Repositori institucional URV
Español Català English
TÍTOL:
Asymptotic expansion of the Dulac map and time for unfoldings of hyperbolic saddles: Coefficient properties - imarina:9372460

Autor segons l'article:Marín, D.; Villadelprat, J
Adreça de correu electrònic de l'autor:jordi.villadelprat@urv.cat
Any de publicació de la revista:2024
Tipus de publicació:info:eu-repo/semantics/article
Resum:We consider a family of planar vector fields having a hyperbolic saddle and we study the Dulac map and the Dulac time from a transverse section at the stable separatrix to a transverse section at the unstable separatrix, both at arbitrary distance from the saddle. Since the hyperbolicity ratio λ of the saddle plays an important role, we treat it as an independent parameter, so that , where W is an open subset of . For each and , the functions and have an asymptotic expansion at and with the remainder being uniformly L-flat with respect to the parameters. The principal part of both asymptotic expansions is given in a monomial scale containing a deformation of the logarithm, the so-called Ecalle-Roussarie compensator. In this paper we are interested in the coefficients of these monomials, which are functions depending on that can be shown to be in their respective domains and “universally” defined, meaning that their existence is stablished before fixing the flatness L and the unfolded parameter . Each coefficient has its own domain and it is of the form , where D a discrete set of rational numbers at which a resonance of the hyperbolicity ratio λ occurs. In our main result, Theorem A, we provide explicit expressions for some of these coefficients and to this end a fundamental tool is the employment of a sort of incomplete Mellin transform. With regard to these coefficients we also prove that they have poles of order at most two at and we give the corresponding residue, that plays an important role when compensators appear in the principal part. Furthermore we prove a result, Corollary B, showing that in the analytic setting each coefficient given in Theorem A is meromorphic on and has only poles, of order at most two, along .
DOI de l'article:10.1016/j.jde.2024.05.037
Enllaç font original:https://www.sciencedirect.com/science/article/pii/S0022039624003267?via%3Dihub
Versió de l'article dipositat:info:eu-repo/semantics/publishedVersion
Accès a la llicència d'ús:https://creativecommons.org/licenses/by/3.0/es/
Departament:Enginyeria Informàtica i Matemàtiques
Programa de finançament:Herramientas para el análisis de diagramas de bifurcación en sistemas dinámicos
Acció del programa de finançament:Proyectos I+D Generación de Conocimiento
Acrònim:ATBiD
Codi de projecte:PID2020-118281GB-C33
Cerca el teu registre a:

Fitxers disponibles
FitxerDescripcióFormat
DocumentPrincipalDocumentPrincipalapplication/pdf

Informació

© 2011 Universitat Rovira i Virgili