) value.

Other empirical investigations find that the statistical properties of crude oil prices vary ac-

cording to the time periods and data frequencies used, and they can also exhibit a random walk

pattern (e.g., Geman 2007; Tabak and Cajueiro 2007). In an attempt to reconcile these different

results, in our model the parameter ϕ ∈ (0, 1) can be interpreted as the probability that each firm

attaches to the fact that costs will return to the mean in the next period, namely, the speed of

mean reversion. For ϕ→ 0 costs are expected to converge to the mean already in the next period,

while for ϕ→ 1 costs are expected to remain stable, which resembles a random walk process.9

3 Main results

3.1 Second period equilibrium

The following lemma characterizes the equilibrium prices and quantities in the second period.

Lemma 1 A. If r1A + r1B ≤ d, any pure strategy equilibrium of the second period continuation

game exhibits the following features: p∗2i = c2, s
∗
2A + s∗2B ≤ d and r∗2i = 0, i ∈ {A,B}.

B. If r1A+r1B > d, any equilibrium of the second period continuation game exhibits the following

features: E [p∗2i| c2] < c2, s
∗
2A + s∗2B = d and r∗2i = r1i − s∗2i, i ∈ {A,B}.

Lemma 1A indicates that, if the total amount of reserves from the first period does not exceed the

demand d, the second period (pure strategy) equilibrium price reflects the second period marginal

cost, i.e., p∗2i = c2, i ∈ {A,B}. This holds true even though the cost of reserves was incurred in the

first period and therefore it is zero in the second period. A price above c2 clearly drives a firm out of

the market. No firm has an incentive to set a price below c2, because it cannot undercut the rival’s

price and profitably sell more than its reserves. Moreover, since we allow for voluntary trading, in

equilibrium a part of the market may remain uncovered, but the reserves are fully exhausted.10

9We refer to Section 5.2 for a further discussion on the statistical properties of input costs.
10If price randomization is allowed, there also exist mixed strategy equilibria under some particular conditions.

One randomizing firm sets the price at c2 with a relatively high probability and remains idle in the market (except
possibly when its price is c2), while the rival fixes the price at c2 with probability 1 and serves the market. This can
occur only when the randomizing firm does not carry any reserves from the first period (otherwise, it would prefer to
be active and sell these reserves). Remaining idle in the market, the randomizing firm makes zero profits irrespective
of the price realization, and therefore it does not have any incentive to deviate. The rival is not willing to set a
price different from c2, given a relatively high probability that the randomizing firm prices at c2, which makes any
(upward) price deviation unprofitable. These mixed strategy equilibria typically emerge in this class of games and
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As Lemma 1B reveals, things differ when the aggregate reserves are greater than the demand.

Since the market cannot absorb all the reserves and their cost is sunk, firms engage in a price war to

sell off their reserves. Hence, in equilibrium the market is fully covered, and at least one firm cannot

exhaust its reserves. It follows from Dasgupta and Maskin (1986a) that this subgame possesses a

mixed strategy equilibrium. In the Supplementary Appendix available online we provide the proof

of the existence of a mixed strategy equilibrium and derive its main features discussed below. For

our purposes, it is relevant to note that, when aggregate reserves are greater than the demand, any

equilibrium exhibits a price randomization within an interval bounded above by c2, which yields

expected prices such that E [p∗2i| c2] < c2, i ∈ {A,B}. A price above c2 cannot be set with positive

probability, since the standard undercutting rationale applies. Contrary to Lemma 1A where the

total amount of reserves does not exceed the demand, choosing with probability 1 a price equal to the

marginal cost c2 cannot be sustained as an equilibrium, since each firm has an incentive to undercut

the rival’s price and sell all its reserves. The lower bound of the price interval and the equilibrium

expected price crucially depend on the amount of the reserves. In the symmetric case where each

firm carries r1 >
d
2 , in equilibrium firms randomize over prices within the interval

[
c2(d−r1)

r1
, c2

]
and

the price distribution function is φ∗ (p2) = p2r1−c2(d−r1)
p2(2r1−d) ∈ [0, 1]. Intuitively, greater reserves make

competition more severe and the equilibrium expected price declines (∂φ
∗

∂r1
> 0). At one extreme, for

r1 → d
2 , the equilibrium price converges to c2 (the price interval degenerates to c2), as in Lemma

1A. At the other extreme, when r1 = d, each firm can undercut the rival’s price and serve the

whole market with its reserves, which drives the price to zero (the lower bound of the price interval

becomes zero and φ∗ (p2) = 1). In case of unequal reserves, similar results hold, with the main

difference that the firm endowed with greater reserves charges a higher price in expectation.

An implication of Lemma 1, which is useful throughout the rest of the analysis, is that the

second period equilibrium expected price can never exceed the second period marginal cost, i.e.,

E [p∗2i| c2] ≤ c2, i ∈ {A,B}, irrespective of what has occurred in the first period.

3.2 Benchmark case: No shock

For illustrative purposes, we first consider the benchmark case where no shock occurs in the first

period, and therefore the realized cost reflects the mean value, i.e., c1 = c. Firms do not expect

any cost change in the second period since E [c2] = ϕc1 + (1−ϕ)c = c. This setting corresponds to

a dynamic version of the one-period game described in Chowdhury (2005) where we introduce the

opportunity of storing.

The following remark summarizes the equilibrium of the game in the absence of a shock.

Remark 1 Suppose c1 = c. Then, the outcome (p∗τi, s
∗
τi, r

∗
τi) constitutes a pure strategy SPNE if

they do not provide any novel insight into our analysis, since the randomizing firm remains inactive and the rival
sets the price at c2, as in the pure strategy equilibrium. Moreover, these mixed strategy equilibria may exhibit some
implausible features, since the firm with the higher price serves the market when the randomizing firm sets a price
lower than c2 and remains inactive. Therefore, throughout the analysis we focus solely on pure strategy equilibria
(whenever they exist).
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and only if p∗τi = cτ and s∗τA + s∗τB ≤ d, τ ∈ {1, 2}, i ∈ {A,B}. If δ < 1, then r∗τi = 0, τ ∈ {1, 2},
i ∈ {A,B}. If δ = 1, then r∗1A + r∗1B ≤ d and r∗2i = 0, i ∈ {A,B}.

The opportunity of storing some quantity for the next period does not alter the outcome of the

static game and standard undercutting incentives drive prices to marginal costs. If δ < 1, storing

is profit detrimental (in expectation), since the first period marginal cost c1 = c is higher than

the second period discounted expected price, which is bounded above by δE [c2] = δc, as implied

by Lemma 1. If δ = 1, storing is not harmful and in equilibrium firms are indifferent between

storing or not, provided that the total amount of reserves does not exceed the demand. Otherwise,

the second period expected price would fall below the first period marginal cost and storing would

result in losses.

3.3 Negative shock

We first investigate the case of a negative shock where input costs in the first period fall below

the mean value, i.e., c1 < c. Firms envisage higher costs in the following period, i.e., E [c2] =

ϕc1 + (1−ϕ)c > c1, since costs are expected to converge to the mean. Intuitively, a negative shock

creates an incentive to purchase at a cost c1 a quantity higher than usual. We know from Lemma 1

that, if the aggregate stored quantity from the first period does not exceed the demand, the second

period price will be equal to the new marginal cost c2. Since E [c2] > c1, firms have the opportunity

to sell the quantity stored at a positive margin in the second period when the discount factor is

high enough.

The following proposition describes the equilibrium of the game with a negative shock.

Proposition 1 Suppose c1 < c.

A. If δE [c2] ≥ c1, the outcome (p∗τi, s
∗
τi, r

∗
τi) constitutes a pure strategy SPNE if and only if

p∗1i = δE [c2], p
∗
2i = c2, s

∗
τA + s∗τB = d, r∗1i = d− s∗1i and r∗2i = 0, τ ∈ {1, 2}, i ∈ {A,B}.

B. If δE [c2] < c1, the outcome (p∗τi, s
∗
τi, r

∗
τi) constitutes a pure strategy SPNE if and only if

p∗τi = cτ , s
∗
τA + s∗τB ≤ d and r∗τi = 0, τ ∈ {1, 2}, i ∈ {A,B}.

Proposition 1A considers the case in which storing one unit of the good purchased at c1 in the

first period with the prospect of selling it at c2 in the second period is profitable (in expected terms).

When costs decline, the opportunity of profitable storing allows competitive firms to coordinate

on prices above current marginal costs in anticipation of higher future costs. Specifically, we find

that the first period equilibrium price reflects the second period discounted expected cost, i.e.,

p∗1i = δE [c2], i ∈ {A,B}. Hence, after a negative shock, the initial price response is only partial

and profitable storing relaxes competition.

In order to substantiate the intuition behind this result as provided in the introduction, it is

important to realize that in equilibrium the demand is always covered in the first period,11 and

11Otherwise, there would be (at least) one firm with aggregate demand lower than d, which would profitably deviate
by setting a higher price to serve the residual demand. We refer to the proof of Proposition 1A (in the Appendix)
for technical details.
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therefore the aggregate reserves from the first period do not exceed the demand in the second

period. It follows from Lemma 1A that in the second period the (pure strategy) equilibrium price

reflects the current marginal cost, i.e., p∗2i = c2, which implies that E [p∗2i] = E [c2], i ∈ {A,B}.
As a consequence, for δE [c2] ≥ c1 each firm has an incentive to purchase a quantity d in the first

period, which can be (partially) stored and profitably sold in the second period. A firm that sets

its price at δE [c2] is indifferent between serving the market today or tomorrow, and it can credibly

commit to purchase d even if the rival undercuts its price. In particular, if the undercutting firm

prefers to (partially) serve the market today, the non-deviating firm can store (a portion of) d and

sell it tomorrow at c2. Any deviation above δE [c2] is unprofitable as long as the firm conjectures

that the rival will cover the whole market.

