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Abstract

We investigate manipulability in the setting of financial systems by consider-

ing two weak forms of immunity: non-manipulability via merging and non-

manipulability via splitting. Not surprinsingly, non-manipulability via splitting

is incompatible with some basic axioms: claim boundedness, limited liability, and

absolute priority. Outstandingly, we introduce a large class of financial rules that

are immune to manipulations via merging. This class includes the proportional

financial rule but also financial rules in accordance with parametric bankruptcy

rules fulfilling non-manipulability via merging.

Keywords: financial systems, manipulability via merging, manipulability via

splitting, parametric bankruptcy rules

JEL: C71

1. Introduction

A financial system is a network of different institutions (banks, individual

investors, hedge funds, insurance companies, etc) linked to each other through

financial contracts. The failure of Lehman Brothers in September 2008 puts

the stability of the global financial system at risk, producing the bankruptcy of

∗Corresponding author: calleja@ub.edu (P. Calleja), francesc.llerena@urv.cat (F. Llerena),
psu@sam.sdu.dk (P. Sudhölter).
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other institutions. Since then, the articles on contagion in financial networks has

grown significantly, being the seminal paper of Eisenberg and Noe (2001) the

basis for subsequent research. The reader is referred to the works of Glasserman

and Young (2016), Caccioli et al. (2018), and Jackson and Pernoud (2021) for

reviews of the extensive literature on this topic.

Among the different aspects addressed in this setting, an important issue is

how to clear the mutual obligations between institutions when the financial net-

work structure collapses. That is, when the insolvency of an agent results in the

default of other agents from contagion, how should the total cash in the system be

distributed among the agents? This problem can be seen as a non-trivial general-

ization of a classical bankruptcy problem (O’Neill, 1982), where the value of the

estate of a single insolvent firm is exogenous and should be distributed among a

group of creditors. On the contrary, a financial system comprises a group of firms

that simultaneously play the role of debtors and creditors and, consequently, the

value of the estate of each of them is endogenous and depends on the extent

to which other firms afford their obligations. An approach that connects both

frameworks is to extend bankruptcy rules to financial systems computing the as-

set value of each firm and making payments according to the chosen bankruptcy

rules. Indeed, Eisenberg and Noe (2001) determine the existence of payment

matrices, which prescribe mutual payments among entities so as to clear the sys-

tem, based on the proportional bankruptcy rule. They also propose an algorithm

not only for identifying clearing payment matrices but also for analyzing the vul-

nerability of the system. This point is addressed, among others, in Chen et al.

(2013) and Demange (2018) which focus on measuring the systemic risk. Instead

of imposing proportionality, Groote Schaarsberg et al. (2018) allow for other

bankruptcy rules, but not for agent-specific bankruptcy rules, while Csóska and

Herings (2018) extend the aforementioned works, in a discrete and continuous

setting, allowing each entity to employ a different bankruptcy rule. In line with

Eisenberg and Noe, these authors show that clearing payment matrices supported

by bankruptcy rules always exist and might not be unique, although the result-

ing entities’ utilities, measured by means of their value of equity, are invariant.
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Moreover, they also introduce different procedures to compute them.1 All these

works impose three basic requirements: claim boundedness (CB), specifying that

no payment should be over the corresponding liability, limited liability of equity

(LL), and absolute priority of debt over equity (AP).

A few works focus on the axiomatic grounds of financial rules, that recom-

mend, for each financial system, a set of clearing payment matrices. Groote

Schaarsberg et al. (2018) characterize the financial rule based on the Talmud

bankruptcy rule (Aumann and Maschler, 1985). Ketelaars et al. (2021) extent

the characterization of priority bankruptcy rules provided by Moulin (2000) to

the setup of financial systems and Csóska and Herings (2021) characterize the

proportional financial rule. In the context of classical bankruptcy situations, de

Frutos (1999) proves that the proportional rule is the unique solution satisfying

non-manipulability 2 that enforces to accomplish two weak forms of immunity

to misrepresentations of claims: non-manipulability via splitting, which roughly

speaking requires that no agent should have incentives to split into several ones,

and non-manipulability via merging, meaning that a group of agents neither have

incentives to merge into a single one. De frutos (1999) and Ju (2003) identify the

families of parametric rules (Young, 1987) satisfying either non-manipulability

via merging or non-manipulability via splitting. In the setting of financial sys-

tems, non-manipulability has been studied by Csóska and Herings (2021). Their

definition of non-manipulability relays on the invariance of clearing payment ma-

trices rather than on the comparison of the utilities of the agents, and does not

distinguish between non-manipulability via merging or splitting. Contrary to

bankruptcy problems, they find out that together with the requirements of CB,

LL, and AP, no financial rule is immune to manipulability; in particular, the

proportional rule. This impossibility result is not surprising considering that,

as stressed in Csóska and Herings (2021), if a firm can create a new entity that

inherits only all its liabilities while keeping the obligations of others, then the

firm will end up in paying none of its initial debts. At this point, two natu-

ral questions emerge. Firstly, since maximizing utility drives the incentives of

1See also Ketelaars et al. (2020) and Ketelaars and Borm (2021).
2Different axiomatizations of the proportional rule can be found in O’Neill (1982), Curiel et

al. (1987), Chun (1988), Moreno-Ternero (2006), and Ju et al. (2007)
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decision-makers, it seems more suitable to define non-manipulability in terms of

equity value. Secondly, as in real life entities not only use to create spin-offs

but also merging companies, it is relevant to analyze these two weak forms of

strategic manipulation separately. Although comparing equity values yield to

weaker immunity conditions, as expected non-manipulability via splitting is still

incompatible with the aforementioned basic requirements. Outstandingly, in this

paper we introduce a large class of financial rules, not necessarily induced by

bankruptcy rules, that are immune to manipulations via merging. This class

includes those based on bankruptcy rules satisfying strong non-manipulability

via merging, a new property inspired by additivity (or strong non-manipulability)

as introduced in Curiel et al. (1987) and Moreno-Ternero (2006). Specifically,

it contains the proportional financial rule but also financial rules in accordance

with parametric rules fulfilling non-manipulability via merging (see Young, 1987

and Ju, 2003).

The rest of the paper is organized as follows. Section 2 contains Tarski’s

fixed-point theorem, a key result in our analysis. Section 3 handles with non-

manipulability in the setting of bankruptcy problems and introduces some new

results. Section 4 is devoted to financial systems induced by bankruptcy rules and

by division schemes, a new approach that allows to recognize financial rules from a

more general perspective by considering all the liabilities in the network. Section

5 presents the main results concerning the non-manipulability in the financial

system setting. Section 6 concludes. The Appendix contains some technical

proofs.

2. Preliminaries

An important result in our analysis of manipulability in financial systems is

Tarski’s fixed-point theorem (Tarski, 1955). In order to formulate it, it is useful

to recall some definitions. A lattice is a pair (A,≤) formed by a non-empty set

A and a transitive and antisymmetric binary relation ≤ on3 A that determines a

partial order on A such that, for any two elements x, y ∈ A, there is a supremum

3We write x < y if x ≤ y but x 6= y.
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(join), denoted by x∨y, and an infimum (meet), denoted by x∧y. The supremum

x ∨ y is the unique element of A such that x, y ≤ x ∨ y and if z ∈ A is such that

z ≥ x, y, then z ≥ x∨ y. The infimum x∧ y is the unique element of A such that

x, y ≥ x∧ y and if z ∈ A is such that z ≤ x, y, then z ≤ x∧ y. The lattice (A,≤)

is called complete if every non-empty subset B ⊆ A has a supremum, denoted by∨
B, and an infimum, denoted by

∧
B. In this case we use the convention that∨

∅ =
∧
A and

∧
∅ =

∨
A. Given two elements x, y ∈ A with x ≤ y, we denote

by [x, y] the interval with the endpoints x and y, i.e., [x, y] = {z ∈ A | x ≤ z ≤ y}.
Clearly, ([x, y],≤) is a lattice, and it is a complete lattice if (A,≤) is complete. We

shall consider functions f : B → C, where B,C ⊆ A. Such a function f is called

non-decreasing if, for any pair of elements x, y ∈ B, x ≤ y implies f(x) ≤ f(y). A

fixed point of f is an element x of B such that x = f(x). Let FIX(f) denote the

set of fixed points of f . Now, we have all the tools to state Tarski’s fixed-point

theorem.

Theorem 1. (Tarski, 1955) If (A,≤) is a complete lattice and f : A → A is

a non-decreasing function, then (FIX(f),≤) is a complete lattice,
∨

FIX(f) =∨
{z ∈ A | z ≥ f(z)}, and

∧
FIX(f) =

∧
{z ∈ A | z ≤ f(z)}.

3. Bankruptcy problems

Financial systems can be regarded as generalized bankruptcy problems. In-

deed, among others, Eisenberg and Noe (2001), Groote Schaarsberg et al. (2018),

Csóska and Herings (2018, 2021), Ketelaars at al. (2020), and Ketelaars and Borm

(2021) propose solutions to financial systems (i.e., clearing payment matrices)

that are inspired by bankruptcy rules. In order to introduce the aforementioned

approach formally, we recall some standard definitions and well-known results in

the framework of bankruptcy problems.

