Repositori institucional URV
Español Català English
TÍTOL:
Modelling count data using the logratio-normal-multinomial distribution - RP:4899

Autor segons l'article:Palarea-Albaladejo, Javier
Mateu-Figueras, Glòria
Martín-Fernández, Josep Antoni
Comas-Cufí, Marc
Any de publicació de la revista:2020
Tipus de publicació:##rt.metadata.pkp.peerReviewed##
info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
Resum:The logratio-normal-multinomial distribution is a count data model resulting from compounding a multinomial distribution for the counts with a multivariate logratio-normal distribution for the multinomial event probabilities. However, the logratio-normal-multinomial probability mass function does not admit a closed form expression and, consequently, numerical approximation is required for parameter estimation. In this work, different estimation approaches are introduced and evaluated. We concluded that estimation based on a quasi-Monte Carlo Expectation-Maximisation algorithm provides the best overall results. Building on this, the performances of the Dirichlet-multinomial and logratio-normal-multinomial models are compared through a number of examples using simulated and real count data.
Paraules clau:count data
Cerca el teu registre a:

Fitxers disponibles
FitxerDescripcióFormat
DocumentPrincipalDocumentPrincipalapplication/pdf

Informació

© 2011 Universitat Rovira i Virgili