We know from Section 3.2 that, in the absence of a shock, each firm cannot credibly commit not

to be aggressive vis-à-vis the rival, and the standard Bertrand outcome applies. When input costs

decrease, profitable storing acts as a commitment device to adjust prices above current marginal

costs. As a result, competition is mitigated and firms earn expected profits equal to (δE [c2]− c1) d.

The equilibrium price and the associated profits increase with the discount factor δ. This is because

more patient firms anticipate higher future input costs (and prices), which increases the scope for

selling at higher current prices and generates higher profits.

Since firms can share the market in several manners, it is helpful to consider the symmetric

equilibrium. In the first period each firm, which sets the price δE [c2] and orders d, serves half of

the market and stores the residual output, i.e., s∗τi = r∗τi = d
2 , τ ∈ {1, 2}, i ∈ {A,B}. In the second

period the market is again shared equally between firms that sell their reserves at c2. Naturally, the

cost realized in the second period may differ from the expected one. If the second period discounted

cost is higher (lower) than the first period cost, i.e., δc2 > (<) c1, firms make gains (losses). Since

firms are risk neutral, their first period price choice clearly depends only on the expectation about

future costs.

As we aim at analyzing short-term events, the discount factor should be relatively high and

the outcome of Proposition 1A is the most relevant for our purposes. Proposition 1B describes

what happens if the firms’ future discounting is low enough, i.e., δE [c2] < c1. Since storing is

unprofitable and cannot be used as a commitment device to relax competition, firms are trapped

in the Bertrand paradox and immediately adjust their prices to current marginal costs, which yield

zero profits.

3.4 Positive shock

The following proposition summarizes the main results in case of a positive shock, where input

costs are above the mean, i.e., c1 > c.

Proposition 2 Suppose c1 > c. Then, the outcome (p∗τi, s
∗
τi, r

∗
τi) constitutes a pure strategy SPNE

if and only if p∗τi = cτ , s
∗
τA + s∗τB ≤ d and r∗τi = 0, τ ∈ {1, 2}, i ∈ {A,B}.

Proposition 2 replicates the outcome of Proposition 1B. In response to a positive shock, firms
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adjust their prices to current marginal costs already in the first period. Since costs are expected

to decline in the second period, i.e., E [c2] = ϕc1 + (1−ϕ)c < c1, storing is not beneficial and price

undercutting leads to the standard Bertrand outcome. Consistently with the empirical evidence,

our model predicts that prices respond faster to cost increases than to decreases.

4 Empirical implications

4.1 Predictions of our model

We are now in a position to relate our results to the empirical predictions. In order to derive the

price-cost pass-through rates over time, we introduce a pre-shock period, called period 0, where

the marginal cost is equal to the mean c. It follows from Section 3.2 that the price in period 0

reflects the current marginal cost, i.e., p0 = c. Using the results in Propositions 1 and 2, the price

percentage variations after a cost shock in period 1 are

β+0 =
c1 − c
c

, β+1 =
c2 − c1
c1

, β−0 =
δE [c2]− c

c
, β−1 =

c2 − δE [c2]

δE [c2]
,

where β+0 and β+1 respectively denote the price percentage variations between periods 1 and 0

and between periods 2 and 1 after a positive shock (c1 > c). The interpretation of β−0 and β−1
follows similarly in case of a negative shock and profitable storing (c1 < δE [c2] < c). A comparison

between β+0 and β−0 immediately reveals that β+0 >
∣∣β−0 ∣∣, namely, prices react faster when input

costs increase than when they fall if storing is profitable. While prices fully respond to cost increases

in the first period, the initial price adjustment is less significant when costs decline, and some price

stickiness emerges. A higher discount factor δ reduces
∣∣β−0 ∣∣ and therefore exacerbates the initial

price stickiness. The idea is that more patient firms anticipate higher input costs (and prices) in

the second period and are less inclined to reduce immediately their prices. The degree of cost

persistence ϕ plays a complementary role to the discount factor. A lower ϕ induces firms to expect

higher future costs after a negative shock, which makes storing profitable for a larger range of the

discount factor and mitigates the initial price response to a cost decrease. Therefore, a higher

cost volatility, which is associated with a lower ϕ, exacerbates the price stickiness. As ϕ also

measures the speed of mean reversion, our results show that the magnitude of asymmetric pricing

is associated with that speed.

The intensity of later adjustment is captured by the terms β+1 and β−1 , whose values depend

on the cost realization in the second period. To identify the effect of a cost shock over time,

the empirical literature (e.g., Borenstein et al. 1997; Chesnes 2016) typically estimates the price

response to a one-time cost change, and therefore costs remain constant over the following periods.

In our setting, this corresponds to c1 = c2, which implies β+1 = 0 and β−1 = c1−δE[c2]
δE[c2] < 0. Since∣∣β−1 ∣∣ > β+1 , the magnitude of later adjustment is reversed, namely, it is more pronounced with a

negative shock than with a positive shock.

Figure 1 illustrates the aggregate price change until period τ ∈ {1, 2} in response to a cost shock

11
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Figure 1: Asymmetric price adjustments

in period 1, according to the sign of the shock. In line with the empirical evidence, prices initially

react faster to cost increases than to decreases but the opposite occurs when the total adjustment

is near completion.

4.2 The econometric model

The predictions of our model suggest that the opportunity of profitable storing in anticipation of

higher future costs is a crucial driver of the asymmetric price response to cost changes. To further

appreciate the empirical implications of our results, we present the following dynamic econometric

model that adopts the approach of Cochrane (1998) and Radchenko and Shapiro (2011)

∆pτ = a∗ (L)
[
λ+∆c+τ +

(
1− λ+

) (
∆c+τ − Eτ−1

[
∆c+τ

])]
+
∑n

h=1
γ+h Eτ

[
∆c+τ+h

]
+b∗ (L)

[
λ−∆c−τ +

(
1− λ−

) (
∆c−τ − Eτ−1

[
∆c−τ

])]
+
∑n

h=1
γ−h Eτ

[
∆c−τ+h

]
+ ετ . (2)

The structural lag polynomials a∗ (L) and b∗ (L) capture the impact of positive and negative cost

changes ∆c+τ and ∆c−τ on the price change ∆pτ between periods τ and τ − 1.12 The cost changes

are decomposed into unanticipated changes (∆c+τ − Eτ−1 [∆c+τ ] for positive changes and ∆c−τ −
Eτ−1 [∆c−τ ] for negative changes) and anticipated changes (Eτ−1 [∆c+τ ] for positive changes and

Eτ−1 [∆c−τ ] for negative changes). Ignoring for the time being the two summations, the econometric

model in (2) reduces to the framework of Radchenko and Shapiro (2011), which focuses on the

impact of anticipated and unanticipated current cost changes on current prices. The parameter

λ ∈ {λ+, λ−} allows for a different effect of anticipated and unanticipated shocks, according to the

direction of the cost change. For λ = 0 only unanticipated shocks matter. For λ = 1 anticipated

and unanticipated shocks have the same effect. Asymmetric price adjustments have often been

investigated within this framework (e.g., Borenstein et al. 1997). For λ ∈ (0, 1) both shocks are

relevant and their effects differ. In this framework, using US gasoline data from March 1991 to

12Clearly, ετ indicates the error term. The model may also accommodate for lagged price changes and an error
correction term that measures deviations from the long-run equilibrium.
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March 2010, Radchenko and Shapiro (2011) document evidence of asymmetric price adjustments

and show that anticipated shocks have a larger effect than unanticipated shocks.

The two summations in (2) describe the impact of anticipated future cost changes on current

prices. In particular, the terms γ+h and γ−h measure the impact of the anticipation in period τ of a

cost change in period τ + h on the price in period τ , according to the direction of the cost change.

Put differently, γ+h and γ−h capture the sensitivity of a price change ∆pτ to positive and negative

anticipated future cost changes Eτ
[
∆c+τ+h

]
and Eτ

[
∆c−τ+h

]
. Our results suggest that γ+h > γ−h ,

which indicates asymmetric price response to anticipated future cost changes. Since in our model

a decrease (increase) in current costs translates into higher (lower) anticipated future costs, the

asymmetry of the impact of a cost change on prices in (2) is more pronounced than when the

anticipation about future costs is neglected. Hence, the pattern of asymmetric pricing should be

more significant than the one documented so far in the empirical studies.

Our results can stimulate further empirical investigation on the relationship between asymmetric

pricing and inventories. For this purpose, it is recommendable to use daily or weekly data since

inventories change frequently, as Peltzman (2000) points out. The empirical strategy should be able

to identify the role of inventories that emerges from our analysis. Consistently with our results,

the empirical literature (e.g., Borenstein and Shepard 2002; Peltzman 2000) generally finds no

correlation between asymmetric pricing and inventory costs. Building on Cochrane (1998) and

Radchenko and Shapiro (2011), a structural empirical approach can be implemented to explore the

channel identified in our analysis through which inventories drive asymmetric price transmission.