Let N (the set of natural numbers) represent the set of all potential agents

(claimants) and let N be the collection of all non-empty finite subsets of N. An

element N ∈ N describes a finite set of agents where |N | = n. A bankruptcy

problem is a triple (N,E, c) such that N ∈ N , c ∈ RN+ , E ≥ 0, and
∑

i∈N ci ≥ E.

If (N,E, c) is a bankruptcy problem, then each agent in the set of creditors N has

a claim ci to the net worth or estate E ≥ 0 of a bankrupt firm. By B we denote
5



the set of all bankruptcy problems. A bankruptcy rule is a function β : B −→⋃
N∈N RN+ that associates with every (N,E, c) ∈ B a unique vector β(N,E, c) ∈

RN+ satisfying
∑
i∈N

βi(N,E, c) = E (budget balance (BB)) and βi(N,E, c) ≤ ci for

all i ∈ N (claim boundedness (CB)).

There is a wide range of well-behaved bankruptcy rules studied in the lit-

erature, among which we focus on those satisfying the following axioms. A

bankruptcy rule β satisfies equal treatment of equals (ETE) if for all (N,E, c) ∈ B
and all i, j ∈ N , if ci = cj then βi(N,E, c) = βj(N,E, c). That is, ETE requires

that agents with the same claim receive the same amount. It satisfies consis-

tency (CONS) if for all (N,E, c) ∈ B and all ∅ 6= N ′ ⊆ N , βN ′(N,E, c) =

β
(
N ′,

∑
i∈N ′ βi(N,E, c), cN ′

)
.4 CONS requires that in the reduced bankruptcy

problem, which arises when some players leave with their share, each of the re-

maining players receives the same amount as in the original problem. It satisfies

continuity (CONT) if for all sequences of bankruptcy problems
(
(N,En, cn)

)
n∈N

converging to (N,E, c), the sequence
(
β(N,En, cn)

)
n∈N converges to β(N,E, c).

Young (1987) characterizes the family of bankruptcy rules satisfying ETE, CONS,

and CONT, called parametric rules. Let [−∞,+∞] = R ∪ {−∞,∞} be the ex-

tended real line (−∞ < t < +∞ for all t ∈ R and −∞ < +∞ by convention) and

let H be the set of functions h : [a, b]×R+ → R+, where a, b ∈ [−∞,+∞], a ≤ b,
such that h is continuous, non-decreasing in the first argument, and for each

c̄ ∈ R+, h(a, c̄) = 0 and h(b, c̄) = c̄. A rule β is parametric if there ex-

ists h ∈ H such that for all (N,E, c) ∈ B there exists λ ∈ [a, b] satisfying

βi(N,E, c) = h(λ, ci) for all i ∈ N and
∑

i∈N h(λ, ci) = E. In this case, h is

called a representation of β. In fact, there are infinitely many representations

of a parametric rule (Thomson 1995). This family of rules satisfies, additionally,

resource monotonicity. A bankruptcy rule β is said to satisfy resource mono-

tonicity (RM) if for all (N,E, c), (N,E′, c) ∈ B such that E′ > E, it holds

that β(N,E, c) ≤ β(N,E′, c). Instances of well studied parametric rules are

the proportional rule (PR), the constrained equal awards rule (CEA), and the

constrained equal losses rule (CEL). The PR rule makes awards proportional

to the claims and it is probably the most commonly used rule when a firm goes

4Given N ∈ N , ∅ 6= S ⊂ N , and x ∈ RN , xS = (xi)i∈S ∈ RS .
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bankrupt. Formally, for all (N,E, c) ∈ B and all i ∈ N , PRi(N,E, c) = λ ci

where λ ∈ R+ is such that
∑
j∈N

λ cj = E. The CEA rule rewards equally to

all claimants subject to no one receiving more than her claim. Formally, for

all (N,E, c) ∈ B and all i ∈ N , CEAi(N,E, c) = min{ci, λ} where λ ∈ R+ is

such that
∑
j∈N

min{cj , λ} = E. In contrast, the CEL rule equalizes the losses

of claimants subject to no one receiving a negative amount. That is, for all

(N,E, c) ∈ B and all i ∈ N , CELi(N,E, c) = max{ci − λ, 0} where λ ∈ R+ is

such that
∑
j∈N

max{cj − λ, 0} = E.

Given a bankruptcy rule β, its dual βd is defined by setting, for all (N,E, c) ∈
B and all i ∈ N , βdi (N,E, c) = ci − βi

(
N,
∑

i∈N ci − E, c
)
. The CEA and the

CEL are dual rules and the PR is self-dual, i.e., PR = PRd. We say that two

properties P and P’ are dual to each other if β satisfies P if and only if its dual βd

satisfies P’. If, moreover, P coincides with P’, then P is self-dual. For instance,

RM, ETE, CONS, and CONT are self-dual properties.

A large fraction of the literature on bankruptcy problems is devoted to study

the strategic incentives of claimants to misrepresent claims, either by merging or

splitting their respective claims in order to obtain some extra profits. De Frutos

(1999) introduces two different “immunity” properties so as to separate these two

types of incentives. A bankruptcy rule β on B satisfies

• non-manipulability (NM) if for all N,N ′ ∈ N and all (N,E, c), (N ′, E, c′) ∈
B, if N ′ ⊂ N and there is m ∈ N ′ such that c′m = cm +

∑
j∈N\N ′ cj and

c′j = cj for all j ∈ N ′ \ {m}, then

βm(N ′, E, c′) = βm(N,E, c) +
∑

j∈N\N ′
βj(N,E, c).

NM can be divided into non-manipulability via merging (NMM) imposing

βm(N ′, E, c′) ≤ βm(N,E, c) +
∑

j∈N\N ′
βj(N,E, c),

and non-manipulability via splitting (NMS) requiring the inverse inequality

βm(N ′, E, c′) ≥ βm(N,E, c) +
∑

j∈N\N ′
βj(N,E, c).
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NM requires NMM and NMS simultaneously. NMM stipulates that no group of

claimants can benefit from consolidating claims. On the contrary, NMS guaran-

tees that no claimant can benefit from dividing its claim into claims of a group

of claimants. NMM and NMS are dual properties (see de Frutos, 1999). De Fru-

tos (1999) and Ju and Miyagawa (2002) show that the PR rule is the only rule

satisfying NM. Moreno-Ternero (2006) proves that strong non-manipulability, in-

troduced as additivity by Curiel et al. (1987), is equivalent to NM. A bankruptcy

rule β on B satisfies

• strong non-manipulability (SNM) if for all N,N ′ ∈ N and all (N,E, c),

(N ′, E, c′) ∈ B, if N ′ ⊂ N and there is m ∈ N ′ such that c′m = cm +∑
j∈N\N ′ cj and c′j = cj for all j ∈ N ′ \ {m} then, for all j ∈ N ′ \ {m},

βj(N
′, E, c′) = βj(N,E, c).

SNM can be separated into strong non-manipulability via merging (SNMM)

requiring, for all j ∈ N ′ \ {m},

βj(N
′, E, c′) ≥ βj(N,E, c),

and strong non-manipulability via splitting (SNMS) imposing, for all j ∈
N ′ \ {m}, the reverse inequalities,

βj(N
′, E, c′) ≤ βj(N,E, c).

SNM guarantees that merging or splitting the agents’ claims do not affect the

amounts received by each other agent involved in the problem. SNMM imposes

that merging the claims of a group of creditors does not damage the rest of agents,

while SNMS requests that if a creditor divides its claim into claims of several

claimants, then none of the remaining agents is worse off. It is not difficult,

and it is left to the reader, to check that SNMM and SNMS are dual properties.

Clearly, SNMM implies NMM and SNMS implies NMS. The following theorem,

that is proved in the Appendix, states that the reverse implications do not hold.

Theorem 2. Neither NMM implies SNMM, nor NMS implies SNMS.
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Nevertheless, under the standard requirements of RM and CONS, NMM and

NMS are equivalent to SNMM and SNMS, respectively.

Proposition 1. Let β be a bankruptcy rule satisfying RM and CONS. Then, β

satisfies NMM (NMS) if and only if it satisfies SNMM (SNMS).

Proof. Since NMM (SNMM) and NMS (SNMS) are dual properties to each other,

it is enough to see that, under RM and CONS, a bankruptcy rule β satisfies NMM

if and only if it satisfies SNMM. Clearly, SNMM implies NMM. To show the

reverse implication, consider a bankruptcy rule β satisfying RM, CONS, and

NMM. Let (N,E, c), (N ′, E, c′) ∈ B such that N ′ ⊂ N and there is m ∈ N ′

with c′m = cm +
∑

j∈N\N ′ cj and cj = c′j for all j ∈ N ′ \ {m}. By NMM,

βm(N ′E, c′) ≤ βm(N,E, c) +
∑

j∈N\N ′ βj(N,E, c) or, equivalently,

E − βm(N ′, E, c′) ≥ E −
∑

j∈{m}∪N\N ′
βj(N,E, c). (1)

From (1), and taking into account that ci = c′i for all i ∈ N ′ \ {m}, by RM and

CONS we obtain

βi(N
′, E, c′) =

CONS
βi

(
N ′ \ {m}, E − βm(N ′, E, c′), c′|N ′\{m}

)
≥

RM
βi

N ′ \ {m}, E − ∑
j∈{m}∪N\N ′

βj(N,E, c), c|N ′\{m}


=

CONS
βi(N,E, c),

which proves SNMM of β.

