Repositori institucional URV
Español Català English
TITLE:
Predicting Personalized Quality of Life of an Intellectually Disabled Person Utilizing Machine Learning - imarina:9380776

URV's Author/s:Abdellatif Fatahallah Ibrahim Mahmoud, Hatem / Abdelnasser Mohamed Mahmoud, Mohamed / Puig Valls, Domènec Savi / Yadav, Gaurav Kumar
Author, as appears in the article.:Kumar Yadav, Gaurav; Moreno Vidales, Benigno; Duenas, Sara; Abdel-Nasser, Mohamed; Rashwan, Hatem A; Puig, Domenec; Nandi, G C
Author's mail:domenec.puig@urv.cat
gauravkumar.yadav@urv.cat
hatem.abdellatif@urv.cat
mohamed.abdelnasser@urv.cat
gauravkumar.yadav@urv.cat
Author identifier:0000-0002-0562-4205
0000-0001-7022-290X
0000-0001-5421-1637
0000-0002-1074-2441
0000-0001-7022-290X
Journal publication year:2022
Publication Type:Proceedings Paper
APA:Kumar Yadav, Gaurav; Moreno Vidales, Benigno; Duenas, Sara; Abdel-Nasser, Mohamed; Rashwan, Hatem A; Puig, Domenec; Nandi, G C (2022). Predicting Personalized Quality of Life of an Intellectually Disabled Person Utilizing Machine Learning. Amsterdam: IOS Press
Papper original source:Frontiers In Artificial Intelligence And Applications. 356 139-142
Abstract:This work aims to enhance dependent persons' quality of life (QOL) by examining various aspects of their lives and providing the required assistance to enhance each aspect of their QOL. We employ machine learning methods to evaluate the eight aspects of QOL and forecast the corresponding index value. Machine learning algorithms input eight aspects of QOL and predict the QOL index value. The QOL Index value says the requirement of the support to a person, and it depends on eight aspects of the QOL. We use our dataset to train the machine learning model. Dataset is collected using the GENCAT scale tool, which takes 69 items and provides the score value for each aspect of the QOL. We apply many linear and nonlinear machine learning regression algorithms. The multiple linear regression algorithm results show better performance for root mean squared error (1.4729) and R-2 score (0.9918).
Article's DOI:10.3233/FAIA220327
Link to the original source:https://ebooks.iospress.nl/doi/10.3233/FAIA220327
Papper version:info:eu-repo/semantics/publishedVersion
licence for use:https://creativecommons.org/licenses/by/3.0/es/
Department:Enginyeria Informàtica i Matemàtiques
Licence document URL:https://repositori.urv.cat/ca/proteccio-de-dades/
Thematic Areas:Artificial intelligence
Ciências agrárias i
Comunicació i informació
Engenharias iii
Engenharias iv
General o multidisciplinar
Información y documentación
Interdisciplinar
Medicina ii
Keywords:And machine learnin
Intellectual and developmental disability
Machine learning
Priority of care
Quality of life
Support paradigm
Entity:Universitat Rovira i Virgili
Record's date:2024-09-21
Search your record at:

Available files
FileDescriptionFormat
DocumentPrincipalDocumentPrincipalapplication/pdf

Information

© 2011 Universitat Rovira i Virgili