Our results indicate that inventories are endogenously determined by cost shocks and firms tend

to store more than usual in anticipation of higher future costs.

Since in our model asymmetric pricing emerges with a relatively high discount factor, which is

associated with low interest rates, some empirical investigation can be conducted on the relationship

between asymmetric pricing and interest rates. Another result that deserves empirical corroboration

concerns the impact of the speed of cost mean reversion on the magnitude of asymmetric pricing.

In a similar vein, our prediction that higher cost volatility exacerbates price stickiness lends itself

to an empirical validation.

5 Robustness

5.1 Endogenous input costs

In our model input supply is perfectly elastic, and each firm might order arbitrarily high quantities

at the same current input cost. In reality, however, a change in the firms’ demand can affect input

costs. In order to examine this case, we assume that in the first period the (common) provider can

obtain a quantity up to d (which is the ‘historical’ quantity, i.e., the quantity in the absence of a

shock) at a cost c1, for instance, due to long-term contracts. If the provider wants to acquire larger

quantities to serve the firms’ demand, it must resort to other sources (say, the futures market) and

pay a cost equal to E [c2] on the additional amount. The average input cost in the first period is

13



given by

c̃1 =

{
c1 min{d,q1A+q1B}+E[c2]max{0,q1A+q1B−d}

q1A+q1B
if q1A + q1B > 0

c1 if q1A + q1B = 0.
(3)

The provider’s average cost function exhibits a kink at d, and the price charged by the provider

now depends on the firms’ demand for the input. Endogenous input costs complicate the analysis,

since they create an interdependence between the firms’ costs. We assume that the provider sets

an input price equal to the average cost in (3) plus a fixed markup (normalized to zero). This

input price rule captures in a simple but effective manner the idea that the firms’ demand affects

the input price, abstracting from the particular features of the upstream market. When the firms’

aggregate demand does not exceed d, the provider does not need to purchase any quantity from

additional sources and therefore the first period input cost is c1. If, however, the firms’ aggregate

demand is higher than d, the provider must acquire any additional quantity at E [c2], which increases

(decreases) the average cost in (3) if E [c2] > (<) c1.

Negative shock

The following proposition considers the case of a negative shock.

Proposition 3 Suppose c1 < c.

A. If δ ≥ 1
4

(
3 + c1

E[c2]

)
, the outcome (p∗τi, s

∗
τi, r

∗
τi) constitutes a pure strategy SPNE if and only

if p∗1i = δE [c2], p
∗
2i = c2, s

∗
τA + s∗τB = d, r∗1i = d− s∗1i and r∗2i = 0, τ ∈ {1, 2}, i ∈ {A,B}.

B. If c1
E[c2] < δ < 1

4

(
3 + c1

E[c2]

)
, no equilibrium exists.

C. If δ ≤ c1
E[c2] , the outcome (p∗τi, s

∗
τi, r

∗
τi) constitutes a pure strategy SPNE if and only if p∗τi = cτ

and s∗τA + s∗τB ≤ d, τ ∈ {1, 2}, i ∈ {A,B}. If δ < c1
E[c2] , then r∗τi = 0, τ ∈ {1, 2}, i ∈ {A,B}. If

δ = c1
E[c2] , then s

∗
1A + r∗1A + s∗1B + r∗1B ≤ d and r∗2i = 0, i ∈ {A,B}.

Proposition 3A indicates that, if the discount factor is sufficiently high, i.e., δ ≥ 1
4

(
3 + c1

E[c2]

)
,

the equilibrium price equals δE [c2] in the first period and c2 in the second period, which ensures

that each firm is indifferent (in expectation) to selling in either period. The threshold 1
4

(
3 + c1

E[c2]

)
corresponds to the value for the discount factor above which each firm orders d in the first period

and the demand is fully covered in each period. The intuition for this result falls across the same

lines as in Proposition 1A. It is worth noting that the threshold of the discount factor is higher

than in the baseline model, i.e., 1
4

(
3 + c1

E[c2]

)
> c1

E[c2] . The idea is that now storing increases the

firms’ unit costs already in the first period, which strengthens the condition under which each firm

finds it optimal to order a quantity equal to d in the first period. Since the equilibrium average

input cost increases to c̃1 = c1+E[c2]
2 > c1, price stickiness still emerges after a negative shock, but

it is less pronounced than in the baseline model.

For intermediate values of the discount factor, i.e., c1
E[c2] < δ < 1

4

(
3 + c1

E[c2]

)
, no equilibrium

exists (in pure or mixed strategies). To fix ideas, consider the equilibrium prices described in

Proposition 3A. At these prices, storing is still profitable but to a lower extent than in the previous
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case, which results in orders below d in the first period. Hence, a firm can infinitely raise its price in

the first period and serve the uncovered part of the market. Following a loose dynamic argument, if

a firm sets an infinitely high price, the rival has an incentive to undercut marginally and an infinite

loop emerges. This indeterminacy arises only because of the assumption of rigid demand, and an

equilibrium (in mixed strategies) exists if a choke price is introduced above which the demand is

zero (Dasgupta and Maskin 1986a).

Proposition 3C predicts that, if the discount factor is low enough, i.e., δ ≤ c1
E[c2] , storing is not

strictly profitable and firms adjust their prices to the current input costs as in Proposition 1B. If

δ = c1
E[c2] , storing is not harmful and in equilibrium firms are indifferent between storing or not,

provided that the total amount of the quantities ordered in the first period does not exceed the

demand. Otherwise, the first period average input cost would be higher than the second period

discounted expected price and firms would incur losses.

Positive shock

The following proposition describes what happens in case of a positive shock.

Proposition 4 Suppose c1 > c. Then, the outcome (p∗τi, s
∗
τi, r

∗
τi) constitutes a SPNE if and only if

p∗τi = cτ , s
∗
τA + s∗τB ≤ d and r∗τi = 0, τ ∈ {1, 2}, i ∈ {A,B}.

Proposition 4 replicates the outcome of Proposition 2. Storing is not desirable since the first

period cost c̃1 in (3) is higher than the second period expected cost E [c2], and the standard Bertrand

outcome applies. Note that, if the firms’ aggregate orders exceeded the demand, c̃1 would be lower

than c1, which might make price undercutting below c1 profitable. However, the undercutting firm

cannot benefit from this cost reduction since the rival would abstain from ordering, and the cost

c̃τ is equal to cτ in each period τ .

5.2 Statistical properties of costs

Input costs exhibit mean reversion and our model is flexible enough to allow for different inten-

sities of this stochastic process. Interestingly, asymmetric pricing emerges in our framework even

when firms have heterogeneous cost expectations, and only some of them believe that costs evolve

according a mean reversion pattern (Ter Ellen and Zwinkels 2010). To fix ideas, suppose that firm

A expects that input costs will revert to the mean after a cost shock, while firm B believes that

costs follow a random walk. Applying the same rationale as in the baseline model, firm A still has

an incentive to set a price above the marginal cost after a negative shock (for a sufficiently high

discount factor), since it is willing to cover the market in the next period in response to the price

undercutting of firm B, which does not expect any cost change. The first period equilibrium price

reflects the discounted expected future cost, as in the baseline model. Notably, firm B is not willing

to store and serves the market in the first period, while firm A stores its entire output and operates

in the second period.
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It is worth emphasizing that our results hold whenever firms anticipate a cost change, indepen-

dently of the rationale behind it. Suppose that costs vary deterministically over time, similarly to

what Dudine et al. (2006) assume for demand changes. As formally shown in a previous version of

our paper (Antoniou et al. 2015), in anticipation of higher future costs, firms have an incentive to

store and immediately adjust their prices to discounted future costs (for a sufficiently high discount

factor), whereas prices react only after a cost change materializes if future costs decrease. In line

with our current framework, the initial price response is more pronounced when costs increase than

when they fall.

5.3 Storage capacity

Throughout the analysis the firm’s storage capacity is equal to the market demand d in each period.

We now define by K the firm’s storage capacity. The case in which K < d does not provide any

novel insight into our analysis. Each firm is a monopolist on the residual demand, which induces

a price randomization within an interval whose upper bound is above marginal costs even in the

absence of a cost shock and depends on the choke price (Levitan and Shubik 1972). When future

costs are expected to rise and the discount factor is high enough, firms have incentives to fill their

depositories and can coordinate on higher prices, as in the baseline model.

More interesting is the case in which K > d. To fix ideas, suppose that as a result of a negative

shock the first period marginal cost drops to zero, i.e., c1 = 0, and the expected cost in the second

period is E [c2] > c1. In this setting, storing is always profitable since firms can costlessly fill their

depositories. Intuitively, the equilibrium depends on the size of the storage capacity. In the extreme

case where K ≥ 2d, the equilibrium prices in the two periods reflect the first period marginal cost

because each firm can fully cover the market in both periods, and the standard Bertrand outcome

arises. If, however, d < K < 2d, things are different. Note that, given a price equal to the marginal

cost in the first period, the undercutting incentives imply that the price in the second period still

reflects the first period cost, and firms make zero profits. However, a firm that increases its price in

the first period can cover the residual demand at a positive margin or, if the rival serves the whole

market, it expects to sell some quantity in the second period at (almost) c2. Therefore, the first

period price is set above the first period marginal cost. Notably, this price is lower than δE [c2].