Since parametric rules satisfy RM and CONS, a direct consequence of Propo-

sition 1 is the following.

Corollary 1. A parametric rule is NMM (NMS) if and only if it is SNMM

(SNMS).

Ju (2003) characterizes the set of parametric bankruptcy rules that are NMM

or NMS making use of the following properties of representations. A represen-

tation h : [a, b] × R+ → R+ is superadditive in claims if for all λ ∈ [a, b] and all

c̄, c̄′ ∈ R+, h(λ, c̄+ c̄′) ≥ h(λ, c̄) + h(λ, c̄′). If the inequality holds in the opposite
9



direction, we say that the representation h is subadditive in claims. Although

there are many representations of a parametric rule, Ju (2003) shows that super-

additivity (or subadditivity) in claims is an invariance property.

Proposition 2. (Ju, 2003) A parametric rule is NMM (NMS) if and only if

its representations are subadditive (superadditive) in claims.

It is well known that the representations of the CEA rule and the PR rule

are subadditive in claims, while the representations of the CEL rule and the PR

rule are superadditive in claims.

4. Financial systems

In order to define financial systems we first introduce some notation. For

N ∈ N we denote by M(N) the set of all non-negative real N × N matrices

M = (Mij)i,j∈N with a zero diagonal. Moreover, we defineM =
⋃

N∈N
M(N). For

M ∈ M(N) and i ∈ N , we denote the row i of M by Mi, i.e., Mi = (Mij)j∈N ∈
RN+ . Finally, we abbreviate M̄i =

∑
j∈N

Mij .

A financial system is a triple (N,L, e) such that N ∈ N , L ∈ M(N), and

e ∈ RN+ . In such a financial system, N is the set of distinct economic entities,

firms, or agents. The matrix L represents the structure of liabilities, where Lij

stands for the liability of entity i ∈ N to entity j ∈ N , or equivalently, the claim

of entity j against entity i, and Lii = 0 for all i ∈ N means that no entity has a

claim against itself. So, two agents may have mutual positive claims against each

other in the system. Here, L̄ = (L̄i)i∈N ∈ RN is the vector of total obligations in

the system. The vector e ∈ RN+ represents the initial endowments of the agents

that are assumed to be non-negative, and includes all the assets of each entity

excluding the claims on other entities in the system, both together constitute

the resources to afford its liabilities. In this framework, the default of an entity,

that does not have enough resources to satisfy all its liabilities, can induce the

default of other initially healthy entities, due to its connections with the first

one. Depending on how strong the interconnections of the entities in the system

are, this fact may put the system in systemic risk. By F we denote the set of

all financial systems. We assume that the system is closed and there are not
10



outside resources available to the entities in the system to meet their obligations.

For each (N,L, e) ∈ F , a payment matrix P ∈ M(N) specifies what monetary

amount Pij should be paid by entity i ∈ N to entity j ∈ N , with Pii = 0 for all

i ∈ N . Associated to a payment matrix P and an endowment vector e ∈ RN+ , we

define the asset value of entity i ∈ N by

ai(P, e) = ei +
∑
k∈N

Pki, (2)

the amount of resources of i to clear its debts. The value of equity, or utility, of

entity i ∈ N is defined by

Ei(P, e) = ai(P, e)− P̄i, (3)

where the P̄i is the total payment by entity i to the other agents in the system

according to P .

Definition 1. A financial rule σ assigns a subset σ(N,L, e) of M(N) to each

(N,L, e) ∈ F .

Hence, a financial rule associates to each financial system a possibly empty

set of payment matrices. The recent literature typically focusses on financial

rules induced by certain bankruptcy rules as discussed in Sect. 4.1. We explore,

in addition, financial rules induced by division schemes (see Sect. 4.2). This

completely novel approach allows to consider all the interactions among agents

when proposing payment matrices.

Interestingly, for a given ε = (N,L, e) ∈ F , and a payment matrix P ∈M(N)

it holds that
∑

i∈N ei =
∑

i∈N Ei(P, e). Hence, a recommendation on payment

matrices can be interpreted as a recommendation on the distribution of the equity

values of the firms in the system, that in total equals the total initial endowments.

A financial rule σ is said to be single-valuedness (SIVA) if, for all (N,L, e) ∈
F , σ(N,L, e) consist of a single payment matrix, i.e., |σ(N,L, e)| = 1. Hence,

SIVA implies non-emptiness, which requires that, for all (N,L, e) ∈ F , σ(N,L, e) 6=
∅. We are interested in financial rules supplying “clearing payment matrices” pro-

viding feasible payments among agents in the sense of Eisenberg and Noe (2001).

Formally, they should satisfy the following three properties. A financial rule σ

satisfies
11



• claims boundedness (CB) if, for all (N,L, e) ∈ F , all P ∈ σ(N,L, e), and

all i, j ∈ N , Pij ≤ Lij ;

• limited liability (LL) if, for all (N,L, e) ∈ F , all P ∈ σ(N,L, e), and all

i ∈ N , Ei(P, e) ≥ 0;

• absolute priority (AP) if, for all (N,L, e) ∈ F , all P ∈ σ(N,L, e), and all

i ∈ N , Ei(P, e) > 0 implies Pij = Lij for all j ∈ N .

CB imposes that no agent pays to any other entity more than the liability

to it. LL requires that all entities can afford the payments established by the

payment matrices in the sense that the liabilities of the firm to others are limited

to the asset value of the firm, thereby guaranteeing that there will be no need to

get resources from outside the system. AP demands that stockholders of each

entity can not receive a positive value unless all obligations have been completely

paid.

4.1. Financial rules induced by bankruptcy rules

The result of a financial rule, when applied to a financial system, can be in-

terpreted as a recommendation to a single decision-maker on how to solve this

conflicting mutual liabilities problem. However, in a global world, this problem

may cause an international insolvency issue, in which different courts, at most as

many as different economic entities are involved, take part, each one as a different

decision-maker. In such a case one may ask whether the recommendation of the

financial rule is compatible with the recommendations provided by traditional

bankruptcy rules applied to each different entity. Therefore, we consider finan-

cial rules that arise from a collection of different bankruptcy rules, one for each

economic entity, that abide a different court or law principle, which motivates

the following definition.

Definition 2. Let (βi)i∈N be a collection of bankruptcy rules, i.e., βi is a bankruptcy

rule for each i ∈ N. We say that a financial rule σ is induced by (βi)i∈N

if, for all (N,L, e) ∈ F , all P ∈ σ(N,L, e), and all i ∈ N , it holds that

Pij = βij(N \ {i}, E, c) for all j ∈ N \ {i} where E = P̄i and c ∈ RN\{i}+ with

cj = Lij for all j ∈ N \ {i}.
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For the sake of convenience, we say that a financial rule σ is induced by

bankruptcy rules if it is induced by some collection of bankruptcy rules. At

this point it should be emphasized that, in contrast to the case of a bankruptcy

problem, in a financial system the value of the estate distributed by each firm is

endogenously determined, since it depends on the initial endowment of the firm,

but also on the claims of such firm against other agents, that may not be fulfilled.

Eisenberg and Noe (2001) show that there are non-empty financial rules satisfying

CB, LL, and AP that are induced by the proportional bankruptcy rule. Groote

Schaarsberg et al. (2018) prove non-emptyness following a different approach and

for the more general case in which all entities impose the same bankruptcy rule,

but not necessarily the proportional rule. Csóka and Herings (2018) extend this

result to the case in which each entity may use a distinct bankruptcy rule.

The next lemma estates that under CB, independently of whether or not the

financial rule is in accordance with bankruptcy rules, LL and AP are equivalent

to require that every firm pays the minimum between its total funds (the asset

value) and its total debt obligations.

Lemma 1. Let σ be a financial rule satisfying CB. Then, the following state-

ments are equivalent:

1. σ satisfies LL and AP.

2. For all ε = (N,L, e) ∈ F , all P ∈ σ(ε), and all i ∈ N ,

P̄i = min

{
ei +

∑
k∈N

Pki, L̄i

}
(4)

Proof. (1 ⇒ 2) Let σ be a financial rule satisfying CB, LL, and AP. Let ε =

(N,L, e) ∈ F and P ∈ σ(ε). By LL, Ei(P, e) ≥ 0 for all i ∈ N . If Ei(P, e) = 0,

ei +
∑

k∈N Pki = P̄i ≤ L̄i, where the inequality comes from CB . If Ei(P, e) > 0,

by AP, P̄i = L̄i and thus ei +
∑

k∈N Pki > P̄i = L̄i. Hence, in both cases

expression (4) holds.

