Repositori institucional URV
Español Català English
TITLE:
Grouped Pointwise Convolutions Significantly Reduces Parameters in EfficientNet - imarina:9380779

URV's Author/s:Abdellatif Fatahallah Ibrahim Mahmoud, Hatem / Abdelnasser Mohamed Mahmoud, Mohamed / Puig Valls, Domènec Savi / Romaní Also, Santiago
Author, as appears in the article.:Schwarz Schuler, Joao Paulo; Romani, Santiago; Abdel-Nasser, Mohamed; Rashwan, Hatem; Puig, Domenec
Author's mail:domenec.puig@urv.cat
santiago.romani@urv.cat
hatem.abdellatif@urv.cat
mohamed.abdelnasser@urv.cat
Author identifier:0000-0002-0562-4205
0000-0001-6673-9615
0000-0001-5421-1637
0000-0002-1074-2441
Journal publication year:2021
Publication Type:Proceedings Paper
APA:Schwarz Schuler, Joao Paulo; Romani, Santiago; Abdel-Nasser, Mohamed; Rashwan, Hatem; Puig, Domenec (2021). Grouped Pointwise Convolutions Significantly Reduces Parameters in EfficientNet. Amsterdam: IOS Press
Papper original source:Frontiers In Artificial Intelligence And Applications. 339 383-391
Abstract:EfficientNet is a recent Deep Convolutional Neural Network (DCNN) architecture intended to be proportionally extendible in depth, width and resolution. Through its variants, it can achieve state of the art accuracy on the ImageNet classification task as well as on other classical challenges. Although its name refers to its efficiency with respect to the ratio between outcome (accuracy) and needed resources (number of parameters, flops), we are studying a method to reduce the original number of trainable parameters by more than 84% while keeping a very similar degree of accuracy. Our proposal is to improve the pointwise (1x1) convolutions, whose number of parameters rapidly grows due to the multiplication of the number of filters by the number of input channels that come from the previous layer. Basically, our tweak consists in grouping filters into parallel branches, where each branch processes a fraction of the input channels. However, by doing so, the learning capability of the DCNN is degraded. To avoid this effect, we suggest inter-leaving the output of filters from different branches at intermediate layers of consecutive pointwise convolutions. Our experiments with the CIFAR-10 dataset show that our optimized EfficientNet has similar learning capacity to the original layout when training from scratch.
Article's DOI:10.3233/FAIA210158
Link to the original source:https://ebooks.iospress.nl/doi/10.3233/FAIA210158
Papper version:info:eu-repo/semantics/publishedVersion
licence for use:https://creativecommons.org/licenses/by/3.0/es/
Department:Enginyeria Informàtica i Matemàtiques
Licence document URL:https://repositori.urv.cat/ca/proteccio-de-dades/
Thematic Areas:Artificial intelligence
Ciências agrárias i
Comunicació i informació
Engenharias iii
Engenharias iv
General o multidisciplinar
Información y documentación
Interdisciplinar
Medicina ii
Keywords:Classification
Cnn
Computer vision
Dcn
Dcnn
Deep learning
Efficientnet
Entity:Universitat Rovira i Virgili
Record's date:2024-09-21
Search your record at:

Available files
FileDescriptionFormat
DocumentPrincipalDocumentPrincipalapplication/pdf

Information

© 2011 Universitat Rovira i Virgili