The reason is that, if the rival sets the price at δE [c2], the undercutting firm can ensure profits

(almost) equal to δE [c2] d already in the first period, while the first period profits from setting

δE [c2] are 1
2δE [c2] d but the second period (discounted) profits fall below 1

2δE [c2] d. This latter

result follows from Lemma 1B since the aggregate reserves from the first period exceed the demand

d and therefore a price randomization occurs within an interval whose upper bound is c2. A larger

capacity strengthens the undercutting incentives and reduces the initial price stickiness. We know

from Dasgupta and Maskin (1986a) that an equilibrium (in mixed strategies) exists, and the first

period equilibrium price must lie between c1 and δE [c2]. Since with a positive shock storing is

unprofitable and prices reflect marginal costs, asymmetric pricing still emerges.13

13Interestingly, the intuition for the impact of the storage capacity on asymmetric pricing can also apply to the
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5.4 Demand function

In our model firms face a rigid demand d in each period. We now consider a downward sloping

demand Dτ (pτ ) = 1− pτ in period τ ∈ {1, 2}. As in Section 5.3, we assume that a negative shock

yields c1 = 0 and E [c2] > c1. The firm’s storage capacity is 1, which ensures that each firm can serve

the whole market in every period. In this framework, firms have incentives to fill their depositories

and, in line with the baseline model, the first period price is set above the current marginal cost.

To see this, suppose that in equilibrium p1 = c1 = 0, which implies that p2 = 0 since firms keep

undercutting each other. Following the same rationale as in case of a capacity d < K < 2d, this

cannot be sustained as an equilibrium, since a firm that increases its price in the first period can

serve the residual demand at a positive margin or, if the rival covers the whole market, it expects to

operate in the second period, which yields positive expected profits. Therefore, in anticipation of

higher future costs, firms can coordinate on prices above current marginal costs, as in the baseline

model. In line with the case of a capacity d < K < 2d, the equilibrium price in the first period

is lower than δE [c2]. To understand why, note that, if the rival sets δE [c2], the undercutting firm

can obtain profits (almost) equal to δE [c2] (1− δE [c2]) already in the first period. These profits

outweigh the aggregate profits from setting δE [c2] ≤ 1
2 (a price above the monopoly level is clearly

suboptimal), which are given by 1
2δE [c2] (1− δE [c2]) + 1

2δE [p2 (1− p2)], where p2 ranges within an

interval whose upper bound is c2 since the aggregate reserves are larger than 1 (Levitan and Shubik

1972). Downward price deviations are now more appealing than in the baseline model because the

demand increases. It follows from Dasgupta and Maskin (1986a) that there exists an equilibrium

(in mixed strategies), and the first period equilibrium price must lie between c1 and δE [c2]. Since

with a positive shock storing is not beneficial and prices follow marginal costs, asymmetric pricing

still arises.14

5.5 Number of periods

Our results can be also generalized to a setting with more than two periods. If each firm can sell

the quantity stored only in the next period (as is the case with slightly durable goods), the pricing

dynamics in a game of T > 2 periods directly follow from the results in Propositions 1 and 2. The

equilibrium price in period τ ∈ {1, 2, . . . , T − 1} is p∗τ = δEτ [cτ+1] for δEτ [cτ+1] ≥ cτ , and p∗τ = cτ

otherwise, while p∗T = cT .

When the quantity stored can be sold at any future point in time, asymmetric pricing still

analysis of competition in the storage market. A more competitive storage market (which better exploits the arbitrage
opportunities) can reduce the spread between the current costs and the expected ones, which mitigates the price
stickiness after a negative shock.

14It is worth mentioning what happens in our model when we consider demand uncertainty instead of stochastic
costs. Given a firm’s capacity equal to the expected demand, in case of a negative demand shock each firm can cover
the market and therefore the equilibrium prices reflect the marginal costs. On the contrary, when a positive demand
shock occurs, the firm’s capacity is insufficient to drive prices to marginal costs. Introducing a choke price, a mixed
strategy equilibrium exists, which implies prices above marginal costs. Therefore, asymmetric pricing appears even
with stochastic demand, although the mechanism is different. Along these lines, we expect that similar results will
hold in a more complicated setting that accommodates for both demand and cost uncertainty.
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emerges. Extending to T > 2 periods the evolution of expected costs, we have Eτ [cτ+1] = ϕcτ +

(1− ϕ)c, for any τ ∈ {1, 2, . . . , T − 1}. Then, the expectation in period τ about the cost in period

τ + h, with h ≥ 1, is given by

Eτ [cτ+h] = c− ϕh (c− cτ ) .

Suppose that a negative shock occurs in period τ , i.e., cτ < c. Future costs are expected to increase

at a decreasing rate over time, as
dEτ [cτ+h]

dh > 0 and
d2Eτ [cτ+h]

dh2
< 0. A firm anticipates that filling its

depository in period τ and in any future period τ +h will be profitable if the (per period) discount

factor is such that δEτ [cτ+1] ≥ cτ and δEτ [cτ+h+1] ≥ Eτ [cτ+h]. In this case, the equilibrium price

in period τ reflects the discounted expected marginal cost in period τ + 1, i.e., p∗τi = δEτ [cτ+1], as

in the baseline model. To fix ideas, consider a setting with three periods. Since δE1 [c3] ≥ E1 [c2],

one might conjecture that firms can set the first period price at δ2E1 [c3] instead of δE1 [c2]. Given

this price in the first period, each firm would expect to charge δE1 [c3] in the second period since

storing is profitable, and E1 [c3] in the last period. To understand why this cannot be sustained

as an equilibrium, note that firms can refill their depositories in each period. If the rival sets a

price equal to δ2E1 [c3] in the first period, a firm can undercut the rival’s price, serve the whole

market and refill its depository in the second period. This deviation is profitable since the gains

from serving the whole market (instead of one half) in the first period, which are (almost) equal to
d
2δ

2E1 [c3], outweigh the (discounted expected) losses from refilling the entire depository (instead

of one half) in the second period, which amount to d
2δE1 [c2]. Moreover, the undercutting firm

still expects to charge δE1 [c3] in the second period, which ensures that its quantity can be sold in

the second or in the third period. As in the baseline model, the first period equilibrium price is

δE1 [c2], which allows a firm to sell profitably in the second period if the rival undercuts its price

and serves the market in the first period. Clearly, when a positive shock occurs in period τ , i.e.,

cτ > c, storing is unprofitable since costs are expected to decrease, and the equilibrium price in

period τ reflects the current marginal cost, i.e., p∗τi = cτ . Hence, the asymmetric price pattern that

our model generates is robust to an extension of the time horizon.

5.6 Market structure

Asymmetric pricing emerges in market structures different from Bertrand-Edgeworth competition.

In the Supplementary Appendix available online we provide a formal description of the monopoly

setting. We expect that analogous results will hold, though with a higher degree of complexity,

when firms compete à la Cournot. If the cost shock is positive, storing is unprofitable and in each

period the monopolist sets the price at the static equilibrium level that equalizes current marginal

revenues and current marginal costs. If the shock is negative and (discounted) costs are expected to

increase, equilibrium prices crucially depend on the size of the firm’s storage capacity. Particularly

interesting is the situation in which the storage capacity is bounded so that the monopolist cannot

store the desired quantity but it is large enough for storing to remain profitable, and therefore

a trade-off appears between selling in the first period and storing for the second period. Within

this range, if the firm’s capacity is above a certain threshold, the firm does not expect to order
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(or produce) in the second period, and in equilibrium the marginal revenue of the output sold in

the first period is equal to the discounted marginal revenue of the reserves. If the firm’s capacity

is below that threshold, the firm still stores for the next period but anticipates that it will order

(or produce) even in the second period. This implies that discounted marginal revenues associated

with the first period output and the second period expected output (which includes the reserves)

are equalized in equilibrium. In both cases the first period price is set above the static monopoly

level. Hence, the initial price adjustment is less significant after a negative shock and some price

stickiness emerges, as in the baseline model. Anticipating higher future costs, the monopolist is

willing to forgo some sales in the first period in order to store more output for the second period.

6 Concluding remarks

In this paper we provide a theoretical explanation from the supply side for the well-established

phenomenon of asymmetric price adjustments. When costs decline, the opportunity of profitable

storing in anticipation of higher future costs mitigates the price response to a cost change. As a

result, firms are better off in an inflationary upstream market where input prices are expected to

increase, since this allows them to have some market power and earn windfall profits. The pattern

of firms’ profits that our model generates is consistent with the evidence from the gasoline market

where retailers make larger profits when input costs fall than when they rise (NACS 2015).

Our model exhibits some desirable features of the markets for durable goods. As discussed in

the introduction, a leading example is the retail gasoline market, which seems to be adequately

described by a Bertrand-Edgeworth model where firms choose prices and quantities. We focus on

the situation in which prices are set prior to quantities. However, we cannot dismiss the case that in

practice prices and quantities are determined simultaneously. The main technical problem identified

in a static framework by Chowdhury (2005) is the nonexistence of pure strategy equilibria. However,

Allen and Hellwig (1986), Dasgupta and Maskin (1986a, 1986b) and Maskin (1986) establish the

general existence of a mixed strategy equilibrium. Since in our framework profitable storing does

not crucially depend on the timing of actions and by the observability of the rivals’ prices, we expect

that our results will, by and large, carry over in this scenario. In particular, if firms envisage a cost

increase in the following period(s), they have an incentive to store, anticipating that their output

will be sold at some point in the near future. Hence, the problem reduces to a price decision that

follows the same dynamics as in our model.