(2 ⇒ 1) Let ε = (N,L, e) ∈ F and P ∈ σ(ε). By hypothesis, expression

(4) holds and hence, for all i ∈ N , Ei(P, e) = ei +
∑

k∈N Pki − P̄i ≥ 0, which

proves LL. To check AP, let i ∈ N and suppose that Ei(P, e) > 0. Then,

ei +
∑

k∈N Pki > P̄i and from (4) we conclude that P̄i = L̄i, which, by CB, is

equivalent to Pik = Lik for all k ∈ N .
13



Employing Lemma 1, and from Definition 2, examples of non-empty financial

rules generated by each entity applying the PR rule, the CEA rule, and the CEL

rule and that, additionally, satisfy CB, LL, and AP, can be introduced. The

proportional financial rule, σPR, is defined by setting: for all ε = (N,L, e) ∈ F ,

all P ∈ σPR(ε), and all i, j ∈ N , Pij = λiLij , where λi ∈ R+ satisfies P̄i =

min{ei+
∑

k∈N Pki, L̄i}. The CEA financial rule, σCEA, is defined by setting: for

all ε = (N,L, e) ∈ F , all P ∈ σCEA(ε), and all i, j ∈ N , Pij = min{λi, Lij}, where

λi ∈ R+ satisfies P̄i = min{ei +
∑

k∈N Pki, L̄i}. The CEL financial rule, σCEL, is

defined by setting: for all ε = (N,L, e) ∈ F , all P ∈ σCEL(ε), and all i, j ∈ N ,

Pij = max{0, Lij − λi}, where λi ∈ R+ satisfies P̄i = min{ei +
∑

k∈N Pki, L̄i}.
Example 1 below highlights that, from the point of view of a single (cen-

tral) decision-maker, restricting oneself to financial rules induced by a list of

bankruptcy rules, one for each economic entity, might be a myopic approach.

Actually, according to a financial rule of this type, each entity distributes any

amount among its creditors taking only into account the corresponding liabilities

to them, but not any other liabilities in the system.

Example 1. Let ε = (N,L, e) and ε′ = (N,L′, e′) be two financial systems with

agent set N = {1, 2, 3}, vectors of initial endowments e = e′ = (1, 0, 0), and

liability matrices:

L =


0 1 1

0 0 1000

0 0 0

 and L′ =


0 1 1

0 0 0

0 1000 0

 .

In the financial system ε, firm 3 seems healthier than firm 2 as a result of more

responsible credit decisions, and in ε′ is exactly the contrary. Under LL and

AP, debtor 1 faces the same bankruptcy situation in both ε and ε′ described by

an estate E = E′ = 1, since she has an initial endowment e1 = e′1 = 1 but, under

CB, she will receive nothing from 2 and 3 as they have no liabilities to 1; and a

vector of claims c = (1, 1). When clearing the system, a central decision-maker

could prioritize the most needy firm or, on the contrary, the healthiest (more

responsible) one.

14



A route to overcome this problem is to enrich the notion of bankruptcy rules

by means of division schemes.

4.2. Financial rules induced by division schemes

Here we introduce division schemes as a tool to resolve financial systems

from a more general perspective by recognizing all the features of the financial

network. Consequently, new financial rules can be generated and several existing

rules, as those induced by bankruptcy rules, are obtained as particular cases.

For a given financial system, a division scheme associates a list of functions each

one describing how each entity divides a non-negative amount representing its

available resource among her creditors.

Definition 3. Given ε = (N,L, e) ∈ F , a division scheme f ε = (f εi )i∈N asso-

ciates to each i ∈ N a function f εi : R+ −→ RN+ satisfying:

• Budget Balance (BB): for all t ≥ 0,
∑

k∈N f
ε
ik(t) = t;

• Claim Boundedness (CB): for all t ≥ 0 and all k ∈ N , f εik(t) ≤ Lik.

Note that BB together with CB imply 0 ≤ t ≤ L̄i and f εii(t) = 0, for all

i ∈ N . Let us denote by Λε the set of all division schemes on ε = (N,L, e).

A complete division scheme, f ∈
⋃
ε∈F Λε, provides a division scheme for any

financial system. By DS we denote the set of all complete division schemes.

Obviously, making use of complete division schemes we will enrich the notion

of financial rules supported by bankruptcy rules. Next definition connects an

inventory of bankruptcy rules with complete division scheme.

Definition 4. Let (βi)i∈N be a collection of bankruptcy rules and f ∈ DS. We

say that f represents (βi)i∈N if, for all ε = (N,L, e) ∈ F , all i ∈ N , and all

j ∈ N \ {i}, f εij(t) = βij
(
N \ {i}, t, (Lij)j∈N\{i}

)
, for all 0 ≤ t ≤ L̄i.

Nevertheless, division schemes allows for a much wider approach taking into

consideration the entire financial system permitting, for instance, that an eco-

nomic debtor establishes payments depending on the full network of interconnec-

tions among entities as well as on the initial endowments rather than simply on

her liabilities to others. That is, the payments made by agent i to any other
15



agent k need not only depend on the claims of those agents toward agent i but

also on the mutual claims among them. Therefore, agent i might treat differently

agents that have equal claims towards it. We come back to Example 1 to point

out the differences between these two concepts.

Example 1(revisited) According to the different features of ε and ε′, we may

define a division scheme f such that f ε1 (1) = (0, 0, 1) and f ε
′

1 (1) = (0, 1, 0),

in favor of responsible firms. Another argument could be to prioritize the most

needy firm. In that case, we might define a different division scheme g such

that gε1(1) = (0, 1, 0) and gε
′

1 (1) = (0, 0, 1). As we observed before, debtor 1

faces the same bankruptcy problem in both ε and ε′. However, f ε1 (1) 6= f ε
′

1 (1)

and gε1(1) 6= gε
′

1 (1), which shows that f and g do not admit an interpretation as

bankruptcy rules.

As shown in Example 1, not all complete division schemes f can be repre-

sented by bankruptcy rules. Actually, f admits an interpretation as bankruptcy

rules whenever any entity distributes an amount among its creditors taking only

into account the corresponding liabilities to them, but not any other liability in

the system. That is, given ε = (N,L, e) and ε′ = (N,L′, e′), if Li = L′i for some

i ∈ N , then f εi (t) = f ε
′
i (t), for all 0 ≤ t ≤ L̄i.

Next, we generate financial rules making use of complete division schemes.

Definition 5. A financial rule σ is said to be supported by f ∈ DS if for all

ε ∈ F , all P ∈ σ(ε), and all i ∈ N , it hods that Pi = f εi (P̄i).

Regarding uniqueness of clearing payment matrices, it is worth to stress that

any financial rule satisfying SIVA and CB is supported by a complete division

scheme. Indeed, let σ be a financial rule satisfying SIVA and CB. It is enough

to define f ∈ DS as follows: for all ε = (N,L, e) ∈ F , σ(ε) = {P}, and all i ∈ N ,

f εij(t) =


0 if 0 = t = P̄i

λPij if 0 < t ≤ P̄i
λPij + (1− λ)Lij if P̄i < t ≤ L̄i

for all j ∈ N , where λ ∈ [0, 1] is chosen so as to satisfy
∑

k∈N f
ε
ik(t) = t. Note

that f εij(P̄i) = Pij . However, in general, not all financial rule is supported by a
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complete division scheme. Consider the financial system ε′ = (N ′, L′, e′) being

N ′ = {1, 2, 3}, L′ =


0 5 5

0 0 0

0 0 0

 and e′ = (5, 0, 0).

Now define the financial rule σ as follows: for all ε ∈ F ,

σ(ε) =



σPR(ε) if ε 6= ε′


0 λ 5− λ

0 0 0

0 0 0

 | λ ∈ [0, 5]

 if ε = ε′
.

Suppose that σ is supported by some division scheme f . Then,

P =


0 1 4

0 0 0

0 0 0

 ∈ σ(ε′) and P ′ =


0 2 3

0 0 0

0 0 0

 ∈ σ(ε′)

but P12 = f ε12(5) = 1 6= 2 = P ′12 = f ε12(5), getting a contradiction.

The question of uniqueness is addressed, among others, by Eisenberg and

Noe (2001), Groote Schaarsberg et al. (2018), Koster (2019), and Ketelaars et

al. (2020).

Since a financial rule σ supported by f ∈ DS satisfies CB, as a direct conse-

quence of Lemma 1 we obtain the following corollary.

Corollary 2. Let σ be a financial rule supported by f ∈ DS. Then, the following

statements are equivalent:

1. σ satisfies LL and AP.

2. For all ε = (N,L, e) ∈ F and all P ∈ σ(ε), P̄ ∈ RN is a fixed-point of the

function Φε,f : [0, L̄] −→ [0, L̄] defined by

Φε,f
i (t) = min

{
ei +

∑
k∈N

f εki(tk), L̄i

}
, (5)

for all i ∈ N and all t ∈ [0, L̄], being 0 = (0, . . . , 0) ∈ RN .
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In view of Corollary 2, we might apply Tarski’s fixed-point theorem to the

function Φε,f to guarantee the existence of financial rules satisfying LL and AP.

To this aim, we study conditions ensuring the monotonicity of Φε,f . A complete

division scheme f ∈ DS satisfies

• Resource Monotonicity (RM) if for all ε = (N,L, e) ∈ F , all i ∈ N , and all

t, t′ ∈ R+ with L̄i ≥ t > t′, f εi (t) ≥ f εi (t′).

RM requires that each entity rewards the rest of players non-decreasingly

when the total amount distributed by such entity rises. As a direct implication

of Tarski’s fixed-point theorem, the next proposition establishes the existence of

non-empty financial rules compatible with the standard requirements of LL and

AP, and supported by division schemes.

Proposition 3. Let f ∈ DS satisfy RM. Then, there exists non-empty financial

rules σ supported by f satisfying LL and AP.

Proof. Let f ∈ DS satisfy RM. Then, Φε,f is non-decreasing for all ε ∈ F .

