Repositori institucional URV
Español Català English
TITLE:
A Curated Dataset for Crack Image Analysis: Experimental Verification and Future Perspectives - imarina:9380775

URV's Author/s:Abdellatif Fatahallah Ibrahim Mahmoud, Hatem / Abdelnasser Mohamed Mahmoud, Mohamed / Puig Valls, Domènec Savi
Author, as appears in the article.:Okran, Ammar M; Abdel-Nasser, Mohamed; Rashwan, Hatem A; Puig, Domenec
Author's mail:domenec.puig@urv.cat
hatem.abdellatif@urv.cat
mohamed.abdelnasser@urv.cat
Author identifier:0000-0002-0562-4205
0000-0001-5421-1637
0000-0002-1074-2441
Journal publication year:2022
Publication Type:Proceedings Paper
APA:Okran, Ammar M; Abdel-Nasser, Mohamed; Rashwan, Hatem A; Puig, Domenec (2022). A Curated Dataset for Crack Image Analysis: Experimental Verification and Future Perspectives. Amsterdam: IOS Press
Papper original source:Frontiers In Artificial Intelligence And Applications. 356 225-228
Abstract:Most crack image datasets are developed for crack segmentation or detection. They cannot be used to train a deep learning model to detect and segment cracks simultaneously. Most of existing datasets do not include a very accurate annotation. Besides, some crack images cannot be used to train deep learning models because of their inferior quality. In this paper, we propose a promising curated crack image dataset that allows the development of crack segmentation, detection, and classification on the same set of images simultaneously. There is no dataset for road crack that involves detection and segmentation tasks to the best of our knowledge. The current version of the curated database consists of 506 images derived from the RDD2020 dataset taken from multi-countries (Japan, Czech, and India). We use the curated dataset to build different deep learning-based crack detection and segmentation methods. Our experiments demonstrate that the proposed dataset yields promising results for crack detection and segmentation.
Article's DOI:10.3233/FAIA220342
Link to the original source:https://ebooks.iospress.nl/doi/10.3233/FAIA220342
Papper version:info:eu-repo/semantics/publishedVersion
licence for use:https://creativecommons.org/licenses/by/3.0/es/
Department:Enginyeria Informàtica i Matemàtiques
Licence document URL:https://repositori.urv.cat/ca/proteccio-de-dades/
Thematic Areas:Artificial intelligence
Ciências agrárias i
Comunicació i informació
Engenharias iii
Engenharias iv
General o multidisciplinar
Información y documentación
Interdisciplinar
Medicina ii
Keywords:Deep learning
Instance segmentatio
Instance segmentation
Mask-rcnn
Object detection
Road crack
Entity:Universitat Rovira i Virgili
Record's date:2024-09-21
Search your record at:

Available files
FileDescriptionFormat
DocumentPrincipalDocumentPrincipalapplication/pdf

Information

© 2011 Universitat Rovira i Virgili