Another relevant issue that deserves some attention concerns the nature of the vertical rela-

tionship between input providers and downstream firms. Consistently with the evidence in the

gasoline market, we assume that each firm pays a price per unit of quantity ordered. Remarkably,

our results carry over with more sophisticated contractual relationships, such as two-part tariffs

that consist of a unit wholesale price and a fixed fee. It is well known in the literature (O’Brien

and Shaffer 1992; Rey and Vergé 2004) that under some conditions the upstream firm charges

downstream Bertrand competitors a wholesale price equal to its marginal cost and the downstream
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firms set the Bertrand price. Asymmetric pricing still emerges in this framework, with the only

difference that the upstream firm can extract the downstream firms’ profits through a fixed fee.

The results of our paper can apply to different sectors characterized by storage opportunities.

For instance, banks that issue deposits and employ these funds to provide loans generally adjust

the amount of liquidity they possess and the rates on their loans in response to a change in the

central bank’s interest rate (e.g., Chiesa 2001).

Our analysis sheds new light on the empirical evidence about asymmetric pricing. The predic-

tions of our model lend themselves to an empirical validation that disentangles the demand side

effects already investigated in the literature from the supply side effects identified in our approach.

Acknowledgments We thank two anonymous referees for valuable comments and suggestions.

We also thank Helmut Bester, Ryan Kellogg, Eugen Kovac, Volker Nocke, David Rapson, Antonio

Rosato, Nicolas Schutz, Konrad Stahl, Roland Strausz, as well as the participants in the SFB-TR15

Workshop for Young Researchers 2014 in Mannheim, the SFB-TR15 Conference 2014 in Caputh,

the ASSET Conference 2014 in Aix-en-Provence, the CRESSE Conference 2015 in Rethymno, the

EARIE Conference 2015 in Munich, the MaCCI Industrial Organization Day 2016 in Mannheim

and the IMAEF 2016 in Corfu.

Appendix

This Appendix collects the proofs.

Proof of Lemma 1. A. Suppose r1A + r1B ≤ d. In the quantity setting game, for i, j ∈ {A,B},
i 6= j, the analysis proceeds through the following cases:

(i) p2i = p2j > c2 ⇒ s2i = d
2 , i ∈ {A,B}.

(ii) p2i = p2j = c2 ⇒ s2A + s2B ≤ d.

(iii) p2i > p2j > c2 ⇒ s2i = 0; s2j = d.

(iv) p2i > p2j = c2 ⇒ s2i = d− s2j ; s2j ∈ [r1j , d].

(v) p2i > c2 > p2j ⇒ s2i = d− s2j ; s2j = r1j .

(vi) p2i = c2 > p2j ⇒ s2i ∈ [min {r1i, d− s2j} , d− s2j ]; s2j = r1j .

(vii) p2i = p2j < c2 ⇒ s2i = min
{
r1i,max

{
d
2 , d− s2j

}}
, i ∈ {A,B}.

(viii) p2j < p2i < c2 ⇒ s2i = min {r1i, d− s2j}; s2j = r1j .

The candidate equilibria in the price setting game are the following: (a) p2i = p2j= c2; (b)

p2i = p2j > c2; (c) p2i > p2j ≥ c2; (d) p2i ≥ c2 > p2j ; (e) p2i < c2, i ∈ {A,B}. We first show

that candidate (a) is an equilibrium. It follows from (ii) that in equilibrium firm i’s quantity is

s2i ∈ [r1i, d], which yields profits equal to Π2i = c2r1i. Given (iv), when s2j = d, no profitable

upward price deviation exists. From (vi) it follows that there is no incentive to deviate downwards,

either. Therefore, the candidate (a) is an equilibrium.

We now show that the price in (a) is the unique equilibrium of this subgame. Candidate (b) is

not an equilibrium since if firm i sets a price p
′
2i = p2j− ε > c2, with ε > 0 and small enough, it can
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get higher profits. Candidate (c) is not an equilibrium since firm j can set a price p
′
2j ∈ (p2j , p2i)

and get higher profits. Candidate (d) is not an equilibrium since firm j can set a price p
′
2j ∈ (p2j , c2)

and gain by selling its reserves. If it does not have any reserves, firm i can gain by setting a higher

price. Candidate (e) is not an equilibrium since both firms have an incentive to raise their prices.

Therefore, any pure strategy equilibrium of this continuation game must be such that p∗2i = c2,

s∗2A + s∗2B ≤ d and r∗2i = 0, i ∈ {A,B}. Since we allow for voluntary trading, the market may not

be fully covered, but all the reserves are sold.

B. Suppose r1A + r1B > d. In the Supplementary Appendix available online, we show that it

follows from Dasgupta and Maskin (1986a) that this continuation game possesses a mixed strategy

equilibrium and we discuss its main features. This game corresponds to a price competition game

with (a)symmetric capacity constraints. In equilibrium, firms randomize over prices within an

interval whose upper bound is c2, which yields expected prices E [p∗2i| c2] < c2, i ∈ {A,B}. Any

price above c2 cannot be chosen with positive probability, since price undercutting is profitable.

Moreover, choosing with probability 1 a price equal to c2 cannot be sustained as an equilibrium

since each firm has an incentive to undercut the rival’s price and sell off its reserves (this is the final

period of the game). In equilibrium, the market is fully covered and no firm orders any additional

quantities (that would be paid at c2), which implies that a firm’s reserves at the end of the second

period correspond to the leftovers from the first period that the firm is not able to sell in the

second period. Then, any equilibrium of this continuation game must be such that E [p∗2i| c2] < c2,

s∗2A + s∗2B = d and r∗2i = r1i − s∗2i, i ∈ {A,B}.
Proof of Remark 1. Since E [c2] = c, it follows from Lemma 1 that E [p∗2i] ≤ c, i ∈ {A,B}. For

δ < 1, storing induces losses, since δE [p∗2i] < c1 = c, i ∈ {A,B}. Hence, as in Chowdhury (2005),

in the pure strategy SPNE we have p∗τi = cτ , s∗τA + s∗τB ≤ d and r∗τi = 0, τ ∈ {1, 2}, i ∈ {A,B}.
For δ = 1, storing is not harmful if r1A+ r1B ≤ d, since it follows from Lemma 1A that E [p∗2i] = c1.

Then, any outcome p∗τi = cτ , s∗τA + s∗τB ≤ d, r∗1A + r∗1B ≤ d and r∗2i = 0, τ ∈ {1, 2}, i ∈ {A,B}, can

be sustained in equilibrium.

Proof of Proposition 1. A. For δE [c2] ≥ c1, each firm finds it profitable (in expectation) to

order one unit at c1 in the first period and sell it in the second period. Note that any pure strategy

SPNE must exhibit the second period price p∗2i = c2, i ∈ {A,B}. This is because in equilibrium the

demand is fully covered in the first period, and therefore the aggregate reserves from the first period

cannot exceed d, which implies from Lemma 1A that the second period (pure strategy) equilibrium

price is p∗2i = c2, i ∈ {A,B}. To see this, suppose that in equilibrium the demand in the first period

is not fully covered. Since in equilibrium the first period price cannot exceed δE [c2] (otherwise

the standard price undercutting rationale applies), there exists (at least) one firm with aggregate

demand below d, whose aggregate expected profits are lower than (δE [c2]− c1) d. This firm can

profitably deviate by ordering d and setting a sufficiently high price in the first period. By doing

so, it can cover the residual demand or, if the rival serves the whole market, it expects to cover the

full demand in the second period at c2 (from Lemma 1A), which yields aggregate expected profits

(at least) equal to (δE [c2]− c1) d. Since the demand must be fully covered in the first period, the
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aggregate reserves from the first period cannot exceed d, which implies from Lemma 1A that in the

(pure strategy) equilibrium we must have p∗2i = c2, i ∈ {A,B}, and therefore E [p∗2i] = E [c2]. Now,

we argue that no equilibrium exists which involves a first period price such that c1 ≤ p1i < δE [c2],

i ∈ {A,B}. Proceeding by contradiction, suppose that such an equilibrium exists. This candidate

equilibrium must imply that each firm will order d in the first period, i.e., q1i = d, i ∈ {A,B},
since this quantity can be sold profitably in either period. Note that the outcome s1i = 0, s2i = d

and s1j = d, s2j = 0 cannot be supported as an equilibrium in the quantity setting game for

c1 ≤ p1i < δE [c2], i ∈ {A,B}. To see this, consider a deviation of firm j which stores a quantity

r1j > 0 for the second period. It follows from Lemma 1B that a mixed strategy equilibrium in the

second period continuation game exists. Firm j can choose a sufficiently small quantity r1j > 0

such that the lower bound of the price interval is higher than p1j/δ. Hence, firm j which stores

r1j for the next period gains from such a deviation. This result is crucial in order to show that

there exists an incentive for an upward price deviation in the first period with prices c1 ≤ p1i <

δE [c2], i ∈ {A,B}. Let Li ≡ {E [Πi] : E [Πi] = p1is1i + δE [c2] (d− s1i)− c1d} be the set of firm

i’s expected profits associated with the candidate c1 ≤ p1i < δE [c2], i ∈ {A,B}, if an equilibrium

in quantities exists. It follows from the previous discussion that sup(Li) < (δE [c2]− c1) d. Now,

we characterize the equilibrium in the first period quantity setting game following a deviation such

that p
′
1i > δE [c2] > p1j . Let Si ≡

{
E
[
Π
′
i

]
: E

[
Π
′
i

]
= p

′
1is
′
1i + δE [c2]

(
d− s′1i

)
− c1d

}
be the set

of firm i’s expected profits associated with p
′
1i > δE [c2] > p1j . Firm j strictly prefers to store

some quantity for the second period and therefore firm i can sell something in the first period.