Now, from Corollary 2 we can infer a procedure to construct non-empty financial

rules satisfying LL and AP. Indeed, by Tarski’s theorem, the set of fixed-points

FIX(Φε,f ) is non-empty and forms a complete lattice. We now may define a non-

empty financial rule σ supported by f as follow: given ε = (N,L, e) ∈ F choose

a non-empty subset V ⊆ FIX(Φε,f ). For all t ∈ V, define the matrix P t ∈M(N)

as P t
ij = f εij(ti), for all i, j ∈ N , and σ(ε) = {P t | t ∈ V}. Notice that, for all

t ∈ V and all i ∈ N , by BB of f we have that P̄ t
i =

∑
k∈N f

ε
ik(ti) = ti, that is, P̄ t

is a fixed-point of Φε,f . Hence, from Corollary 2 we may conclude that σ satisfies

LL and AP.

Proposition 3 generalizes analogous results in Groote Schaarsberg et al. (2018)

that applies for financial rules induced by the same bankruptcy rule for all players,

as well as the extension to financial rules induced by an inventory of bankruptcy

rules, one for each player (see Csóka and Hearings, 2018).

The next remark emphasizes that RM can not be weakened, in view of ex-

pression (5), imposing monotonicity in aggregate terms.
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Remark 1. RM is equivalent to require that whenever the whole set of players

distribute larger amounts, then every single player receives at least as initially.

Formally, f ∈ DS satisfies RM if and only if, for all ε = (N,L, e) ∈ F , all i ∈ N ,

and all t, t′ ∈ RN+ with L̄ ≥ t ≥ t′,
∑

k∈N f
ε
ki(tk) ≥

∑
k∈N f

ε
ki(t

′
k), which, in view

of expression (5), it is sufficient for the monotonicity of Φε,f . The only if part

is straightforward. To show the reverse implication suppose that f is not RM,

that is, there is ε = (N,L, e) ∈ F , i, j ∈ N , and t, t′ ∈ R+ with L̄j ≥ t > t′ but

f εji(t) < fεji(t
′). Now consider t, t′ ∈ RN being tj = t, t′j = t′, and tk = t′k = 0

for all k ∈ N \ {j}. Then, L̄ ≥ t > t′ but∑
k∈N

f εki(tk) = f εji(tj) +
∑

k∈N\{j}

f εki(0) < fεji(t
′
j) +

∑
k∈N\{j}

f εki(0) =
∑
k∈N

f εki(t
′
k),

which proves the if part.

Another direct consequence of Tarski’s fixed-point theorem is that if a finan-

cial rule σ supported by a resource monotonic division scheme f meets LL and

AP then, for any financial system, the equity value of any economic entity does

not depend on the chosen clearing payment matrix in σ. Hence, although in

general a financial rule may propose different clearing payment matrices for the

same financial system, uniqueness in terms of utility (net worth) is guaranteed.

Proposition 4. Let f ∈ DS satisfying RM and σ be a financial rule supported by

f . If σ satisfies LL and AP then, for all ε = (N,L, e) ∈ F and all P, P ′ ∈ σ(ε),

Ei(P, e) = Ei(P
′, e) for all i ∈ N .

Proof. Let σ be a financial rule that meets LL and AP and supported by f ∈ DS
satisfying RM. Let ε = (N,L, e) ∈ F . By Tarski’s theorem applied to Φε,f on

[0, L̄] the set of fixed-points FIX(Φε,f ) is non-empty and forms a complete lattice.

Let t+ ∈ [0, L̄] be the supremum of FIX(Φε,f ). Now, define the financial rule σ′

as σ′(ε) = {P+}, where the clearing payment matrix P+ ∈ M(N) is given by

P+
ij = f εij(t

+
i ) for all i, j ∈ N . By Corollary 2, σ′ satisfies LL and AP and thus,
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for all i ∈ N , we have that

Ei(P
+, e) = ei +

∑
k∈N

P+
ki − P̄

+
i

= ei +
∑
k∈N

P+
ki −min

{
ei +

∑
k∈N

P+
ki , L̄i

}
= max

{
0, ei +

∑
k∈N

P+
ki − L̄i

}
.

(6)

Similarly, for all P ∈ σ(ε) and all i ∈ N ,

Ei(P, e) = max

{
0, ei +

∑
k∈N

Pki − L̄i

}
. (7)

By Corollary 2, P̄ is a fixed-point of Φε,f and thus t+ ≥ P̄ . By RM of f ,∑
k∈N P

+
ki =

∑
k∈N f

ε
ki(t

+
k ) ≥

∑
k∈N f

ε
ki(P̄k) =

∑
k∈N Pki. Hence, for all i ∈ N ,

from (6) and (7) we obtain,

Ei(P
+, e) ≥ Ei(P, e).

If there is i ∈ N such that Ei(P
+, e) > Ei(P, e), then

∑
i∈N ei =

∑
i∈N Ei(P

+, e) >∑
i∈N Ei(P, e) =

∑
i∈N ei which leads to a contradiction. Thus, Ei(P

+, e) =

Ei(P, e) for all i ∈ N , which finishes the proof.

Remark 2. If a non-empty financial rule σ, supported or not by a division

scheme, satisfies CB, LL and AP, a sufficient condition to ensure the same

value of equity for all players and all clearing payment matrices in σ is that,

for all ε = (N,L, e) ∈ F and all P, P ′ ∈ σ(ε), either
∑

j∈N Pji ≥
∑

j∈N P
′
ji

or
∑

j∈N Pji ≤
∑

j∈N P
′
ji for all i ∈ N . Another sufficient condition is that

the set of clearing payment matrices in σ(ε) forms either a join-semilattice or a

meet-semilattice, i.e., P ∨ P ′ ∈ σ(ε) or P ∧ P ′ ∈ σ(ε).

Proposition 4 extends similar results in Eisenberg and Noe (2001), Groote

Schaarsberg et. al (2018), Csóka and Herings (2018) (for the perfectly divisible

setup), and Koster (2019). From the proof of Proposition 4 it follows immediately

that, in terms of the equity values, financial rules supported by the same division

scheme are equivalent.

Corollary 3. Let f ∈ DF satisfy RM and σ, σ′ be two different financial rules

supported by f meeting LL and AP. Then, for all ε = (N,L, e), all P ∈ σ(ε),

and all P ′ ∈ σ′(ε), it holds that Ei(P, e) = Ei(P
′, e) for all i ∈ N .
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5. On non-manipulability of financial rules

The aim of this section is to extend the study of strategic incentives in the

setting of bankruptcy problems to the financial systems setup. In particular, it

is of our interest to investigate the existence of financial rules that are immune

to strategic manipulations of the economic entities in the system via merging or

splittings. An intuitive way to extend non-manipulability to financial systems

is to enforce the financial rule to avoid giving incentives to firms either to split

or to merge in order to obtain larger profits, that is, larger equity values. In

contrast, Csóka and Herings (2021) impose some invariance on the payment ma-

trices. Another distinct aspect is that, as in de Frutos (1999), we study merging

and splitting incentives separately. Formally, a financial rule σ satisfies

• non-manipulability (NM) if for all N,N ′ ∈ N and all (N,L, e), (N ′, L′, e′) ∈
F , if N ′ ⊂ N and there is m ∈ N ′ such that

e′m = em +
∑

k∈N\N ′ ek

e′i = ei for all i ∈ N ′ \ {m}

L′mj = Lmj +
∑

k∈N\N ′ Lkj for all j ∈ N ′ \ {m}

L′jm = Ljm +
∑

k∈N\N ′ Ljk for all j ∈ N ′ \ {m}

L′ij = Lij for all i, j ∈ N ′ \ {m}

(8)

then, for all P ∈ σ(N,L, e) and all P ′ ∈ σ(N ′, L′, e′), we have

Em(P ′, e′) = Em(P, e) +
∑

k∈N\N ′
Ek(P, e); (9)

NM can be divided into non-manipulability via merging (NMM) requiring

Em(P ′, e′) ≤ Em(P, e) +
∑

k∈N\N ′
Ek(P, e), (10)

and non-manipulability via splitting (NMS) imposing the reverse inequality

Em(P ′, e′) ≥ Em(P, e) +
∑

k∈N\N ′
Ek(P, e). (11)
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NM requires NMM and NMS together. NMM imposes that no group of

entities has incentives to merge liabilities to others, liabilities against others and

initial endowments, by means of comparing equity values. On the other hand,

NMS says that no entity has incentives to split in a new group of entities dividing

among them the initial liabilities to others, liabilities against others and the initial

endowments, in terms of equity values.

It is worth to mention that if a financial rule satisfies non-manipulability

as defined in Csóka and Herings (2021) then it satisfies NM, but the reverse

implication is not true. The underlying reason is that the conditions imposed in

their definition of non-manipulability concern some invariance on payments, not

only for the group of firms merging or splitting, but also for those that are not

involved (in the spirit of strong non-manipulability). This conditions imply that

the equity values of the agents do not change.

Not surprisingly, in our first result we prove that NMS is incompatible with

LL, AP, and CB. As expected, the value of equity of a firm may rise when such

firm splits into a “good” firm keeping the full endowment and the liabilities of

others to it, and a “bad” firm that inherits uniquely the liabilities of the original

firm to others.

