Repositori institucional URV
Español Català English
TITLE:
Sensor selection and chemo-sensory optimization: Toward an adaptable chemo-sensory system - imarina:5608942

URV's Author/s:Llobet Valero, Eduard
Author, as appears in the article.:Vergara A; Llobet E
Author's mail:eduard.llobet@urv.cat
Author identifier:0000-0001-6164-4342
Journal publication year:2011
Publication Type:Journal Publications
APA:Vergara A; Llobet E (2011). Sensor selection and chemo-sensory optimization: Toward an adaptable chemo-sensory system. Frontiers In Neuroengineering, (DECEMBER), -. DOI: 10.3389/fneng.2011.00019
Papper original source:Frontiers In Neuroengineering. (DECEMBER):
Abstract:Over the past two decades, despite the tremendous research effort performed on chemical sensors and machine olfaction to develop micro-sensory systems that will accomplish the growing existent needs in personal health (implantable sensors), environment monitoring (widely distributed sensor networks), and security/threat detection (chemo/bio warfare agents), simple, low-cost molecular sensing platforms capable of long-term autonomous operation remain beyond the current state-of-the-art of chemical sensing. A fundamental issue within this context is that most of the chemical sensors depend on interactions between the targeted species and the surfaces functionalized with receptors that bind the target species selectively, and that these binding events are coupled with transduction processes that begin to change when they are exposed to the messy world of real samples. With the advent of fundamental breakthroughs at the intersection of materials science, micro/nano-technology, and signal processing, hybrid chemo-sensory systems have incorporated tunable, optimizable operating parameters, through which changes in the response characteristics can be modeled and compensated as the environmental conditions or application needs change. The objective of this article, in this context, is to bring together the key advances at the device, data processing, and system levels that enable chemo-sensory systems to adapt in response to their environments. Accordingly, in this review we will feature the research effort made by selected experts on chemical sensing and information theory, whose work has been devoted to develop strategies that provide tunability and adaptability to single sensor devices or sensory array systems. Particularly, we consider sensor-array selection, modulation of internal sensing parameters, and active sensing. The article ends with some conclusions drawn from the results presented and a visionary look toward the future in terms of how the field may evolve. © 2011 Vergara and Llobet.
Article's DOI:10.3389/fneng.2011.00019
Link to the original source:https://www.frontiersin.org/journals/neuroengineering/articles/10.3389/fneng.2011.00019/full
Papper version:info:eu-repo/semantics/publishedVersion
licence for use:https://creativecommons.org/licenses/by/3.0/es/
Department:Enginyeria Electrònica, Elèctrica i Automàtica
Licence document URL:https://repositori.urv.cat/ca/proteccio-de-dades/
Thematic Areas:Neuroscience (miscellaneous)
Biophysics
Biomedical engineering
Keywords:Tunable sensors
Sensor optimization
Sensor array optimization
Metal-oxide gas sensors
Electronic-nose
Active sensing
Entity:Universitat Rovira i Virgili
Record's date:2024-10-12
Search your record at:

Available files
FileDescriptionFormat
DocumentPrincipalDocumentPrincipalapplication/pdf

Information

© 2011 Universitat Rovira i Virgili