This implies that inf(Si) > (δE [c2]− c1) d > sup(Li). Since an equilibrium in quantities with

p
′
1i > δE [c2] > p1j exists (e.g., s1i = d, s2i = 0, s1j = 0, s2j = d), it follows that firm i has an

incentive to deviate and c1 ≤ p1i < δE [c2], i ∈ {A,B}, cannot be an equilibrium.

It is straightforward to show that any other price configuration cannot be sustained as an

equilibrium, except p1i = δE [c2], i ∈ {A,B}. In particular, p1i > δE [c2] > p1j is not an equilibrium,

since firm j can set a price p
′
1j = p1i − ε > δE [c2], with ε > 0 and small enough, and gain higher

profits. Moreover, p1i = δE [c2] > p1j cannot be an equilibrium, either. Firm j does not have

any incentive to deviate only when s1j = 0 and s2j = d in equilibrium. However, in this case

firm i gets expected profits (δE [c2]− c1) d and we know from the previous discussion that it can

set p
′
1i > δE [c2] > p1j and gain. Any price p1i ≥ δE [c2], with p1i > δE [c2] for at least one

i ∈ {A,B}, cannot be sustained as an equilibrium, because the standard undercutting rationale

applies. Clearly, any price p1i < c1 for at least one i ∈ {A,B} cannot be an equilibrium, either.

The only equilibrium price candidate that we have not investigated yet is p1i = δE [c2], i ∈
{A,B}, which gives firm i expected profits equal to (δE [c2]− c1) d. Note that, irrespective of the

direction of price deviation by firm i, there exists an equilibrium in the quantity setting game where

s1i = 0, s2i = d and s1j = d, s2j = 0. In this case, no deviation is profitable. Since for a price

p1i = δE [c2] firm i is indifferent between storing or not, the outcome of the game is a pure strategy

SPNE if and only if p∗1i = δE [c2], p
∗
2i = c2, s

∗
τA + s∗τB = d, r∗1i = d − s∗1i and r∗2i = 0, τ ∈ {1, 2},

i ∈ {A,B}.
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B. For δE [c2] < c1, storing is not profitable, since the first period marginal cost is higher the

second period discounted expected price. Therefore, the standard Bertrand outcome arises and, as

in Remark 1 for δ < 1, the outcome of the game is a SPNE if and only if p∗τi = cτ , s∗τA + s∗τB ≤ d

and r∗τi = 0, τ ∈ {1, 2}, i ∈ {A,B}.

Proof of Proposition 2. Since storing is not profitable, the same argument as in the proof of

Proposition 1B applies.

Proof of Proposition 3. See the Supplementary Appendix.

Proof of Proposition 4. See the Supplementary Appendix.
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Asymmetric price adjustments: A supply side approach

Supplementary Appendix

Fabio Antoniou∗ Raffaele Fiocco† Dongyu Guo‡

1 Introduction

This Supplementary Appendix complements the paper and proceeds as follows. Section 2 proves

the existence of a mixed strategy equilibrium in Lemma 1B (Section 3.1 of the paper) and illustrates

its main features. Section 3 provides a rigorous and detailed description of the monopoly setting

(Section 5.6 of the paper). Section 4 collects the proofs of Propositions 3 and 4 (Section 4 of the

paper).

2 Mixed strategy equilibrium in Lemma 1B

2.1 Existence of equilibrium

For our purposes, it is helpful to present the following theorem of Dasgupta and Maskin (1986a, p.

24).

Theorem 1 (mixed strategy equilibrium) For all agents i = 1, . . . , N , let Ai ⊆ Rm (m ≥ 1)

be agent i’s non-empty, convex and compact strategy set, where ai is a typical element of Ai and

aik (k = 1, . . . ,m) is the k-th component ai. Moreover, let Ui : A → R1, where A =
∏N
j=1Aj, be

agent i’s payoff function which is continuous except on a subset A∗∗ (i) of A∗ (i), where A∗ (i) is

defined for each pair of agents i, j ∈ {1, . . . , N} by

A∗ (i) =
{

(a1, . . . , aN ) ∈ A| ∃j 6= i,∃k ∈ Q ⊆ {1, . . . ,m} ,∃d, 1 ≤ d ≤ D (i) such that ajk = fdij (aik)
}

,

with d and D (i) positive integers and fdij =
(
fdij

)−1
.
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Suppose
∑N

i=1 Ui (a) is upper semi-continuous, and Ui (ai,a−i) is bounded and weakly lower

semi-continuous in ai, where a = (ai,a−i) and a−i = (a1, a2, . . . , ai−1, ai+1, . . . , aN ). Then, the

game [(Ai, Ui) ; i = 1, . . . , N ] possesses a mixed strategy equilibrium.

We check step by step that all the assumptions of Theorem 1 are satisfied in our setting. Note

that we can restrict the strategy set from which firm i = 1, 2 may choose. Any price above c2 cannot

be chosen with positive probability, since price undercutting is profitable. Moreover, choosing with

probability 1 a price equal to c2 cannot be an equilibrium, since at least one firm would have an

incentive to undercut the rival’s price and sell off its reserves. Since firm i = 1, 2 places on the market

all its reserves r1i (whose cost was incurred in the first period) and does not order any additional

quantity (which would be paid at c2), the strategy set of firm i is Ai = [0, c2] × {r1i} ⊆ R2,

which is a non-empty, convex and compact set. Since r1i does not play any role, with a small

abuse of notation we drop it hereafter, and firm i’s strategy coincides with its price. This game

corresponds to a Bertrand-Edgeworth price competition game with capacity constraints, and the

following analysis is closely related to Dasgupta and Maskin (1986b, pp. 27-29), who show the

existence of a mixed strategy equilibrium in a Bertrand-Edgeworth game with a monotonically

decreasing demand function.

Now, we check whether firm i’s payoff Ui is continuous in ai ∈ [0, c2]. It turns out that firm i’s

payoff is everywhere continuous except in the set A∗ (i) where the price strategies of the two firms

coincide (fdij in Theorem 1 is the identity function). In particular,

A∗ (1) = A∗ (2) =
{

(a1, a2) ∈ [0, c2]
2
∣∣∣ a1 = a2

}
.

Moreover, Ui is bounded, given that ai ∈ [0, c2] and the demand d is clearly finite. To verify

that Ui is weakly lower semi-continuous, we present the following definition provided by Dasgupta

and Maskin (1986a, p. 13).

Definition 1 (weakly lower semi-continuity) Ui (ai,a−i) is weakly lower semi-continuous in

ai if ∀ai ∈ A∗∗ (i), ∃λ ∈ [0, 1] such that ∀a−i ∈ A∗∗−i (ai) = {a−i ∈ A−i| (ai,a−i) ∈ A∗∗ (i)} we have

λ lim inf
ai→a−i

Ui (ai,a−i) + (1− λ) lim inf
ai→a+i

Ui (ai,a−i) ≥ Ui (ai,a−i) ,

where ‘ai → a−i ’ (‘ai → a+i ’) indicates that ai approaches ai from the left (from the right).

A price decrease from a1 = a2 ∈ (0, c2] yields firm i a discontinuous increase in Ui, namely,

lim infai→a−i
Ui (ai,a−i) ≥ Ui (ai,a−i) for any a−i ∈ A∗∗−i (ai). In other words, Ui (ai,a−i) is left

lower semi-continuous in ai for any ai ∈ (0, c2]. If a1 = a2 = 0 we have Ui (ai,a−i) = 0 and

therefore Ui (ai,a−i) is right lower semi-continuous in ai at ai = 0. Then, Ui (ai,a−i) is weakly

lower semi-continuous in ai for any ai ∈ [0, c2]. Finally, the summation of the firms’ payoffs U1 +U2

is continuous and, a fortiori, upper semi-continuous. Since all the assumptions in Theorem 1 are

satisfied, the second period continuation game in Lemma 1B possesses a mixed strategy equilibrium.
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2.2 Main features of equilibrium

We now characterize a mixed strategy equilibrium for some relevant cases in Lemma 1B and derive

its main features. The analysis closely follows Levitan and Shubik (1972).

Symmetric case

Suppose r1A = r1B ≡ r1 > d
2 . The second period profits of firm i ∈ {A,B} are given by

Π2i (p2i) = p2i [(1− φj (p2i)) min {r1, d}+ φj (p2i) max {0,min {r1, d− r1}}] ,

where φj (.) is the price distribution function for firm j 6= i, which indicates the probability that

firm j’s price is lower than firm i’s price. This expression reduces to

Π2i (p2i) = p2i [(1− φj (p2i)) r1 + φj (p2i) (d− r1)] .