Theorem 3. There is no a financial rule satisfying CB, LL, AP, and NMS.

Proof. Let σ be a financial rule satisfying CB, LL, AP, and NMS. Let ε′ =

(N ′, L′, e′) ∈ F with set of players N ′ = {1, 2}, vector of endowments e′ = (1, 0),

and matrix of liabilities

L′ =

0 1

0 0

 .

By CB, LL, and AP we have that σ(ε) = {L′}
Now, assume that firm 1 splits into firms 1 and 3, keeping the full initial

endowment in firm 1, and the initial liability of firm 1 to firm 2, is conveyed to

the new firm 3. So, we take the new financial system ε = (N,L, e) ∈ F with
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N = {1, 2, 3}, e = (1, 0, 0) and

L =


0 0 0

0 0 0

0 1 0

 .

Observe that, by CB, players 1 and 2 pay nothing because they have no liabilities

to other firms. Moreover, since e3 = 0, LL implies that the payoffs of player 3

are also zero. Hence,

σ(ε) =

P =


0 0 0

0 0 0

0 0 0


 .

Finally, E1(L′, e′) = e′1+L′21−L′12 = 0 while E1(P, e) = e1+P21+P31−P12−P13 =

1 and E3(P, e) = e3 +P13 +P23−P31−P32 = 0, in contradiction with NMS.

It is worth to mention that for the case of splitting firms we allow the pos-

sibility to create fictitious liabilities among them. Nevertheless, Theorem 3 still

hold if we no longer admit this type of malpractices, forcing all liabilities among

those firms splitting to be zero.

The rest of this section is devoted to show that, contrary to Theorem 3, there

is a large family of financial rules for which CB, LL, AP and NMM are com-

patible. A natural approach is to investigate if an inventory of bankruptcy rules

satisfying non-manipulability via merging for bankruptcy problems produces a

financial rule that is non-manipulable via merging in the setting of financial sys-

tems. Unfortunately, as the next proposition states, this is not the case.

Proposition 5. A financial rule σ satisfying LL and AP, and induced by a

collection of bankruptcy rules (βi)i∈N satisfying NMM, does not need to satisfy

NMM.

The proof of Proposition 5 can be found in the Appendix.

To overcome this problem, we extend SNMM from bankruptcy rules to com-

plete division schemes. A complete division scheme f ∈ DS on F satisfies
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• strong non-manipulability via Merging (SNMM) if for all N,N ′ ∈ N and

all ε = (N,L, e), ε′ = (N ′, L′, e′) ∈ F , if N ′ ⊂ N and there is m ∈ N ′ such

that all conditions in (8) hold then, for all j ∈ N ′ \ {m}, it holds that

f ε
′
jk(tj) ≥ f εjk(tj), (12)

for all k ∈ N ′ \ {m} and all tj ∈ R+ such that 0 ≤ tj ≤ L̄′j = L̄j .

SNMM imposes that whenever a group of firms merge, not only receive from

each other firm in N ′ \ {m} at most as when they are separated, but also those

firms that do not merge are rewarded at least as initially by any other firm in

N ′ \ {m}.

Remark 3. Let us point out that demanding that players not merging are not

payed less by each one of the non-merging entities is equivalent to require that

they receive in total at least as initially. That is, f ∈ DS satisfies SNMM if

and only if
∑

j∈N ′\{m} f
ε′
jk(tj) ≥

∑
j∈N ′\{m} f

ε
jk(tj) for all k ∈ N ′ \ {m} and

all t ∈ RN+ such that t ≤ L̄ = L̄′, where ε = (N,L, e) and ε′ = (N ′, L′, e′)

are defined as in (8). The if part is straightforward. To see the reverse im-

plication, suppose, on the contrary, there are ε = (N,L, e) and ε′ = (N ′L′, e′)

as defined in (8), j∗, k∗ ∈ N ′ \ {m}, and L̄j∗ = L̄′j∗ ≥ tj∗ > 0 such that

f ε
′
j∗k∗(tj∗) < f εj∗k∗(tj∗). Now, define t ∈ RN+ as ti = tj∗ if i = j∗ and ti = 0

otherwise. Hence, since
∑

j∈N ′\{m,j∗} f
ε′
jk∗(0) =

∑
j∈N ′\{m,j∗} f

ε
jk∗(0) = 0, we ob-

tain
∑

j∈N ′\{m} f
ε′
jk∗(tj) = f ε

′
j∗k∗(tj∗) < f εj∗k∗(tj∗) =

∑
j∈N ′\{m} f

ε
jk∗(tj), which

conclude the arguments.

In fact, if f describes an inventory of bankruptcy rules (see Definition 4),

SNMM corresponds to SNMM. Formally,

Proposition 6. Let f ∈ DS represent a collection of bankruptcy rules (βi)i∈N.

Then, f satisfies SNMM if and only if βi satisfies SNMM for all i ∈ N.

Proof. Let f ∈ DS represent a collection of bankruptcy rules (βi)i∈N satisfy-

ing SNMM for all i ∈ N. Let ε = (N,L, e), ε′ = (N ′, L′e′) ∈ F , with m ∈
N ′ ⊂ N such that all conditions in (8) hold. Let j, k ∈ N ′ \ {m} and tj ∈ R+

with tj ≤ L̄j = L̄′j , then f ε
′
jk(tj) = βjk(N

′ \ {j}, tj , (L′ji)i∈N ′\{j}) ≥ βjk(N \
{j}, tj , (Lji)i∈N\{j}) = f εjk(tj), where the inequality follows from SNMM of βj .
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To show the only if part, let f ∈ DS satisfy SNMM and represent a collection

of bankruptcy rules (βi)i∈N. Let j ∈ N, and let δ = (N,E, c), δ′ = (N ′, E, c′) ∈ B,

with N ′ ⊂ N , j /∈ N and m ∈ N ′ such that c′m = cm +
∑

i∈N\N ′ ci and c′i = ci

for all i ∈ N ′ \ {m}. Define ε = (N ∪ {j}, L, e), ε′ = (N ′ ∪ {j}, L′, e′) ∈ F by

ek =

 E if k = j

0 if k ∈ N \ {j}
and e′k =

 E if k = j

0 if k ∈ N ′ \ {j}
,

and the matrices of liabilities as follows:

Lki =

 ci if k = j and i 6= j

0 otherwise
and L′ki =

 c′i if k = j and i 6= j

0 otherwise
.

Now, for k ∈ N ′ \ {m}, βjk(δ
′) = f ε

′
jk(E) ≥ f εjk(E) = βjk(δ) where the inequality

follows from SNMM of f .

Next, we remark that SNMM complete division schemes substantially improve

the class of SNMM bankruptcy rules. For instance, it allows to establish a priority

list of creditors on the basis of the debts of such creditors to an institution, rather

than on the claims of the creditors on the institution.5

Remark 4. There are complete division schemes satisfying SNMM that can not

be obtained from an inventory of bankruptcy rules. To make it clear, for a given

ε = (N,L, e) and i ∈ N , let ≺εi be the strict total order on N \ {i} defined as

follows: for all j, k ∈ N \ {i},

k ≺εi j if either Lki < Lji or Lki = Lji and k < j. (13)

The debts priority complete division scheme, fd ∈ DS, is defined as

(fd)εij(t) =


max

0,min

t− ∑
{k∈N\{i}|k≺εi j}

Lik, Lij


 if j ∈ N \ {i}

0 if j = i

,

for all 0 ≤ t ≤ L̄i.

5See Moulin (2000) for a study of priority rules in bankruptcy problems.
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According to fd, for a given financial system and to clear liabilities, any entity

prioritizes those other entities having lower debts to it. Clearly, it satisfies RM.

To check SNMM, consider ε = (N,L, e), ε′ = (N ′, L′, e′) ∈ F , with N ′ ⊂ N

and there is m ∈ N ′ such that all conditions in (8) hold. Choose an arbitrary

firm i ∈ N ′ \ {m}, then when entities in {m} ∪N \N ′ merge into m, any other

entity j ∈ N ′ \ {m} achieves a higher priority according to ≺ε′i than according

to ≺εi and, moreover, it does not have any new predecessor. Additionally, all

predecessor of j with respect to ≺ε′i present the same liabilities as initially. So,

for all j ∈ N ′ \ {m}, we have (fd)ε
′
ij(ti) ≥ (fd)εij(ti) for all 0 ≤ ti ≤ L̄i = L̄′i and

thus fd satisfies SNMM.

To finish, we make clear that fd does not represent an inventory of bankruptcy

rules. Let ε = (N,L, e), ε′ = (N,L′, e′) ∈ F , with agent set N = {1, 2, 3}, vectors

of initial endowments e = e′ = (1, 0, 0), and the following liability matrices:

L =


0 1 1

1/2 0 0

0 0 0

 and L′ =


0 1 1

0 0 0

1/2 0 0

 .

It is not difficult to check that 3 ≺ε1 2 and, on the contrary, 2 ≺ε′1 3. Under LL

and AP, for any financial rule σ supported by fd we have that

σ(ε) =

P =


0 0 1

0 0 0

0 0 0


 and σ(ε′) =

P
′ =


0 1 0

0 0 0

0 0 0


 .