We first derive the bounds of the price range [pl, ph]. It is straightforward to see that ph = c2,

since for any price above c2 the rival has an incentive to undercut. Given that Π2i is constant over

[pl, ph], the value for pl is the solution to the following condition

Π2i (c2) = c2 (d− r1) = Π2i (pl) = plr1,

which gives pl = c2(d−r1)
r1

. Then, we derive the price distribution function in equilibrium. Using the

expression for Π2i (p2) and exploiting symmetry, we have

Π2i (p2) = p2 [(1− φ (p2)) r1 + φ (p2) (d− r1)] = Π2i (c2) = c2 (d− r1) ,

which yields φ∗ (p2) = p2r1−c2(d−r1)
p2(2r1−d) ∈ [0, 1]. Standard comparative statics analysis delivers the

following results:

(i) if the firm’s reserves can cover the whole market (r1 = d), the second period equilibrium price

is driven to zero (pl = 0 and φ∗ (p2) = 1);

(ii) if the firm’s reserves can cover (approximately) half of the market (r1 → d
2), the price range

degenerates to c2 (pl → c2) and the second period equilibrium price converges to c2;

(iii) higher reserves make competition tougher and the second period equilibrium expected price

decreases (∂φ
∗

∂r1
= d(c2−p2)

p2(2r1−d)2
> 0 for p2 < ph).

Asymmetric case

Suppose r1A = d and r1B < d. The profits of firms A and B are respectively

Π2A (p2A) = p2A [d− φB (p2A) r1B]

Π2B (p2B) = p2Br1B [1− φA (p2B)] .
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As before, the upper bound of the price range [pl, ph] is ph = c2. Since Π2i is constant over [pl, ph],

the lower bound of the price range is the solution to the following condition

Π2A (c2) = c2 (d− r1B) = Π2A (pl) = pld,

which gives pl = c2(d−r1B)
d . Then, we compute the price distribution functions for the two firms in

equilibrium. Using the expressions for Π2A (p2) and Π2B (p2), we have

Π2A (p2) = p2 [d− φB (p2) r1B] = Π2A (c2) = c2 (d− r1B)

Π2B (p2) = p2r1B [1− φA (p2)] = Π2B (pl) = plr1B =
c2 (d− r1B)

d
r1B,

which yields φ∗A (p2) = 1 − c2(d−r1B)
dp2

∈ [0, 1] and φ∗B (p2) = d
r1B
− c2(d−r1B)

p2r1B
∈ [0, 1]. Standard

comparative statics analysis delivers the following results:

(i) if firm B’s reserves can cover (approximately) the whole market (r1B → d), the second period

equilibrium price is driven to zero (pl → 0 and φ∗i (p2)→ 1, i ∈ {A,B});
(ii) if firm B’s reserves tend to zero (r1B → 0), the price range degenerates to c2 (pl → c2) and the

second period equilibrium price converges to c2;

(iii) an increase in firm B’s reserves makes competition tougher and the second period equilibrium

expected prices decrease (
∂φ∗A
∂r1B

= c2
dp2

> 0 and
∂φ∗B
∂r1B

= d(c2−p2)
p2r21B

> 0 for p2 < ph);

(iv) the expected price of firm A (endowed with larger reserves) is higher than the expected price

of firm B (φ∗A (p2) < φ∗B (p2) for p2 > pl).

3 Monopoly setting

Consider a monopolist that operates in two periods with (constant) marginal costs c1 and c2.

The demand function is Dτ (pτ ) = 1 − pτ in period τ ∈ {1, 2}. Define by Km the monopolist’s

storage capacity. When a positive cost shock occurs, i.e., c1 > c, storing is unprofitable and the

monopolist sells in each period τ the quantity that corresponds to the static monopoly level, i.e.,

smτ = 1−cτ
2 . Hereafter, we consider the relevant case of a negative cost shock, i.e., c1 < c, where the

second period discounted expected marginal cost is higher than the first period marginal cost, i.e.,

δE [c2] > c1.

The monopolist’s first period profits are given by

Πm
1 = [p1 (s1)− c1] s1 − c1r1,

where s1 is the quantity sold in the first period and r1 is the quantity stored for the second period.

The monopolist’s second period profits associated with the expected cost E [c2] are given by

Πm
2 = p2 (max {se2, r1}) r1 + {p2 (max {se2, r1})− E [c2]}max {se2 − r1, 0} ,
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where se2 is the static monopoly quantity associated with E [c2]. Note that the quantity that the

monopolist expects to sell in the second period is max {se2, r1}.
The monopolist’s maximization program can be written as

max
s1,r1,se2

Πm
1 (s1, r1) + δΠm

2 (se2, r1) s.t. s1 + r1 ≤ Km.

It follows from our demand specification that in equilibrium se2 = 1−E[c2]
2 . For the sake of conve-

nience, we restrict our attention to the situation where storing some quantity for the next period

is always profitable for the monopolist. This means that the storage capacity is sufficiently large

that, even when the monopolist cannot store as much as it wishes (i.e., the capacity constraint is

binding), a trade-off occurs between selling in the first period and storing for the second period.

The analysis proceeds through the following three cases.

(a) Km ≥ 1− c1
2δ (1 + δ). We claim that in equilibrium max {se2, r1} = r1, i.e., se2 = 1−E[c2]

2 ≤ r1,
which can be checked ex post. It follows from the demand function that p2 (max {se2, r1}) = 1− r1.
Ignoring the capacity constraint (which is slack in equilibrium) and taking the first-order conditions

for s1 and r1 yields sa1 = sm1 = 1−c1
2 and ra1 = 1−c1/δ

2 . Note that, since it does not expect to order (or

produce) in the second period, the monopolist equalizes the discounted marginal revenues associated

with sa1 and ra1 . As sa1 = sm1 , the magnitude of the initial price variation is the same as with a

positive shock. In order to investigate the magnitude of later adjustment, we assume c1 = c2 (see

Section 4 of the paper). Since the marginal revenue associated with the quantity stored for the

second period is higher than the second period marginal cost, i.e., c1/δ ≥ c2, the firm prefers to

purchase from its distributor (or produce) even in the second period, which yields sm2 = 1−c2
2 . It is

straightforward to see the later price variation is also the same as with a positive shock. Therefore,

when the firm does not have any binding capacity constraint, the price adjustment to costs is fully

symmetric.

(b) 1− E[c2]
2 (1 + δ) < Km < 1− c1

2δ (1 + δ). We claim that in equilibrium max {se2, r1} = r1, i.e.,

se2 = 1−E[c2]
2 ≤ r1, which can be checked ex post. Using p2 (max {se2, r1}) = 1− r1 and substituting

the binding capacity constraint into the firm’s maximization program, the first-order condition for

s1 yields sb1 = 1−δ+2δKm

2(1+δ) and rb1 = Km − sb1 = 2Km−1+δ
2(1+δ) . Note that, as in the previous case, the

monopolist does not expect to order (or produce) in the second period and therefore the marginal

revenues associated with sb1 and rb1 are equalized (in discounted terms). Since sb1 < sm1 (and sb1 > sm0 ,

where sm0 = 1−c
2 is the quantity sold in the pre-shock period), the initial price adjustment is less

significant after a negative shock. The monopolist mitigates its price response after a negative

shock since it expects higher costs in the second period and therefore prefers to forgo some current

sales in order to store a greater amount of output for the next period. Since for c1 = c2 the marginal

revenue associated with rb1 is higher than the second period marginal cost, i.e., 2−2Km

1+δ ≥ c2, the

second period quantity is sm2 . This implies that the magnitude of later adjustment is higher with

a negative shock.

(c)Km ≤ 1−E[c2]
2 (1 + δ). We claim that in equilibrium max {se2, r1} = se2, i.e., se2 = 1−E[c2]

2 ≥ r1,
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which can be checked ex post. Using p2 (max {se2, r1}) = 1+E[c2]
2 and substituting the binding

capacity constraint into the firm’s maximization program, the first-order condition for s1 yields

sc1 = 1−δE[c2]
2 and rc1 = Km − sc1 = 2Km−1+δE[c2]

2 . Note that now, since the monopolist expects to

order (or produce) even in the second period, the marginal revenues associated with sc1 and se2 are

equalized (in discounted terms). Since sc1 < sm1 (and sc1 > sm0 ), the initial price adjustment is less

significant after a negative shock. As before, the monopolist mitigates its price response after a

negative shock. Moreover, since for c1 = c2 the marginal revenue associated with rc1 is higher than

the second period marginal cost, i.e., 2 − 2Km − δE [c2] ≥ c2, the second period quantity is sm2 .

Therefore, the magnitude of later adjustment is still more pronounced with a negative shock.

4 Proofs of Propositions 3 and 4

Proof of Proposition 3. Let δE [c2] ≥ c1. We first derive the equilibrium in the first period

quantity setting game for p1i = δE [c2] and p2i = c2, i ∈ {A,B}. Note that in equilibrium both

firms order q1A + q1B ≥ d, since the unit cost is c̃1 = c1 for q1A + q1B ≤ d. The quantity ordered by

firm i in the first period can be written as q1i = q̃e1i+ qe1i, where q̃e1i denotes the quantity ordered by

firm i such that together with the quantity ordered by firm j we have q̃e1A + q̃e1B = d. For a given

q̃e1i, firm i ∈ {A,B} chooses the quantity qe1i and faces the unit cost c̃1 =
c1d+E[c2](qe1A+q

e
1B)

d+qe1A+q
e
1B

. Firm

i’s maximization problem is given by

max
qe1i≥0

δE [c2] (q̃e1i + qe1i)− c̃1 (q̃e1i + qe1i) .

For i, j ∈ {A,B}, i 6= j, the first-order condition for an interior solution is

δE [c2] (d+ qe1A + qe1B)2 − c1d
(
d+ qe1j − q̃e1i

)
− E [c2]

[
(qe1A + qe1B)2 + d

(
2qe1i + qe1j + q̃e1i

)]
(
d+ qe1A + qe1B

)2 = 0.

Combining terms yields the best response function for firm i

qe1i
(
qe1j
)

= −
(
d+ qe1j

)
+

(E [c2]− c1)
1
2

[
dE [c2]

(
d+ qe1j − q̃e1i

)
(1− δ)

] 1
2

E [c2] (1− δ)
. (A.1)

Solving (A.1) implies that in the unique (symmetric) equilibrium the quantity ordered by firm i is

q∗1i = q̃e∗1i + qe∗1i =
(E [c2]− c1) d
4E [c2] (1− δ)

. (A.2)

Since q̃e1A + q̃e1B = d, (A.2) is a solution for firm i’s maximization problem if (E[c2]−c1)d
4E[c2](1−δ) −

d
2 ≥ 0,

which implies δ ≥ 1
2

(
1 + c1

E[c2]

)
. In the sequel, we split the analysis according to the value of the

discount factor δ.

A. Assume δ ≥ 1
4

(
3 + c1

E[c2]

)
. For δ = 1

4

(
3 + c1

E[c2]

)
, we obtain from (A.2) q∗1i = d, i ∈ {A,B}.

Since
∂q∗1i
∂δ > 0, it follows that q∗1i = d, i ∈ {A,B}, still holds for higher values of δ. The analysis of
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Proposition 1A carries over, and therefore p∗1i = δE [c2] and p∗2i = c2 are the equilibrium prices.

B. Assume c1
E[c2] < δ < 1

4

(
3 + c1

E[c2]

)
. We first demonstrate that the candidate p1i = δE [c2] and

p2i = c2, i ∈ {A,B}, cannot be an equilibrium since a firm has an incentive to increase its price in

the first period. Such a deviation would not be profitable if and only if the rival orders and sells

d in the first period. We show that this cannot be an equilibrium in the quantity setting game

after this deviation. Note that, since firm i’s (marginal) revenue increases (or at least it does not

decrease) after this deviation, firm i does not want to buy less than in the candidate equilibrium

and, in response, the non-deviating firm j does not want to buy more. For δ ≥ 1
2

(
1 + c1

E[c2]

)
,

the equilibrium in the quantity setting game with p1i = δE [c2] and p2i = c2, i ∈ {A,B}, is still

described by (A.2). Therefore, after an upward price deviation of firm i, the non-deviating firm

j will not buy more than (E[c2]−c1)d
4E[c2](1−δ) < d. Since firm i can gain from a sufficiently high price by

serving the uncovered part of the market and an equilibrium in the quantity setting game exists

after this deviation (s1i = d, s2i = 0 and s1j = 0, s2j = d), the candidate p1i = δE [c2] and p2i = c2,

i ∈ {A,B}, cannot be an equilibrium for 1
2

(
1 + c1

E[c2]

)
≤ δ < 1

4

(
3 + c1

E[c2]

)
. If δ < 1

2

(
1 + c1

E[c2]

)
,

the solution in (A.2) is no longer valid. This implies that firm i’s maximization problem yields

qe1i = 0. Hence, for prices p1i = δE [c2] and p2i = c2, i ∈ {A,B}, the firms do not want to order

in aggregate more than d. For our purposes, it is sufficient to show that an equilibrium in the

quantity setting game with p1i = δE [c2] and p2i = c2, i ∈ {A,B}, cannot involve q1i = 0 and

q1j = d. This is because, given that firm j buys d in the first period, firm i’s marginal revenue is

higher than the marginal cost at zero, i.e., δE [c2] > c1, and therefore firm i has an incentive to

order some quantity in the first period (and sell it in either period). This implies that the non-

deviating firm j will buy less than d, and it will do so even after firm i’s (upward) price deviation.

Since firm i can gain from a sufficiently high price by serving the uncovered part of the market

and an equilibrium in the quantity setting game exists after this deviation (s1i = d, s2i = 0 and

s1j = 0, s2j = d), the candidate p1i = δE [c2] and p2i = c2, i ∈ {A,B}, cannot be an equilibrium

also for c1
E[c2] < δ < 1

2

(
1 + c1

E[c2]

)
. When the first period prices are higher than δE [c2], each firm

has an incentive to undercut the rival’s price to sell in the first period. Moreover, any price below

δE [c2] cannot be supported as an equilibrium, since the non-deviating firm prefers to sell some

quantity in the next period and the rival could increase the price and sell profitably in the first

period. Along these lines, it can be shown that any asymmetric price configuration (one firm sets

the price above δE [c2] and the rival below δE [c2]) cannot be an equilibrium, either. Therefore,

for c1
E[c2] < δ < 1

4

(
3 + c1

E[c2]

)
, in the price setting game no equilibrium exists in pure strategies.

Since rigid demand allows the deviating firm to set an infinite price and profits are unbounded, no

equilibrium exists also in mixed strategies.

C. Assume δ ≤ c1
E[c2] . For δ < c1

E[c2] , the proof of Proposition 1B is replicated. For δ = c1
E[c2] ,

storing is not harmful and firms are indifferent between storing or not if s∗1A + r∗1A + s∗1B + r∗1B ≤ d,

since c̃1 = c1 and E [p∗2i] = E [c2], i ∈ {A,B}, where the last equality follows from Lemma 1A.

Then, the outcome of the game is a pure strategy SPNE if and only if p∗τi = cτ , s∗τA + s∗τB ≤ d,

s∗1A + r∗1A + s∗1B + r∗1B ≤ d and r∗2i = 0, τ ∈ {1, 2}, i ∈ {A,B}.
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Proof of Proposition 4. Note first that r1i > 0 is never optimal since c̃1 > E [c2] ≥ E [p∗2i],

i ∈ {A,B}, where the second inequality follows from Lemma 1. This implies that the second

period equilibrium price is p∗2 = c2. It is straightforward to show that any price configuration

where p1i ≥ p1j > c1 or p1 > pj = c1, for i, j ∈ {A,B}, i 6= j, cannot be sustained as an equilibrium

since the standard price undercutting rationale applies. Moreover, in equilibrium no firm will set a

price lower than the minimum average cost c1+E[c2]
2 , independently of what the rival does.

To proceed, it is useful to determine the outcome in the first period quantity setting game for

some relevant cases:

(i) p1i > p1j = c1. In equilibrium, firm i sets s1i = 0 and firm j sets s1j = d. Any s1i > 0 cannot

be an equilibrium, since firm j’s best response would be s1j = d (which gives positive profits since

c1 > c̃1), and firm i would make losses.

(ii) p1i > c1 > p1j ≥ c1+E[c2]
2 . There does not exist any pure strategy equilibrium. This is

because there is a threshold q̃1i ∈ (0, d] for the quantity ordered by firm i at which firm j’s profits

when serving the entire market are zero, i.e., Πj = (p1j − c̃1) d = 0, and Πj > (<) 0 if and only

if q1i > (<) q̃1i. Hence, the best response function of firm j is discontinuous and jumps from

q1j (q1i) = 0 for q1i ≤ q̃1i to q1j (q1i) = d for q1i ≥ q̃1i. For our aims, it is sufficient to show that any

mixed strategy equilibrium must be such that (a) the expected profit of firm i is strictly positive,

and (b) the expected profit of firm j is zero. Afterward, we show the features of this equilibrium.

The result (a) follows since there exists a quantity q1i < q̃1i such that firm i can serve the market

profitably, i.e., Πi = (p1i − c̃1) q1i > 0 for p1i > c1 ≥ c̃1, and Πj = (p1j − c̃1) d < 0. To see the result

(b), recall that any strategy q1j ∈ (0, d) is strictly dominated by 0 and d. The only strategy profile

which is part of a mixed strategy equilibrium is the set {0, d}. Since any pure strategy which is

part of a mixed strategy equilibrium must yield the same payoff given the strategy distribution of

the opponent and q1j = 0 yields zero payoff, then q1j = d must also yield zero, which implies that

the profit of firm j is zero. A mixed strategy equilibrium in the quantity setting game prescribes

that firm i sells with probability 1 the quantity s1i = q̃1i, which makes firm j indifferent between

its pure strategies played with positive probability, and firm j randomizes between zero and d with

a probability such that arg maxs1i Πi (s1i) = q̃1i.

(iii) p1i = c1 > p1j ≥ c1+E[c2]
2 . In equilibrium firm i sets s1i ∈ [0, q̃1i], where q̃1i is defined in (ii),

while firm j sets s1j = 0.

(iv) p1i < c1. In equilibrium each firm sets s1i = 0, i ∈ {A,B}.
It can be seen from (ii), (iii) and (iv) that c1 > p1i ≥ p1j or p1i = c1 > p1j cannot be an

equilibrium since firm i can increase the price above c1 and gain.

It remains to show that p1i = c1, i ∈ {A,B}, is chosen in equilibrium. From (iii) it follows

that no firm has an incentive to deviate downward. Similarly, the result in (i) indicates there is no

upward profitable deviation. Hence, the outcome of the game is a pure strategy SPNE if and only

if p∗τi = cτ , s∗τA + s∗τB ≤ d and r∗τi = 0, τ ∈ {1, 2}, i ∈ {A,B}.
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