Hence, (fd)ε1(1) = (0, 0, 1) while (fd)ε
′

1 (1) = (0, 1, 0). However, debtor 1 faces

the same bankruptcy situation in both ε and ε′ described by an estate E = 1 and

vector of claims c = (1, 1), which shows that fd does not admit a representation

as bankruptcy rules.

In the main result of the paper we show that complete division schemes satis-

fying RM and SNMM, which in view of Remark 4 is much richer than inventories

of bankruptcy rules meeting the two analogous properties, lead to LL and AP

financial rules satisfying NMM.
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Theorem 4. Let f ∈ DS satisfy RM and σ be a financial rule supported by f

satisfying LL and AP. If f satisfies SNMM, then σ satisfies NMM.

Proof. Let f ∈ DS satisfying RM and SNMM. Since f satisfies RM, for all

ε ∈ F , by Tarski’s fixed-point theorem FIX
(
Φε,f

)
is non-empty and forms a

complete lattice. Given ε = (N,L, e), let t− ∈ [0, L̄] be the infimum of FIX
(
Φε,f

)
.

Now, define the financial rule σ′ as σ′(ε) = {P−}, where the payment matrix

P− ∈M(N) is given by P−ij = f εij(t
−
i ) for all i, j ∈ N . Hence, σ′ is supported by

f and, by Corollary 2, σ′ satisfies LL and AP.

Assume, by contradiction, that there is a financial rule σ supported by f

that meets LL and AP but not NMM. Then, there exist ε = (N,L, e) and

ε′ = (N ′, L′, e′) with N ′ ⊂ N and m ∈ N ′ such that all conditions in (8) hold,

and there exists P ∈ σ(N,L, e) and P ′ ∈ σ(N ′, L′, e′), such that

Em(P ′, e′) > Em(P, e) +
∑

k∈N\N ′
Ek(P, e). (14)

By LL and (14), Em(P ′, e′) > 0. Thus, by AP, P̄ ′m = L̄′m. Since σ is supported

by f , it satisfies CB and hence

P ′mk = L′mk for all k ∈ N ′ \ {m}. (15)

Claim 1 : Let q ∈ RN be defined as follows:

qk =

 P̄ ′k if k ∈ N ′ \ {m}

L̄k if k ∈ {m} ∪N \N ′
. (16)

Then, q ∈
{
t ∈ [0, L̄] | Φε,f (t) ≤ t

}
. Moreover, t− ≤ q.

To prove it, let us consider two cases:

• k ∈ {m} ∪N \N ′. In this situation, qk = L̄k and

Φε,f
k (q) = min

ek +
∑
j∈N

f εjk(qj), L̄k

 ≤ L̄k = qk.
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• k ∈ N ′ \ {m}. In this situation, qk = P̄ ′k and

Φε,f
k (q) = min

ek +
∑

j∈N ′\{m}

f εjk(qj) +
∑

j∈{m}∪N\N ′
f εjk(qj), L̄k


=

(16)
min

ek +
∑

j∈N ′\{m}

f εjk(P̄
′
j) +

∑
j∈{m}∪N\N ′

f εjk(L̄j), L̄k


=

CB+BB
min

ek +
∑

j∈N ′\{m}

f εjk(P̄
′
j) +

∑
j∈{m}∪N\N ′

Ljk, L̄k


= min

ek +
∑

j∈N ′\{m}

f εjk(P̄
′
j) + L′mk, L̄k


=

(15)
min

ek +
∑

j∈N ′\{m}

f εjk(P̄
′
j) + P ′mk, L̄k


=

P ′mk=fε
′
mk(P̄ ′m)

min

ek +
∑

j∈N ′\{m}

f εjk(P̄
′
j) + f ε

′
mk(P̄

′
m), L̄k


≤

SNMM
min

ek +
∑

j∈N ′\{m}

f ε
′
jk(P̄

′
j) + f ε

′
mk(P̄

′
m), L̄k


= min

ek +
∑
j∈N ′

f ε
′
jk(P̄

′
j), L̄k


= Φε′,f (P̄ ′) =

P̄ ′∈FIX(Φε′,f )
P̄ ′k =

(16)
qk,

where the last but one equality follows from Corollary (2). By Tarski’s fixed-point

theorem, t− is also the infimum of
{
t ∈ [0, L̄] | Φε,f (t) ≤ t

}
and thus t− ≤ q.

This concludes the proof of Claim 1.

Claim 2 : Let k ∈ N ′ \ {m}, then Ek(P, e) = Ek(P
−, e) ≤ Ek(P ′, e′).

Since σ and σ′ satisfy LL and AP and are supported by f meeting RM, from

Corollary 3 we obtain Ek(P, e) = Ek(P
−, e).

From Claim 1, CB, and (16), for all k ∈ N ′ \ {m},

t−k ≤ qk = P̄ ′k ≤ L̄′k = L̄k.

Observe that

Ek(P
−, e) = ek +

∑
j∈N

f εjk(t
−
j )− t−k .

28



Let us consider the following two cases:

• t−k < L̄k. Then,

Ek(P
−, e) =

AP
0 ≤

LL
Ek(P

′, e′).

• t−k = qk = P̄ ′k = L̄′k = L̄k. In this case,

Ek(P
−, e) =

t−∈FIX(Φε,f )
ek +

∑
j∈N

f εjk(t
−
j )−min

ek +
∑
j∈N

f εjk(t
−
j ), L̄k


= max

ek +
∑
j∈N

f εjk(t
−
j )− L̄k, 0


= max

e′k +
∑

j∈N ′\{m}

f εjk(t
−
j ) +

∑
j∈{m}∪N\N ′

f εjk(t
−
j )− L̄k, 0


≤
CB

max

e′k +
∑

j∈N ′\{m}

f εjk(t
−
j ) +

∑
j∈{m}∪N\N ′

Ljk − L̄k, 0


≤
(∗)

max

e′k +
∑

j∈N ′\{m}

f εjk(P̄
′
j) + L′mk − L̄′k, 0


=

(15)
max

e′k +
∑

j∈N ′\{m}

f εjk(P̄
′
j) + f ε

′
mk(P̄

′
m)− L̄′k, 0


≤

SNMM
max

e′k +
∑

j∈N ′\{m}

f ε
′
jk(P̄

′
j) + f ε

′
mk(P̄

′
m)− L̄′k, 0


= Ek(P

′, e′),

where the inequality (∗) follows from (16), Claim 1, which implies P̄ ′j = qj ≥ t−j

for all j ∈ N ′ \ {m}, and RM of f . This concludes the proof of Claim 2.

Hence, ∑
j∈N ′\{m}

Ej(P, e) =
∑

j∈N ′\{m}

Ej(P
−, e) ≤

∑
j∈N ′\{m}

Ej(P
′, e′). (17)

Since ∑
j∈N

Ej(P, e) =
∑
j∈N

ej =
∑
j∈N ′

e′j =
∑
j∈N ′

Ej(P
′, e′),
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from (17) it comes that

Em(P, e) +
∑

j∈N\N ′
Ej(P, e) ≥ Em(P ′, e′),

in contradiction with (14).

To conclude, we highlight the important class of bankruptcy rules formed

by parametric rules whose representations are subadditive in claims containing,

among others, the CEA and the PR solutions. These rules satisfies SNMM (see

Corollary 1 and Proposition 2). Hence, as a consequence of Theorem 4, and

taking into account Proposition 6, we obtain the following corollary.

Corollary 4. Let σ be a financial rule induced by a collection of bankruptcy rules

(βi)i∈N where for all i ∈ N, βi is a parametric rule such that its representations

are sudadditive in claims. Then, σ satisfies NMM.

6. Concluding remarks

In this paper, we investigate manipulability in financial systems. The property

of non-manipulability requires that the merger of a group of agents or the split

of an agent into multiple agents does not affect the utility (equity value) of the

agents. In line with de Frutos (1999), we consider separately manipulability via

merging and manipulability via splitting. To the best of our knowledge, this is

the first paper that address these two weak forms of manipulability in the setup

of financial systems. We also propose a novel approach to generate financial rules

based on division schemes, a notion that allows to take into consideration all the

links among agents when clearing the system.

We show that non-manipulability via splitting is incompatible with the basic

requirements of claim boundedness, limited liability, and absolute priority while,

on the contrary, a large class of financial rules reconcile these conditions with non-

manipulability via merging. Indeed, we prove that strong non-manipulability via

merging of the underlying division scheme is the keystone to generate financial

rules immune to manipulations via merging. We highlight that bankruptcy para-

metric rules (Young 1987) whose representations are subadditive in claims (Ju,
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2003), including the well-established proportional rule, produce financial rules

unaffected by manipulability via merging when the financial network collapses.

Appendix

Proof. (Theorem 2) Since SNMM and SNMS are dual properties, it is enough

to prove that NMM does not imply SNMM. To do it, we first introduce the

following bankruptcy rule. Given δ = (N,E, c), let ≺δ be the strict total order

on N defined as follows: for all i, j ∈ N ,

i ≺δ j if either ci < cj or ci = cj and i < j. (18)

The claims priority bankruptcy rule, P c, is defined as follows: let δ = (N,E, c) ∈
B and ≺δ be the corresponding order as defined in (18),

P ci (N,E, c) = max

0,min

E − ∑
{j∈N | j≺δi}

cj , ci


 (19)

for all i ∈ N .

Let us consider the following subclass of bankruptcy problems:

C∗ =

 δ = (N,E, c) ∈ B such that {1, 2} ⊂ N,E = 1, c1 = c2 = ckδ = 1

for some kδ ∈ N \ {1, 2}, and ci = 0 for all i ∈ N \ {1, 2, kδ}

 .

Now define the bankruptcy rule β∗ as follows: let δ = (N,E, c) ∈ B and i ∈ N

β∗i (δ) =


P ci (δ) if δ 6∈ C∗

1 if δ ∈ C∗ and i = kδ

0 if δ ∈ C∗ and i 6= kδ.

(20)

Claim 1: β∗ satisfies NMM.

To prove that β∗ satifies NMM, let δ = (N,E, c) and δ′ = (N ′, E, c′) be

two bankruptcy problems such that N ′ ⊂ N and there is m ∈ N ′ with c′m =

cm +
∑

j∈N\N ′ cj and c′j = cj , for all j ∈ N ′ \ {m}. We consider the following

cases:
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Case 1: δ, δ′ 6∈ C∗.
Then, β∗(δ) = P c(δ) and β∗(δ′) = P c(δ′). Observe that when players in

{m} ∪ N \ N ′ merge into m, then for a given j ∈ N ′ \ {m} the position

according to ≺δ′ is less than or equal to the position according to ≺δ,
and moreover, she does not have any new predecessor. Additionally, all

predecessors of j with respect to ≺δ′ have the same claim. So, for all

j ∈ N ′ \ {m}, we have β∗j (δ′) ≥ β∗j (δ) and thus, by budget balance of β∗,

NMM holds.

Case 2: δ, δ′ ∈ C∗.
If m 6= kδ

′
, then β∗m(δ′) = 0 and hence, by non-negativity of β∗, 0 =

β∗m(δ′) ≤ β∗m(δ) +
∑

j∈N\N ′ β
∗
j (δ).

If m = kδ
′
, then β∗m(δ′) = 1. To see that β∗m(δ) +

∑
j∈N\N ′ β

∗
j (δ) = 1 it is

enough to check that kδ ∈ {m}∪N \N ′. Indeed, if not, kδ ∈ N ′ \{m} with

kδ 6= kδ
′

and hence ckδ′ = ckδ = 1, in contradiction with δ′ ∈ C∗. Thus,

NMM holds.

Case 3: δ 6∈ C∗ and δ′ ∈ C∗.
If m 6= kδ

′
, as in Case 2 by non-negativity of β∗, 0 = β∗m(δ′) ≤ β∗m(δ) +∑

j∈N\N ′ β
∗
j (δ).

If m = kδ
′
, then β∗m(δ′) = 1. Since δ′ ∈ C∗,

1 = c′
kδ′

= ckδ′ +
∑

j∈N\N ′
cj , (21)

and hence |A| ≥ 1, where A = {j ∈ {kδ′} ∪ N \ N ′ such that cj > 0}.
Suppose that |A| = 1. In this situation, 1, 2 ∈ N ′ \ {m}, c1 = c′1 = 1,

c2 = c′2 = 1 and there is a unique k ∈ A with ck = 1. Moreover, from the

definition of δ and δ′, ci = 0 for all i ∈ N \{1, 2, k}. But then, δ ∈ C∗ getting

a contradiction. Consequently, |A| ≥ 2 and, in view of (21), 0 < cj < 1

for all j ∈ A. Now, c1 = c2 = 1 and ci = 0 for all i ∈ N \ A ∪ {1, 2}, and

the order ≺δ on N place all players in A immediately after zero-claimants,

and by (21) we obtain β∗
kδ′

(δ) +
∑

j∈N\N ′ β
∗
j (δ) = 1 = β∗m(δ′), which proves

NMM.

Case 4: δ ∈ C∗ and δ′ 6∈ C∗.
If kδ ∈ {m} ∪ N \ N ′, since δ ∈ C∗, β∗

kδ
(δ) = 1 and, for all i ∈ N \ {kδ},
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β∗i (δ) = 0. Thus, 1 = β∗
kδ

(δ) = β∗m(δ) +
∑

j∈N\N ′ β
∗
j (δ) ≥ β∗m(δ′), where the

inequality comes from BB and non-negativity of β∗.

If kδ 6∈ {m}∪N\N ′. Recall that, since δ ∈ C∗, cj = 0 for all j ∈ N\{1, 2, kδ}.
We distinguish the following sub-cases:

(a) 1, 2 6∈ {m} ∪N \N ′.
Hence, m 6∈ {1, 2, kδ}. Consequently, c′m = cm +

∑
j∈N\N ′ cj = 0.

By CB and non-negativity of β∗, we conclude that 0 = β∗m(δ′) ≤
β∗m(δ) +

∑
j∈N\N ′ β

∗
j (δ).

(b) 1, 2 ∈ {m} ∪N \N ′.
Here, c′m = c1 + c2 = 2, c′

kδ
= ckδ = 1, and c′j = 0 for all j ∈

N ′ \ {m, kδ}. Hence, β∗m(δ′) = P cm(δ′) = 0, and by non-negativity of

β∗, we conclude that β∗m(δ′) ≤ β∗m(δ) +
∑

j∈N\N ′ β
∗
j (δ).

(c) 1 ∈ {m} ∪N \N ′ but 2 6∈ {m} ∪N \N ′.
In this case, c′m = c1 = 1, c′2 = c2 = 1, c′

kδ
= ckδ = 1, and c′j = 0

for all j ∈ N ′ \ {m, 2, kδ}. Since δ′ 6∈ C∗, m 6= 1 and thus m ≥ 3.

Hence, β∗m(δ′) = P cm(δ′) = 0 and, by non-negativity of β∗, we obtain

β∗m(δ′) ≤ β∗m(δ) +
∑

j∈N\N ′ β
∗
j (δ).

(d) 1 6∈ {m} ∪N \N ′ but 2 ∈ {m} ∪N \N ′.
In this situation, c′m = c2 = 1, c′1 = c1 = 1, c′

kδ
= ckδ = 1, and c′j = 0

for all j ∈ N ′ \ {1,m, kδ}. Since δ′ 6∈ C∗, m 6= 2 and thus m ≥ 3.

Hence, β∗m(δ′) = P cm(δ′) = 0 and, by non-negativity of β∗, we obtain

β∗m(δ′) ≤ β∗m(δ) +
∑

j∈N\N ′ β
∗
j (δ).

Claim 2: β∗ does not satisfy SNMM.

To show that β∗ does not meet SNMM, consider the bankruptcy problem

δ = (N,E, c) with set of players N = {1, 2, 3, 4}, estate E = 1, and vector of

claims c = (1, 0, 1, 1). Now let δ′ = (N ′, E, c′) with N ′ = {1, 2, 3}, where agents

2 and 4 have merged into agent 2, and the vector of claims is c′ = (1, 1, 1). Since

δ 6∈ C∗, β∗(δ) = (1, 0, 0, 0). On the other hand, δ′ ∈ C∗ and thus β∗(δ′) = (0, 0, 1).

Hence, β∗1(δ′) = 0 < β∗1(δ) = 1, and β∗ does not satisfy SNMM.

Proof. (Proposition 5) We use the bankruptcy rule β∗ introduced in (20), that

satisfies NMM, to define a financial rule that does not meet NMM.
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Let ε = (N,L, e), ε′ = (N ′, L′, e′) ∈ F with N = {1, 2, 3, 4, 5} and N ′ =

{1, 2, 3, 4}, vectors of endowments e = (0.1, 0.1, 0.1, 0.7, 0) and e′ = (0.1, 0.1, 0.1, 0.7),

and matrices of liabilities:

L =



0 0.1 0.1 0.1 0

0.1 0 0.1 0.1 0

0 0 0 0 0

1 1 1 0 0

0.1 0.1 0 0.1 0


and L′ =


0 0.1 0.1 0.1

0.1 0 0.1 0.1

0.1 0.1 0 0.1

1 1 1 0

 .

Now define the financial rule σ as follows:6

σ(ε) =


∅ if ε 6∈ {ε, ε′}

P if ε = ε

P ′ if ε = ε′

where

P =



0 0.1 0.1 0.1 0

0.1 0 0.1 0 0

0 0 0 0 0

0.8 0 0 0 0

0 0 0 0 0


and P ′ =


0 0.1 0.1 0.1

0.1 0 0.1 0.1

0.1 0.1 0 0.1

0 0 1 0

 .

Note that σ is induced by (β∗)i for all i ∈ N as defined in (20). In fact, to

obtain the rows in P only claims priority bankruptcy rules apply (see expression

(19)). Moreover, to obtain the rows in P ′ claims priority bankruptcy rules apply

except for row 4, where (P ′)4 =
(
(β∗)4(N \ {4}, 1, (1, 1, 1)), 0

)
= ((0, 0, 1), 0),

since (N \ {4}, 1, (1, 1, 1)) ∈ C∗.
It is easy to check that σ satisfies LL and AP. To see that it does not satisfy

NMM observe first that ε′ can be obtained from ε when entities 3 and 5 merge

into entity 3. Now, E3(P ′, e′) = 0.1+1.2−0.3 = 1 while E3(P, e) = 0.1+0.2−0 =

0.3 and E5(P, e) = 0, in contradiction with NMM.

6It can be extended to a non-empty financial rule.
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